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The threshold photoelectron spectrum of methylene (CH2), produced by consecutive H atom abstractions
on methane, has been recorded using synchrotron radiation. The experimental spectrum spans the region
of the X+ 2Πu ← X 3B1 ionizing transition. It is modeled starting from ab initio bending potentials and
using the bending approach introduced by Coudert et al. [J. Chem. Phys. 148, 054302 (2018)] accounting
for the quasilinearity of CH2 and the strong Renner-Teller interaction in CH+

2 . This first calculation yields
a theoretical threshold photoelectron spectrum which is in moderate agreement with the experimental one.
A more accurate approach treating the three vibrational modes is developed for computing the threshold
photoelectron spectrum of triatomic C2v molecules. This new treatment is tested modeling the already
measured threshold photoelectron spectrum of the X+ 2Πu ← X 1A1 ionizing transition of the water molecule.
The threshold photoelectron spectrum of CH2 computed with the new approach compares more favorably
with the experimental spectrum and yields an adiabatic ionization potential of 10.386(6) eV.

I. INTRODUCTION

Methylene (CH2) is an open-shell molecule with a
triplet X 3B1 ground electronic state.1,2 Its photoion
yield was recorded almost 20 years ago3,4 providing us
with a value of its adiabatic ionization energy ranging
from 10.393(11) to 10.3962(36) eV. More recently, its
threshold photoionization spectrum was recorded using
pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE)
photoelectron spectroscopy.5,6 A rotationally resolved
spectrum containing the X+ 2A1 ← X 3B1 ionizing tran-
sition was recorded from 10.3 to 10.4 eV and analyzed
yielding rotational constants for CH+

2 and a more ac-
curate value of 10.3864(4) eV for the adiabatic ioniza-
tion potential. As methylene is already spectroscopi-
cally characterized,7–13 this spectrum provided us with
information about low lying rotational levels of the elu-
sive CH+

2 cation.14 Except for the ν3 band reported by
Rösslein et al.15 and the vibronic bands reported by Oka
and coworkers,16,17 the cation still is spectroscopically
poorly characterized.
In this study the threshold photoelectron spectrum

(TPES) of CH2 has been recorded from 9.8 to 12 eV us-
ing a recently developed flow tube reactor18,19 and VUV
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Theoretical Chemistry, University of Würzburg, 97074 Würzburg,
Germany

synchrotron radiation.20 The spectrum spans a larger en-
ergy range than that previously reported,5,6 but with a
lower resolution. It displays narrow and broad features
due to the X+ 2A1 ← X 3B1 and A+ 2B1 ← X 3B1 ion-
izing transitions, respectively. Modeling this spectrum
is challenging as it requires accounting for the quasi-
linearity21,22 of the neutral, due to the coupling be-
tween the large amplitude bending mode and the overall
rotation,13 and for the strong Renner-Teller interaction
in the 2Πu ground electronic state of the cation leading
to the lower X+ 2A1 and the upper A+ 2B1 electronic
substates.

Starting from new ab initio bending potentials, the
photoelectron spectrum has been modeled with the bend-
ing approach of Coudert et al.23 accounting for the quasi-
linearity of the neutral and for the Renner-Teller interac-
tion in the cation. The spectrum has also been computed
with a new model in which all three vibrational modes
are treated, the tridimensional Schrödinger equation be-
ing solved with the help of Radau coordinates24 and the
Renner-Teller effects in the cation described using the
rovibronic Hamiltonian of Mitrushchenkov.25 This tridi-
mensional model, more satisfactory than the bending
one23 from the physical point of view, allows us to obtain
all the vibrational states of the neutral and the cation and
is expected to lead to a better agreement with the exper-
imental spectrum. With the help of tridimensional po-
tential energy surfaces26,27 available for H2O and H2O

+,
this new model is first tested computing the TPES of
the X+ 2Πu ← X 1A1 ionizing transition of the water
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molecule, used here to validate the model. Based on the
multidimensional potential energy surfaces28–31 available
for CH2 and CH+

2 , the new model is then used for com-
puting the TPES of CH2 and analyzing the experimental
TPES recorded in this work. The agreement is more sat-
isfactory than with the bending approach.23

The paper has four remaining sections. In Section II,
the experimental method used to produce methylene is
described along with the recording of the TPES. Sec-
tion III reports on the spectrum calculated with the
bending approach. In Section IV, the tridimensional ap-
proach is introduced and applied to the calculation of
the water molecule and methylene TPES, which are com-
pared to experimental data. Section V is the discussion.

