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The line intensity of photoelectron spectra when either the neutral or cationic species

display a Renner-Teller coupling is derived and applied to the modeling of the pho-

toelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these

three radicals and of their cation are investigated starting from ab initio results. A

model treating simultaneously the bending mode and the overall rotation is developed

to deal with the quasilinearity problem in CNC+, CCN+, and HCCN and accounts

for the large amplitude nature of their bending mode. This model is extended to treat

the Renner-Teller coupling in CNC, CCN, and HCCN+. Based on the derived photo-

electron line intensity, the photoelectron spectra of all three molecules is calculated

and compared to the experimental one.
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I. INTRODUCTION

Photoelectron spectroscopy allows us to study complicated rovibronic transitions, be-

tween neutral and cationic species, requiring in many cases dedicated models. This is well

illustrated by the photoelectron spectra of ethylene1 and methane2 which required new mod-

els to compute the torsional energy levels of C2H
+
4 and to treat the Jahn-Teller effect in CH+

4 .

This is also well illustrated by the photoelectron spectrum of acetylene3,4 which could be

analyzed once the unusual tetra-atomic Renner-Teller coupling5 in C2H
+
2 was accounted for.

Recently, the photoelectron spectra of several radicals, including CNC, CCN, and HCCN,

have been reported.6 Just as the acetylene molecule, these species or their cation display a

Renner-Teller (RT) coupling, but modeling their photoionization spectra is expected to be

theoretically more challenging for several reasons. A larger RT interaction characterized by

a Renner parameter ϵ of the order of 0.5 in CNC and CCN, and larger than 1 in HCCN+

should be accounted for. In the quasilinear CNC+, CCN+, and HCCN, the bending mode

should be dealt with as a large amplitude motion since it is characterized by a very low

frequency on the order of 100 cm−1. More importantly, although theoretical calculations of

the line strength of photoelectron spectra are available for diatomic7–10 and polyatomic1,11–15

molecules, there are no results for molecules displaying a RT coupling.

In this paper, a theoretical formalism aimed at accounting for the photoionization spec-

trum of non-rigid molecules displaying a RT coupling is developed and applied to the sim-

ulation of the photoelectron spectrum6 of CNC, CCN, and HCCN. Starting from ab initio

calculations, bending potentials were derived for these three neutral species and their cation.

The rovibrational energy levels of CNC+, CCN+, and HCCN, characterized by a nondegen-

erate sigma electronic state, were computed using an approach in which the overall rotation

and the large amplitude bending mode are treated simultaneously16–21 in order to account

for the quasilinearity. Using previous theoretical results,22–27 this approach is extended to

include the RT effect and allows us to retrieve the rovibronic energy levels of CNC, CCN,

and HCCN+. Finally, an expression for the line strength of photoelectron spectra when one

of the electronic states displays the RT coupling is derived and written in terms of Franck-

Condon factors involving the bending wavefunctions of the neutral and cationic species.

Since none of the photoionization spectra dealt with are rotationnaly resolved,6 only the K

structure is accounted for in the energy level calculation and the line strength is averaged
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over rotational levels.

These theoretical results are first applied to the ionizing transition of H2O which provides

us with a test for the theoretical approach since the cation H2O
+ is strongly affected by

the RT coupling. The threshold photoelectron spectrum (TPES), calculated from available

potential energy surfaces28,29 and using the newly derived line strength expression, compares

fairly well with the experimental one.30,31 The theoretical results are then applied to the

modeling of the photoelectron spectra of CNC, CCN, and HCCN. These spectra turned

out to be in good agreement with the experimental ones,6 even for HCCN where the RT

coupling in its cationic species is the largest.

This paper has five remaining sections. In Section II, the results of the ab initio calcula-

tions and their fitting are presented. Section III is concerned with the effective approaches

used to account for the quasilinearity and the RT coupling. In Section IV, the expression of

the photoionization cross section when one of the electronic states displays the RT coupling

is introduced. These results are applied to H2O, CNC, CCN, and HCCN in Section V.

Section VI is the discussion.

II. AB INITIO CALCULATIONS

The ab initio calculations of the electronic states of the CNC, CCN, and HCCN rad-

icals and their cation were carried out using the CCSD(T) (Coupled-Cluster with Single

and Double and perturbative Triple excitations) method explicitly correlated (RCCSD(T)-

F12) as well as internally contracted multireference configuration interaction method with

Davidson correction (MRCI+Q) with complete active space self-consistent field (CASSCF)

wavefunctions. All calculations were performed using the MOLPRO 2012 package and the

Dunning augmented triple and quadruple zeta basis. The potential energy curves used for

the photoelectron calculations are those calculated using RCCSD(T)-F12.

Ground state potential energy curves, displayed in Figs. 1, 2, and 3, were computed as a

function of a bending angle denoted γ, optimizing all other structural parameters. For the

triatomic CNC and CCN, γ was taken as the angle ∠CNC and ∠CCN, respectively; for the
tetra-atomic HCCN, γ is the ∠HCC angle corresponding to the ν5 mode.32 We have chosen

to use the curves calculated at the RCCSD(T)-F12 level rather than those at MRCI level

because the geometry optimization is performed only at CASSCF for MRCI calculations.
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Both methods, RCCSD(T)-F12 and MRCI, lead to very similar results. The CASSCF and

MRCI calculations were performed at full valence active space for CNC and CCN, namely

with 19 (18 for the cations) electrons distributed in 15 orbitals with the 1s orbitals of

carbon and nitrogen atoms kept doubly occupied but fully optimized. The CASSCF and

MRCI calculations were performed at smaller active space for HCCN due to convergence

problems, namely with 20 (19 for HCCN+) electrons distributed in 13 orbitals with the 1s

and 2s orbitals of carbon and nitrogen atoms kept doubly occupied but fully optimized.

The optimized value for the geometries at the RCCSD(T)-F12/AVTZ level for CNC,

CCN, and HCCN and their cation are listed in Table I where, when available, they are

compared with previous experimental or theoretical values. The calculated energy differences

between the cation and the neutral for the linear geometry, not given in this table, are 9.734,

10.768, 10.574 eV, for CNC, CCN, and HCCN, respectively.

Numerical values were least squares fitted to a polynomial expansion F (γ) written in

term of π − γ, the supplement of γ:

F (γ) =
n∑

i=0

fi(π − γ)i (1)

where fi, with 0 ≤ i ≤ n, are the fitted constants. 4 such constants were retrieved for each

electronic state and for each parameter allowing us to reproduce accurately the ab initio

values. For potential energies and bond lengths, the expansion in Eq. (1) was restricted to

even values of i. For a pair of RT electronic substates, the f0 parameters of both substates

were constrained to be equal to ensure the required degeneracy for the linear configuration.

Due to a convergence problem, the ab initio calculations could not be carried out for γ < γmin,

where the angle γmin is between 90 and 115◦ depending on the species and the electronic

state. In order to obtain physically meaningful results, Eq. (1) should not be used for values

of γ smaller than γmin.

For the CNC radical, fitting of the ab initio potential energy points with the expansion

in Eq. (1) yielded root-mean-square (RMS) deviations of 2.5 and 2.4 cm−1 for the neutral

and cationic species, respectively. It was also possible to retrieve an accurate value for the

Renner parameter ϵ. A value of 0.562 was obtained and turned out to be in good agreement

with that reported by Merer and Travis,34 0.549.

Similarly for the CCN radical, the fit of the ab initio potential energy points led to

root-mean-square (RMS) deviations of 1.5 and 26 cm−1 for the neutral and cationic species,

4
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Table I. Experimental and calculated structural parametersa

Species Stateb Parameterc Experimentald Theory Theory (this work)e

CNC X 2Πg ∠CNC 18034 18035 180

r(CN) 1.24534 1.253435 1.2462

CNC+ X+ 1Σ+
g ∠CNC 18036,37 180

r(CN) 1.2427,36 1.253437 1.2468

CCN X 2Π ∠CCN 18038 18035 180

r(CC) 1.4045,35 1.374926 1.3821

r(CN) 1.1889,35 1.184726 1.1847

CCN+ X+ 1Σ+ ∠CNC 18036,37 180

r(CC) 1.3803,36 1.38137 1.3821

r(CN) 1.1815,36 1.253437 1.1906

HCCN X 3A′′ ∠HCC 18033 144.9,32 137.5,39 144.9540 145.36

∠CCN 18033 175.4,32 175.6,39 175.4540 175.26

r(HC) 0.99833 1.069,32 1.063,39 1.068940 1.0707

r(CC) 1.32333 1.328,32 1.372,39 1.326740 1.3285

r(CN) 1.19533 1.186,32 1.184,39 1.185040 1.1898

HCCN+ X+ 2A′ ∠HCC 152.739 163.59

∠CCN 174.139 175.92

r(HC) 1.09539 1.0842

r(CC) 1.31739 1.2981

r(CN) 1.21239 1.2048

A+ 2A′′ ∠HCC 18039 180

∠CCN 18039 180

r(HC) 1.09239 1.083

r(CC) 1.30039 1.291

r(CN) 1.21939 1.207

a Bond lengths are in Å and bond angles in degrees.
b In CNC, the RT coupling leads to lower 2A2 and upper 2B2 substates; for CCN, to lower 2A′′ and upper

2A′ substates; and for HCCN+ to lower 2A′ and upper 2A′′ substates.
c For HCCN and HCCN+ the dihedral ∠HCCN is 180◦, consistent with trans conformations.
d For HCCN, Brown et al.33 assumed a linear geometry.
e Obtained at the RCCSD(T)-F12/AVTZ level of theory.

respectively. The value obtained for the Renner parameter ϵ, 0.424, is in reasonable agree-

ment with that reported by Merer and Travis,38 0.44, but in better agreement with that

calculated by Hill et al.,26 0.429. It is in poor agreement with that retrieved by Kohguchi
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Figure 1. Variations with the bending angle γ = ∠CNC of the potential energy function V in eV

for the X 2A2 and A 2B2 electronic substates of the CNC radical resulting from the RT coupling

and for the X 1A1 electronic state of the CNC+ cation. Ab initio potential values are indicated by

dots. Solid lines are the fitted bending potentials calculated with Eq. (1).

et al.,41 0.489.

As can be seen in Table I, the HCCN radical and the HCCN+ cation display a nearly

linear equilibrium geometry. The ab initio calculations also confirm that the neutral and

cationic species are planar32,39,40 and that when γ = 180◦, the bending angle β = ∠CCN
is 180◦. When fitting the ab initio values of this angle, the angle supplement π − β was

fitted to the expansion of Eq. (1) which was restricted to odd values of i. This ensures the

required linearity for γ = 180◦. The angle β is plotted in Fig. 4 as a function of γ. For

γ ≥ 110◦, the results are consistent with the molecule assuming a Z-shaped trans geometry

for the X 3A′′ electronic state of the neutral radical and the X+ 2A′ electronic substate of

the cation as the dihedral angle ∠HCCN is 180◦. For the A+ 2A′′ electronic substate, the

angle β displays almost no change and remains close to 180◦. The RMS deviations of the fits

of the ab initio potential energy points are 12 and 4.1 cm−1 for the neutral and the cationic

species, respectively.

The results of the fit of the ab initio bond lengths with the polynomial expansion in Eq. (1)

is summarized for all species in the form of figures available as supplementary material.

6

http://dx.doi.org/10.1063/1.5011152


R-T effect in photoelectron spectra

Figure 2. Variations with the bending angle γ = ∠CCN of the potential energy function V in eV

for the X 2A′′ and A 2A′ electronic substates of the CCN radical resulting from the RT coupling

and for the nondegenerate X 1A′ electronic state of the CCN+ cation. Ab initio potential values

are indicated by dots. Solid lines are the fitted bending potentials calculated with Eq. (1).

III. EFFECTIVE BENDING AND RT HAMILTONIANS

The systems dealt with in the present work display either a quasilinearity problem like the

CNC+ and CCN+ cations,36 and the HCCN radical32,42 or a strong RT effect like the CNC

and CCN radicals,26,34,38 and the HCCN+ cation.39 In this section, effective Hamiltonians

are introduced to deal with both effects and account simultaneously for the large amplitude

bending mode and the overall rotation.
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Figure 3. Variations with the bending angle γ = ∠HCC of the potential energy function V in

eV for the X+ 2A′ and A+ 2A′′ electronic substates of the HCCN+ cation resulting from the RT

coupling, top panel, and for the nondegenerate X 3A′′ electronic state of the HCCN radical, bottom

panel. Ab initio potential values are indicated by dots. Solid lines are the fitted bending potentials

calculated with Eq. (1).

A. Effective bending Hamiltonian

The effective bending-rotation Hamiltonian Hb-r introduced to treat the quasilinearity

accounts for the large amplitude nature of the bending mode and relies on the Bending-

Rotation approach16–21 developed to deal with the anomalous centrifugal distortion of the

water molecule.43 The Bending-Rotation approach16–21 accounts exactly for the fact that the

A rotational constant goes to infinity for the linear configuration.
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Figure 4. Variations with the bending angle γ = ∠HCC of the angle β = ∠CCN in degrees for the

X 2A′′ and A 2A′ electronic substates of the HCCN+ cation and for the X 3A′′ electronic state of

the HCCN radical. Ab initio values are indicated by dots. Solid lines are fitted values calculated

with Eq. (1).

Hb-r is written in term of the large amplitude coordinate t = cos γ. Following Hougen et

al.44 and Mekhtiev et al.,45 a reference configuration represented by atom positions ai(t) is

used and a four-dimensional effective Hamiltonian describing the large amplitude bending

motion and the overall rotation is derived. A molecule fixed xyz axis system is chosen such

that its origin is the molecular center of mass, its xz plane is the molecular plane, and the

molecule is along the z axis for the t = −1 linear configuration. Obtaining atom positions

ai(t) and their derivatives ∂ai(t)/∂t from Section II, the 4×4 symmetrical generalized inertia

tensor44 I(t) is computed using Eqs. [5] of Mekhtiev et al.45 The effective Hamiltonian Hb-r

is then expressed with the generalized inverse inertia tensor44,45 µ(t) = [I(t)]−1 as:

Hb-r =
1
2
Ptµtt(t)Pt +

1
2

∑
δ=x,y,z

µδδ(t)N
2
δ

+ 1
2
µxz(t){Nx, Nz}+ 1

2
{µyt(t), Pt}Ny + V (t),

(2)

where µtt(t), µxx(t), µyy(t), µzz(t), µxz(t), and µyt(t) are components of the generalized

inverse inertia tensor;44,45 {, } is the anticommutator; Pt is the momentum conjugate to t;

Nδ, with δ = x, y, z, are molecule fixed components of the rotational angular momentum N;

and V (t) is the potential energy function. In Eq. (2), only two non-diagonal components

9
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of the generalized inverse inertia tensor arise due to the symmetry plane. A term involving

the determinant of the µ(t) tensor giving rise to a mass dependent potential analogous to

those in Eq. (36) of Hougen et al.44 and in Eq. [10] of Mekhtiev et al.45 has been omitted in

Eq. (2). The volume element to be used for the effective Hamiltonian Hb-r is sin θdθdϕdχdt.

Although there are no analytical expression for the components of the generalized inverse

inertia tensor, in the linear limit, when t → −1, the two non-diagonal components µxz(t)

and µty(t) go to zero and the four diagonal components display the following behavior:

lim
t→−1


µzz(t) =

A

1 + t
, µxx(t) = 2B,

µtt(t) = 2Be(1− t2), µyy(t) = 2B,

(3)

where A, Be, and B are three kinetic energy parameters. Although the meaning of A and

Be is not obvious, B clearly is the rotational constant of the linear configuration. The

results in Eqs. (3) are well illustrated by the CNC+ cation. Taking into account the above

requirements, the molecule fixed axis system is attached to the molecule so that its x axis

bisects the ∠CNC bending angle. Figure 5 depicts the variations of µtt(t)/(1 − t2), µxx(t),

µyy(t), and (1 + t)µzz(t). All the curves in this figure display a smooth behavior and it can

be deduced that A = Be = 4.9 cm−1 and B = 0.451 cm−1.

Equations (3) mean that when t→ −1, the limiting behavior of the terms in the effective

Hamiltonian of Eq. (2) is the same as those in the Bending-Rotation Hamiltonian defined

in Eqs. (1)–(3) of Coudert.16 This suggests that the Schrödinger equation for the bending

mode should be solved using the same θαβn (t) basis set functions:

θαβn (t) = (1− t)α/2(1 + t)β/2P (α,β)
n (t)/

√
hn, (4)

where n is an integer with 0 ≤ n ≤ nMax; P
(α,β)
n (t), with α, β ≥ −1, is a Jacobi polynomial;46

and hn is a normalizing factor given in Table 22.2 of Abramovitz and Stegun’s book46 and

in Eq. (8) of Coudert.16

The Schrödinger equation for the effective Hamiltonian in Eq. (2) is solved16–21 using

rovibrational wavefunctions of the form:

ψN,k(t)|N, k⟩, (5)

where ψN,k(t) is a vibrational bending wavefunction and |N, k⟩ is a symmetric top rotational

function defined as in Wigner47 and characterized by N the quantum number of the total

10
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Figure 5. Variations with the unitless large amplitude coordinate t of the 4 diagonal components

µδδ(t) of the generalized inverse inertia tensor of the CNC+ cation as computed from Section II.

The curve identified by t, x, y, and z are respectively µtt(t)/(1−t2), µxx(t), µyy(t), and (1+t)µzz(t)

in cm−1.

angular momentum and by k the eigenvalue of its molecule fixed component Nz. The

symmetric top rotational function depends also onM , the eigenvalue of the laboratory fixed

component NZ , but this quantum number is omitted as the energy does not depend on M .

The vibrational bending wavefunction ψN,k(t) is a solution of the Schrödinger equation for

the bending Hamiltonian:

HN,k
b = 1

2
Ptµtt(t)Pt +

1
2
k2µzz(t) + V (t)

+ 1
4
[N(N + 1)− k2][µxx(t) + µyy(t)].

(6)

The matrix of the bending Hamiltonian in Eq. (6) is set up and diagonalized taking the

basis set functions in Eq. (4) with β such that:16–21

β2 = k2 lim
t→−1

4µzz(t)(1 + t)2

µtt(t)
. (7)

This choice accounts for the singularity of the bending Hamiltonian HN,k
b for the linear

configuration and ensures that the basis set functions in Eq. (4) are eigenfunctions of HN,k
b −

V (t) when t is close to −1. In the case of the C2v symmetry CNC+ cation, Eq. (7) leads

to β = |k|. The value of α can be estimated matching the n = β = 0 basis set function of

11
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Eq. (4) with the ground state eigenfunction of the harmonic oscillator bending Hamiltonian.

This leads to:

α = 4
√
f2/Be, (8)

where f2 is the i = 1 expansion coefficient of the potential energy function with Eq. (1) and

Be is defined in Eqs. (3). Using the results of Section II in the case of the CCN+ cation, we

obtain Be = 5.01 and f2 = 475 cm−1 leading to α = 39. With such a value, the basis set

functions of Eq. (4) with n ≤ 10 are vanishingly small outside the range −1 ≤ t ≤ 0.5, that

is, 60◦ ≤ γ ≤ 180◦.

The matrix elements of the operators in Eq. (6) between two basis set functions of Eq. (4)

were computed using Gaussian quadrature and accounting for the singularity of µzz(t) and

Ptµzz(t)Pt at t = −1. For the former operator, the singularity is due to its behavior in the

linear limit, described by Eqs. (3). For the latter operator, as revealed by Eq. (A2), the

singularity arises because of the form of the basis set functions. A P -point Gauss-Jacobi

quadrature suited for a weight function of the form (1 − t)α′
(1 + t)β

′
was used. As shown

by Eqs. (A4)–(A6), taking α′ = α − 1 and β′ = β − 1 accounts for both singularities and

ensures the best accuracy.

Equation (8) puts an upper bound for the node values ti of the quadrature. When P = 21,

α = 39, and β = 0, as obtained for the CCN+ cation, the largest (smallest) value of ti (γi) is

0.40 (66.4◦). This means that values of γ, with γ < γmin, for which the results in Section II

are not valid, will not be used. This provides us with an alternative way of choosing α.

Bending-rotation energies and eigenfunctions of the Hamiltonian in Eq. (2) will be writ-

ten:

E(v,N, k) and Ψv,N,k = ψN,k
v (t)|N, k⟩, (9)

where v is the bending quantum number and ψN,k
v (t) is the corresponding eigenfunction.

Symmetry adapted bending-rotation wavefunctions for the Cs symmetry group can be built

starting from Eq. (9), using the invariance of the bending Hamiltonian in Eq. (6) under

the transformation k → −k, and remembering that the effects of the inversion operation

E* of Cs on a symmetric top rotational function48 are E*|N, k⟩ = (−1)N+k|N,−k⟩. Using

Wang-type rotational wavefunctions:

|NKδ⟩ = (|N,K⟩+ δ|N,−K⟩)/
√
2(1 + δK,0), (10)

12
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where K ≥ 0 and δ = ±1, the symmetry adapted wavefunctions take the form:

Ψv,N,K,δ = ψN,K
v (t)|NKδ⟩. (11)

These wavefunctions belong to the symmetry species A′ and A′′ of Cs when δ(−1)N+K is

+1 or −1, respectively. The symmetry species of the rovibronic wavefunction should be

calculated replacing this term by δ(−1)N+Kg(X Σ), where the g(X Σ) depends on the Cs

symmetry species of the nondegenerate X Σ electronic state and is +1 (−1) for an A′ (A′′)

electronic state.

B. Effective RT Hamiltonian

The RT effect in systems with a nonzero projection Λ = 1 of the molecule fixed component

Lz of the electronic angular momentum L are considered. The two RT electronic substates

that become degenerate in the linear limit belong to the A′ and A′′ symmetry species of Cs

and their potential energy functions, denoted V ′(t) and V ′′(t), respectively, can be obtained

from Section II. In the present treatment, we only consider the large amplitude bending

mode, the electron spin is ignored, and we use most of the results in Section IIIA. The

molecule fixed axis system is attached to the molecule in the same way and a unique reference

configuration is chosen for both electronic substates. The corresponding atom positions

ai(t) are determined from the results of Section II and calculated from internal coordinates

taken as the average of the A′ and A′′ substates values. This choice leads to a single

generalized inertia tensor calculated as in the previous section. In agreement with previous

investigations,22–27 we use electronic wavefunctions of the form |±Λ⟩ = (|A′⟩ ± i|A′′⟩)/
√
2

which, in the linear limit, are eigenfunctions of Lz with eigenvalues ±Λ. The Schrödinger

equation for the effective RT Hamiltonian used in this investigation is solved using rovibronic

wavefunctions of the form:

ψ+Λ,N,k(t)|+Λ⟩|N, k⟩+ ψ−Λ,N,k(t)|−Λ⟩|N, k⟩, (12)

where |N, k⟩ are symmetric top rotational functions defined as for Eq. (5) and ψ±Λ,N,k(t) are

two vibrational functions. For this pair of functions the Schrödinger equation is expressed

as a 2× 2 matrix:  H+Λ,N,k
b (t) V−(t)

V−(t) H−Λ,N,k
b (t)

 , (13)

13
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where H±Λ,N,k
b (t) are vibrational operators and V−(t) = [V ′(t)−V ′′(t)]/2. Neglecting the ge-

ometry variations of the expectation value of Lz and L
2
z, the vibrational operators H

±Λ,N,k
b (t)

take the following form:22–27

H±Λ,N,k
b = 1

2
Ptµtt(t)Pt +

1
2
(k ± Λ)2µzz(t)

+ 1
4
[N(N + 1)− k2][µxx(t) + µyy(t)] + V+(t),

(14)

where µδδ(t), with δ = t, x, y, z, are diagonal components of the generalized inertia tensor

and V+(t) = [V ′(t) + V ′′(t)]/2.

The matrix of the Hamiltonian in Eq. (13) is set up and diagonalized expanding the

vibrational functions ψ±Λ,N,k(t) in terms of the basis set functions of Eq. (4). The corre-

sponding values of α and β are denoted α± and β±. As Eqs. (3) are also valid, an equation

similar to Eq. (7) holds:

β±2
= (k ± Λ)2 lim

t→−1

4µzz(t)(1 + t)2

µtt(t)
. (15)

The value of α± can be estimated from the potential energy functions of the A′ and A′′

substates. Using Eq. (14), an equation similar to Eq. (8) arises:

α± = 4
√
f+
2 /Be, (16)

where f+
2 is the average value of the f2 expansion coefficients of Eq. (1) for the potential

energy function of the A′ and A′′ substates; and where Be is defined in Eqs. (3). Evaluation

of the matrix elements needed to set up the matrix of the Hamiltonian in Eq. (13) should

be carried out as in Section IIIA. For H±Λ,N,k
b (t), Eqs. (A4)–(A6) should be used; for the

potential energy function term V−(t), the Gauss-Jacobi quadrature for the weight function

(1− t)(α++α−)/2(1 + t)(β
++β−)/2 should be utilized.

Symmetry adapted rovibronic functions for the Cs point group, denoted Ψv,Λ,N,K,δ, where

v is the bending quantum number, K ≥ 0, and δ = ±1, are expressed in terms of the elec-

tronic wavefunctions of the A′ and A′′ substates; and of the Wang-type rotational functions

|NKδ⟩ of Eq. (10) as:

Ψv,Λ,N,K,δ =

1√
2
{|A′⟩[ψ+Λ,N,K

v (t) + ψ−Λ,N,K
v (t)]|NKδ⟩

+ i|A′′⟩[ψ+Λ,N,K
v (t)− ψ−Λ,N,K

v (t)]|NK−δ⟩},

(17)
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where ψ+Λ,N,K
v (t) and ψ−Λ,N,K

v (t) are solutions of Eq. (13) characterized by the bending

quantum number v and fulfilling:

∫ +1

−1

dt {|ψ+Λ,N,K
v (t)|2 + |ψ−Λ,N,K

v (t)|2} = 1. (18)

The wavefunctions in Eq. (17) belong to the symmetry species A′ and A′′ of Cs when

δ(−1)N+K is +1 or −1, respectively. This equation is physically more meaningful than

Eq. (12) because it is expressed in terms of the actual |A′⟩ and |A′′⟩ electronic wavefunctions

of the RT substates.

IV. RT COUPLING AND PHOTOIONIZATION CROSS SECTION

Theoretical calculations of the photoionization cross section were performed for diatomic7–10

and polyatomic1,11–15 molecules. Simplified results are available for molecules displaying the

RT coupling.22,49 In this work the results derived by Willitsch et al.15 for an asymmetric-top

polyatomic molecule are used. The photoionization cross section derived by these authors

is given in the first of their Eqs. (7). This equation, obtained ignoring the electron spin,

involves electronic and rovibrational terms. The latter, given in the second of their Eqs. (7),

consists of a Franck-Condon factor (qv)
2 = |⟨v+|v′′⟩|2 and a rotational factor Q(l′′). These

factors are evaluated in this section when the neutral and cationic species are described by

the large amplitude approaches introduced in Section III.

A. RT coupling in the X Π state of the neutral species

The electronic state of the cation, denoted X+ Σ, is then either an A′ or A′′ state. The

results of Willitsch et al.15 are used to calculate the total photoionization cross section σtot

of the X+Σ ← X Π ionizing transition by adding the contribution of each RT component.

Below, these contributions are distinguished using a ± sign where the upper (lower) sign

is for the X+ Σ ← X A′ (X+ Σ ← X A′′) transition. For either component, the lower level

labeled v′′, N ′′, K ′′, δ′′ is described by the wavefunction in Eq. (17) and connects to the upper

level of the cation labeled v+, N+, K+, δ+ described by the wavefunction in Eq. (11). It can
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be shown that the following Franck-Condon factor arises:

(q±v )
2 =∣∣∣∣ ∫ +1

−1

ψN+,K+

v+ (t)[ψ+Λ,N ′′,K′′

v′′ (t)± ψ−Λ,N ′′,K′′

v′′ (t)]dt

∣∣∣∣2 , (19)

where the vibrational wavefunctions ψN+,K+

v+ (t) and ψ±Λ,N ′′,K′′

v′′ (t) should be taken from

Eqs. (9) and (12), respectively. The Q(l′′) factor can be written:

Q±(l′′) = (2N+ + 1)

 N+ l′′ N ′′

−K+ λ′′ K ′′


± δ′′

 N+ l′′ N ′′

−K+ λ′′ −K ′′

+ δ+

 N+ l′′ N ′′

K+ λ′′ K ′′



± δ+δ′′
 N+ l′′ N ′′

K+ λ′′ −K ′′

2

/h(K+, K ′′).

(20)

where h(K+, K ′′) = 4(1 + δK+,0)(1 + δK′′,0). Taking into account the electronic terms and

the contributions from both RT components, the total cross section can be written:15

σtot = ρ′′[(q+v )
2

∑
|λ′′|≤l′′

Q+(l′′)B
(A′)
l′′λ′′

2l′′ + 1

+ (q−v )
2

∑
|λ′′|≤l′′

Q−(l′′)B
(A′′)
l′′λ′′

2l′′ + 1
]/2,

(21)

where the electronic terms B
(A′)
l′′λ′′ and B

(A′′)
l′′λ′′ are defined in Eq. (10) of Willitsch et al.15 and

correspond to either RT electronic substates; and ρ′′ is a weighing factor depending on the

lower level. The Franck-Condon factors in Eq. (21) should be calculated with a Gauss-Jacobi

quadrature. Symmetry considerations based on the nature of the partial wave describing

the photoelectron13,15 put some restrictions on the quantum numbers of the upper and lower

levels. Equation (3) of Willitsch et al.15 and the results at the end of Sections IIIA and

III B lead to:

δ+(−1)N++K+

g(X+Σ) δ′′(−1)N ′′+K′′
= −(−1)l, (22)

where l is the orbital angular momentum of the photoelectron partial wave.

Since the rotational structure is not expected to be resolved in the photoionization spec-

trum of the heavy molecules studied in this work, the cross section should be averaged over
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rotational levels. It will be averaged over N+ and N ′′, but not over v+, K+ and v′′, K ′′ as

resolved vibrational and K structure might be observed. The averaged cross section will be

calculated as:

σvib
tot (v

+, K+ ← v′′, K ′′) =
∑
N ′′,δ′′

∑
N+,δ+

σtot. (23)

Using the same ideas as in Section 5 of Buckingham et al.7 and neglecting in Eq. (19) the

dependence of the Franck-Condon factors on N+ and N ′′, evaluation of the summation over

the rotational quantum numbers of the upper level N+ and δ+ leads to:∑
N+,δ+

Q±(l′′) = (δK+,|K′′+λ′′| + δK+,|K′′−λ′′|)/4, (24)

where N+ and δ+ are such that Eq. (22) is fulfilled and λ′′ is nonzero. As the result in

Eq. (24) does not depend on the rotational quantum numbers of the lower level, N ′′ and δ′′,

the summation over these quantum numbers in Eq. (23) reduces to:∑
N ′′,δ′′

ρ′′ = exp[−Erv(v
′′, K ′′)/kT ]Zr/Z

= ρ′′(v′′, K ′′)Zr/Z,

(25)

where Z is the partition function of the molecule; T the temperature; k the Boltzmann

constant; Erv(v
′′, K ′′) the rovibrational energy; and Zr the rotational partition function.

This partition function is assumed to be independent of v′′ and K ′′ and to depend only on

the temperature. The averaged cross section can now be written:

σvib
tot (v

+, K+ ← v′′, K ′′) = ρ′′(v′′, K ′′)Zr/Z

×
∑

|λ′′|≤l′′

[(q+v )
2B

(A′)
l′′λ′′ + (q−v )

2B
(A′′)
l′′λ′′ ]/(2l

′′ + 1)

× (δK+,|K′′+λ′′| + δK+,|K′′−λ′′|)/8.

(26)

When using this equation, rovibrational energies for given v and K values should be com-

puted setting N equal to K in Eqs. (6) and (14). The vibrational functions thus obtained

should be used to obtain the Franck-Condon factors.

B. RT coupling in the X+ Π state of the cationic species

The electronic state of the neutral, denoted X Σ, is then either an A′ or A′′ state. The

total photoionization cross section σtot of the X
+ Π ← X Σ ionizing transition is obtained

17
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by adding the contribution of the RT components X+A′ ← X Σ and X+A′′ ← X Σ distin-

guished using + and − signs, respectively. The resulting total and averaged photoionization

cross section can be obtained making a few changes in Section IVA. In Eqs. (21) and

(26), the electronic terms B
(A′)
l′′λ′′ and B

(A′′)
l′′λ′′ should be both replaced by B

(X)
l′′λ′′ . The Franck-

Condon factor (q±v )
2 should be evaluated making the substitution v′′, N ′′, K ′′ ↔ v+, N+, K+

in Eq. (19). In the rotational factor Q(l′′) of Eq. (20), the substitutions δ′′ → ±δ′′ and

δ+ → ±δ+ should be made. At last in Eq. (22), g(X+ Σ) becomes g(X Σ).

For the molecules dealt with in the present investigation, the photoelectron is ejected

from a π orbital. This means that λ′′ = 1. In Eqs. (21) and (26), the first term in the

summation over l′′ will be assumed to be the dominant term and this summation will be

restricted to the l′′ = 1 term. It will also be assumed that electronic terms B
(A′)
l′′λ′′ and B

(A′′)
l′′λ′′

of Section IVA are equal.

V. NUMERICAL RESULTS

Using the two previous sections, photoionization cross sections are calculated for the

ionizing transitions of H2O, CNC, CCN, and HCCN. The first molecule provides us with

a test of the theoretical approach and also allows us to understand the contribution of the

various terms in Eq. (26) to the TPES. For the three remaining molecules, comparisons with

the experimental photoionization spectra6 are carried out. With the experimental setup used

in this reference, the energy resolution is 17 meV and the rotational temperature, fairly well

known, is around 200 K. The vibrational temperature is, however, not as well defined and

can be quite high since the consecutive R−H + F −−→ R + HF reactions are exothermic.

Below, we have chosen a temperature of 500 K for the simulations of the CNC, CCN, and

HCCN spectra.

A. Neutral H2O and H2O
+ cation

Starting from the potential energy surfaces of Partridge and Schwenke28 for the neutral

species and of Wu et al.29 for the cation, bending potentials and bond lengths were retrieved

for the ground stretching states. The results of Sections IIIA and III B were then applied

to the calculation of the rovibronic energies of H2O and H2O
+. A sufficient accuracy was
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Table II. Calculated rovibronic energiesa for H2O and H2O
+

Stateb v2 K Cal.c Cal.d

X 1A1 0 1 39.7 39.2

1 0 1594.3 1587.6

1 1 1637.5 1630.3

2 0 3151.7 3143.2

2 1 3199.5 3190.7

3 0 4666.1 4660.9

3 1 4720.8 4715.5

X+ 2B1 0 1 37.3 38.8

1 0 1417.8 1410.0

1 1 1459.2 1452.9

2 0 2784.4 2776.2

2 1 2831.7 2825.0

3 0 4097.3 4092.9

3 1 4153.1 4150.3

A+ 2A1 0 0 8379.5 8381.9

0 1 9033.9 9006.2

1 0 9884.6 9901.0

1 1 10647.1 10654.8

2 0 11564.3 11605.8

2 1 12498.4 12563.9

a Levels are identified by their electronic state, the bent molecule vibrational quantum number v2, and the

rotational quantum number K as defined in Sections IIIA and III B.
b X 1A1 is the ground electronic state of H2O, X+ 2B1 and A+ 2A1 are respectively lower and upper RT

substates of H2O
+.

c Energy in cm−1 calculated by Bunker and Stone50 for H2O and Wu et al.29 for H2O
+. For K = 1, the

average value of the K-type doublet was taken.
d Energy in cm−1 calculated in Section VA taking the same energy origin as Bunker and Stone,50 and Wu

et al.29

reached setting nMax, the maximum value of n for the basis set functions in Eq. (4), to 30,

P the number of points of the Gauss-Jacobi quadrature to 33, and α, α± to 10. Table II

displays a comparison between the present results and those previously calculated.29,50 For

H2O, the discrepancies range from 0 to 10 cm−1. For H2O
+ the discrepancies are larger,

especially for the A+ 2A1 state, but the theoretical approach reproduces well the large energy

increase when K goes from 0 to 1.
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The photoionization cross sections were calculated with Eq. (26) adding the contributions

of lines with v+ ≤ 25, v′′ ≤ 10, and K+, K ′′ ≤ 12. The adiabatic ionization energy of the

X+ 2B1 state of H2O
+ was set to 12.621 eV, the value determined by Truong et al.30 from

the experimental TPES of water measured with synchrotron radiation between 12 and 40 eV

photon energy. Assuming a temperature of 100 K and a Gaussian line shape with a half width

at half maximum of 90 cm−1, the TPES was computed and is plotted in Fig. 6. For emphasis

purposes, three cases were treated. In the first and second ones, only X+ 2B1 ← X 1A1 and

A+ 2A1 ← X 1A1 transitions were considered setting the (q−v )
2 and (q+v )

2 Franck-Condon

factors to zero, respectively; in the third case all transitions were considered. The upper

panel of Fig. 6 reveals that strong transitions spanning a small energy range arise near

the ionization energy due to favorable Franck-Condon factors between the lower X+ 2B1

RT substate and the ground X 1A1 state. The spectrum in this upper panel resembles that

shown in Fig. 3 of Truong et al.30 except that the one calculated in this work does not display

the Franck-Condon progression due to the stretching ν1 mode. As emphasized by the middle

panel, unfavorable Franck-Condon factors between the upper A+ 2A1 RT substate and the

ground X 1A1 state lead to higher energy transitions. This calculated spectrum should be

compared with Fig. 4 of Truong et al.30 Even though, the ν1 stretching mode is ignored, we

can see that the Franck-Condon progression due to the ν2 mode spans the same region than

that in the observed spectrum. A comparison between the lower panel of Fig. 6 and the

TPES in Fig. 2 of Truong et al.30 reveals an agreement between the line intensities of the

low and high energy portions of the spectrum.

The computed TPES could also be compared with the experimental photoelectron spec-

trum recorded by Ford et al.31 using a higher resolution than Truong et al.30 However such

a comparison is outside the scope of the present paper as it requires a treatment of the

photoionization cross section with values of l′′ larger than one in Section IV.

B. CNC radical and CNC+ ion

The rovibronic energy levels of the CNC radical in its ground X 2Πg electronic state

were computed using the ab initio results in Section II and the procedure described in

Section III B. Converged results were obtained setting nMax, P , and α, α
± to 35, 38, and 20,

respectively. For low lying rovibronic energy levels, Table III displays a comparison between
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Figure 6. Simulated TPES of the X+ 2Πu ← X 1A1 ionizing transition of H2O. In the upper and

middle panel onlyX+ 2B1 ← X 1A1 and A+ 2A1 ← X 1A1 transitions were considered, respectively.

All transitions are included in the lower panel.

the observed energies reported by Merer and Travis34 and those calculated in this work.

Observed minus calculated energies are within a few cm−1 except for the highest lying levels

which is not involved in any of the vibronic transitions observed by Merer and Travis.34

The results of Sections II and IIIA were used to retrieve rovibrational energies for the

CNC+ cation. No experimental data are available for this species and energies could only

be compared with those calculated by Jensen and Kraemer.36 For the ν02 , 2ν
0
2 , 3ν

1
2 , and 4ν02

states, the energies reported by these authors are 165, 349, 530, and 720 cm−1, respectively,
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Table III. Observed and calculated energiesa for CNC

v2 Γ Obs.b Cal.c

0 Πg −24 −24

1 Σ−
u 120 117

1 ∆u 248 245

2 Πg 356 359

1 Σ+
u 473 479

2 Φg 496 500

2 Πg 855 802

a Rovibronic levels of the CNC radical are identified with the bent molecule vibrational quantum number

v2 and their symmetry species label Γ.
b Observed energy in cm−1 reported by Merer and Travis.34

c Energy in cm−1 calculated in Section VB taking the same energy origin as Merer and Travis.34

and are much larger than those calculated in this work: 96, 220, 350, and 494 cm−1. The

large differences stem from the fact that the bending potential retrieved in this work is much

shallower and more anharmonic than that used by Jensen and Kraemer.36

The photoionization cross section were calculated with Eq. (26) for lines with v+ ≤ 15,

v′′ ≤ 30, and K+, K ′′ ≤ 21. A Gaussian line shape with a half width at half maximum of

90 cm−1 was used when computing the photoelectron spectrum (PES). The energy difference

between the cation and the neutral for the linear geometry, given in Section II, was shifted

by +0.085 eV in order to obtain the best agreement between observed and calculated PES.

This leads to an adiabatic ionization potential of 9.792 eV which is 0.012 eV larger than the

value of Garcia et al.6 Figure 7 shows experimental and calculated spectra. Unlike in H2O,

all transitions occur near the adiabatic ionization potential. This figure emphasizes that

there is a small mismatch between the main peak maximum and the adiabatic ionization

potential, which leads to the small discrepancy between the adiabatic ionization potential

of this work and that of Garcia et al.6 Almost no Franck-Condon progressions can be seen

in the observed and calculated spectra because for all three electronic states the equilibrium

configuration is the linear configuration. When using the bending potential of Jensen and

Kraemer36 for the cation, the agreement with the experimental spectrum is not as good
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Figure 7. Observed6 (Calculated) PES of the X+ 1A1 ← X 2Πg ionizing transition of CNC in the

upper (lower) panel. In the lower panel, the vertical arrow is the adiabatic ionization potential.

because the main peak in the calculated PES is narrower. A figure showing this calculated

PES and the experimental one is available in the supplementary material.

C. CCN radical and CCN+ ion

The rovibronic energy levels of the CCN radical and the CCN+ cation were calculated as

in the previous section. For the radical, Table IV lists the energies up to 1000 cm−1 along

with those computed by Hill et al.26 It can be seen that both sets of values are within 10 cm−1.

Merer and Travis38 report for the energy difference of the (010) 2∆ and (010) 2Σ− levels a

value of 113.55 cm−1 which compares well with that calculated in this work, 109 cm−1. For

the (020) 2Φ and (010) 2Σ− levels, the energies determined by Kohguchi et al.41 with respect

to the (000) 2Π level are 573.84 and 179.27 cm−1 and also agree well with the present values:

574 and 183 cm−1.
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Table IV. Calculated rovibronic energiesa for CCN

(0v20) Γ Cal.b Cal.c

(000) Π 0 0

(010) Σ− 182 183

(010) ∆ 293 292

(020)µ Π 440 441

(010) Σ+ 459 462

(020) Φ 575 574

(030) Σ− 669 672

(030)µ ∆ 713 715

(020)κ Π 824 832

(040)µ Π 924 929

(040)µ Φ 993 996

a Levels are identified with the bent molecule vibrational quantum number v2 and their symmetry species

label Γ. Only levels below 1000 cm−1 appear.
b Calculated energy in cm−1 reported by Hill et al.26 For doubly degenerate levels, the average value of

the spin orbit components was taken.
c Energy in cm−1 calculated in Section VC.

For the CCN+ cation, Jensen and Kraemer36 determined the vibrational energies of the

ν12 , 2ν
0
2 , 3ν

1
2 , and 4ν02 states to be 153, 318, 482, and 650 cm−1, respectively. These values

are much larger than those obtained in this work: 104, 208, 318, and 430 cm−1. Just as

for CNC+, this is due to the fact that the bending potential retrieved in this work is much

shallower and more anharmonic than that used by Jensen and Kraemer.36

The photoionization cross sections were calculated as in the previous section and the

TPES is shown in Fig. 8. The energy difference between the cation and the neutral for the

linear geometry, given in Section II, was shifted by +0.080 eV in order to obtain the best

agreement between observed and calculated TPES. This leads to an adiabatic ionization

potential of 10.822 eV, which agrees well with the value of Garcia et al.6 Most transitions

are located near this energy. For the calculated spectrum, a Franck-Condon progression can

clearly be seen on the high energy side of the main peak and a matching weak feature can be
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Figure 8. Observed6 (Calculated) TPES of the X+ 1A′ ← X 2Π ionizing transition of CCN in the

upper (lower) panel. In the lower panel, the vertical arrow is the adiabatic ionization potential.

observed in the experimental spectrum. Lowering the temperature leads to a narrower main

peak but does not really improve the agreement between observed and calculated spectra

on the high energy side of the main peak.

D. HCCN radical and HCCN+ ion

Setting nMax, P , and α, α± to 40, 43, and 20, respectively, rovibronic energies were

obtained for HCCN and HCCN+. For the former species, vibrational states are labeled

using the linear molecule quantum numbers v5
l5 and their energies are given up to v5 = 4

in Table V. These values should be compared with those in Tables 6 and 9 of Koput.32

Experimental energies of 128.9, 341.7, and 625 cm−1 are available for the 11, 22, and 33 states,

respectively, and are in better agreement with the present calculated energies than with those

calculated by Koput.32 The vibronic energies calculated for the cation are consistent with

a large RT interaction. To our knowledge no spectroscopic investigation of the cation is
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Table V. Calculated vibrational energiesa for HCCN

v5
l5 Eb v5

l5 Eb v5
l5 Eb

00 0 20 459 44 921

11 125 33 603 42 1015

22 334 31 719 40 1066

a Levels are identified using the linear molecule vibrational quantum numbers v5
l5 .

b Energies in cm−1 calculated in Section VD.

available in the literature.

The photoionization cross section was calculated with Eq. (26) for lines with v+ ≤ 40,

v′′ ≤ 20, and K+, K ′′ ≤ 30. A Gaussian line shape with a half width at half maximum

of 90 cm−1 was taken when computing the TPES, plotted in Fig. 9. About half of the

transitions are located near 10.65 eV. The other half are spread over the region from 10.8

to 11.5 eV corresponding to a superposition of many Franck-Condon progressions. Unlike

in CNC and CCN, the bending potential of the ground X 3A′′ state is quite different from

those of the two upper electronic states, leading to a large number of such progressions.

The energy difference between the cation and the neutral for the linear geometry, given in

Section II, was decreased by 0.010 eV so as to obtain the best agreement between observed

and calculated TPES. The value calculated for the adiabatic ionization potential is then

10.621 eV. This value is 0.118 eV above that reported by Zhao et al.39 and 0.021 eV below

that obtained by Garcia et al.6 This discrepancy, larger than in the case of CNC, is also

due to the fact that the adiabatic ionization potential differs from the experimental energy

of the main peak maximum, as emphasized by Figure 9. This latter value was incorrectly

taken as the adiabatic ionization potential in Garcia et al.6

VI. DISCUSSION

Calculated photoelectron spectra are computed for the CNC, CCN, and HCCN radicals

based on a derived expression of the total photoionization cross section when one of the

electronic states is affected by the RT effects. Two approaches aimed at spectroscopically

modeling the quasilinearity and the RT coupling displayed by these species are also derived.
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Figure 9. Observed6 (Calculated) TPES of the X+ 2Π ← X 3A′′ ionizing transition of HCCN in

the upper (lower) panel. In the lower panel, the small vertical arrow is the adiabatic ionization

potential.

The total photoionization cross section obtained in this work, appearing in Eq. (21),

was derived making use of the results of Willitsch et al.15 for the total photoionization

cross section of an asymmetric top molecule. Their expression, obtained using the orbital

approximation, is conveniently expanded in terms of products of rotational, vibrational, and

electronic terms. In this work, the RT coupling taking place in one of the electronic states

is dealt with by adding the contribution of both RT components of the ionizing electronic

transition. The vibrational term is written in terms of Franck-Condon factors involving the

bending wavefunctions.

In the approaches accounting for the quasilinearity and the RT coupling, introduced in

Section III, the overall rotation and the bending mode are treated together, accounting

for the large amplitude nature of this mode. These approaches allow us to describe well

the bending-rotation and the rovibronic couplings, but they only provide us with a limited
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description as they ignore the electron spin and the stretching modes. This approximate

description should nonetheless be sufficient for the qualitative results sought in this pa-

per. A more satisfactory description would be achieved with treatments accounting for all

vibrational modes.27,51,52

In order to understand qualitatively the contribution of the various terms in the new

expression of the total photoionization cross section, the theoretical treatment was first

applied, in Section VA, to the simulation of the photoelectron spectrum of H2O for which

both the neutral28 and the cationic29 species are spectroscopically well characterized; the

latter displaying a strong RT coupling with a Renner parameter larger than 1. The calculated

TPES, displayed in Fig. 6, is in qualitative agreement with the experimental one.30

The theoretical approach was then applied to the computation of the photoelectron spec-

tra of CNC, CCN, and HCCN. The bending potentials of these species were retrieved using

the ab initio calculations presented in Section II and their rovibronic energies, computed in

Sections VB, VC and VD, turned out to be in good agreement with spectroscopic data34,38,41

and calculations.26,32 Adjusting the adiabatic ionization potential of each molecule, a qual-

itative agreement between their experimental6 and calculated PES or TPES was achieved

and can be seen in Figs. 7–9. For CNC, both spectra display a single peak. Matching the

energy of these peaks, the adiabatic ionization potential, deduced from Section VB, was

increased by 0.085 eV and was found to be 9.792 eV. For CCN, both spectra span a larger

energy range and the improved value of the vertical ionization potential, 0.080 eV higher

than the value from Section VC, is 10.822 eV. For HCCN, both spectra display a narrow

peak and a broad feature. Matching these spectra leads to an adiabatic ionization potential

of 10.621 eV, which is 0.010 eV smaller than the value calculated in Section VD.

Appendix A: Matrix elements of inverse inertia tensor components

The matrix element of the diagonal component µzz(t) of the inverse inertia tensor between

two basis set functions of Eq. (4) is equal to:

⟨θαβn |µzz(t)|θαβm ⟩ =
∫ +1

−1

dt µzz(t) (1− t)α

× (1 + t)β P (α,β)
n (t)P (α,β)

m (t)/
√
hnhm.

(A1)
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The matrix element of the kinetic energy operator Ptµtt(t)Pt can be obtained from:

⟨θαβn |Ptµtt(t)Pt|θαβm ⟩ =
∫ +1

−1

dt µtt(t) (1− t)α−2

× (1 + t)β−2D(α,β)
n (t)D(α,β)

m (t)/
√
hnhm,

(A2)

where, in agreement with Partridge and Schwenke,28 D
(α,β)
n (t) is a polynomial expressed in

terms of the Jacobi polynomial P
(α,β)
n (t) and its derivative P

(α,β) ′
n (t) as:

D(α,β)
n (t) = P (α,β)

n (t)[(α− β)/2 + t(α + β)/2]

− (1− t2)P (α,β) ′
n (t).

(A3)

Evaluating the matrix elements in Eqs. (A1) and (A2) with a P -point Gauss-Jacobi quadra-

ture suited for the weight function (1− t)α−1(1 + t)β−1, the quadrature leads to:

⟨θαβn |Op|θαβm ⟩ =
P∑
i=1

ωif(ti), (A4)

where ωi and ti are respectively the weights and nodes. When Op = µzz(t), the function

f(t) is:

f(t) = P (α,β)
n (t)P (α,β)

m (t) (1− t2)µzz(t)/
√
hnhm. (A5)

When Op = Ptµtt(t)Pt, the function f(t) is:

f(t) = D(α,β)
n (t)D(α,β)

m (t)
µtt(t)

(1− t2)
/
√
hnhm. (A6)

Equations (3) and (A3) show that in both cases f(t) is a finite smooth function of t and the

quadrature should lead to accurate results.

SUPPLEMENTARY MATERIAL

See supplementary material for a PDF file containing four figures numbered S1 to S4.

Figures S1–S3 illustrate the fit of the bond lengths. Figure S4 shows a comparison between

observed and calculated PES for CNC.
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