II. EXPERIMENTAL TPES

The experimental results presented in this paper have
been obtained on the DESIRS beamline20 at synchrotron
SOLEIL. The experimental setup has been described
previously.18,19 Briefly, the radicals are produced in a
flow tube reactor by consecutive H atom abstractions
through chemical reactions of a precursor and atomic
fluorine. After the photoionization of the radicals by
the monochromatized synchrotron radiation, the result-
ing photoelectrons and photoions were analyzed with the
DELICIOUS III spectrometer.32

The methylene spectrum has been recorded simultane-
ously with that of the CH radical presented elsewhere.33

Experimental conditions should be found in this refer-
ence. Both species were produced by consecutive H atom
abstractions on methane. The TPES spectrum resolution
was 17 meV (137 cm−1) and the absolute accuracy of the
energy scale was found to be 3.2 meV. Note that the 35
V/cm DC field used to extract the photoelectron and the
photoion resulted in a field-induced shift of the CH2 ion-
ization potential of about −4.4±1.0 meV. The final abso-
lute accuracy on ionization threshold measurements was
about 4 meV. The experimental TPES is shown in Fig. 1
and consists of a narrow isolated feature at 10.38 eV and
a broader feature spanning the 10.6 to 12 eV energy range
where 9 bands can be seen at 10.74, 10.88, 11.03, 11.16,
11.31, 11.47, 11.61, 11.75, and 11.89 eV. The band at
10.74 eV being the strongest line of the broad feature.

III. BENDING TREATMENT

The threshold photoelectron spectrum of CH2 is mod-
eled using a slightly modified version of the bending
treatment introduced by Coudert et al.23 Starting from
ab initio calculations, rovibronic energies of CH2 and
CH+

2 are evaluated accounting for the quasi-linearity of
the former and the Renner-Teller effects in the latter. An
expression for the total photoionization cross sections is
derived using the results of Coudert et al.23

Figure 1. The experimental TPES of the X+ 2Πu ← X 3B1

ionizing transition of CH2 is plotted as a function of the pho-
ton energy in eV. Short vertical lines indicate the position of
the 10 strongest bands of the spectrum.

A. Ab initio bending potentials

The ab initio calculations of the triplet ground elec-
tronic state1,2 of CH2 (X 3B1) and of the two substates
(X+ 2A1 and A+ 2B1) of the 2Πu Renner-Teller split
ground electronic state of CH+

2 were carried out by us-
ing the internally contracted multireference configura-
tion interaction method with Davidson correction (MRCI
+ Q) with complete active space self-consistent field
(CASSCF) wavefunctions. All calculations were per-
formed using the MOLPRO program package34,35 and
the Dunning augmented quintuple zeta basis, the en-
ergies being corrected for basis set superposition error
(BSSE). The potential energy curves of the electronic
states were computed as a function of the ∠HCH bending
angle, denoted γ, the r(CH) distances being optimized for
each angle and each electronic state. The CASSCF and
MRCI calculations were performed at full active space,
namely with 8 electrons distributed in 7 orbitals with
the 1s orbital of the carbon atom kept doubly occupied
but fully optimized. These numerical values were least
squares fitted to a polynomial-type expansion F (γ) writ-
ten in terms of π − γ, the supplement of γ:

F (γ) =
n
∑

i=0

f2i(π − γ)2i, (1)

where f2i, with 0 ≤ i ≤ n, are the fitted parameters. Two
such sets of parameters, one for the bending potential and
one for the bond lengths, were retrieved for the electronic
ground state of CH2. Four such sets of parameters were
obtained for the doublet X+ 2A1 and A+ 2B1 electronic
substates of CH+

2 . The f0 parameters of both substates
were constrained to be equal to ensure the required de-
generacy for the γ = π linear configuration. In Eq. (1),
n was set to 4 for the bending potentials allowing us
to reproduce the ab initio values of the X 3B1, X

+ 2A1,
and A+ 2B1 states with root-mean-square (RMS) devia-
tions of 14, 42, and 29 cm−1, respectively. For the bond
lengths, n was set to 3 for the X 3B1 state and to 4
for the X+ 2A1 and A+ 2B1 substates and ab initio val-
ues were reproduced with RMS deviations of 3.5× 10−4,
2.2× 10−4, and 0.6× 10−4 Å, respectively.
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Figure 2. Variations with the bending angle γ = ∠HCH of
the potential energy function V in eV for the X 3B1 ground
electronic state of methylene and for the X+ 2A1 and A+ 2B1

substates of the CH+
2 cation. Ab initio potential values are

indicated by dots. Solid lines are the fitted bending potentials
calculated with Eq. (1).

Figures 2 and 3 show fitted bending potentials and
bond lengths, respectively, as well as ab initio points.
For the ground X 3B1 electronic state of methylene, the
equilibrium geometry is characterized by a bending an-
gle γ of 133.9◦ and a value of the r(CH) bond length
of 1.077 Å. The linear configuration is 1902 cm−1 above
this minimum and is characterized by a bond length of
1.067 Å. These values compare well with those charac-
terizing the minimum of the tridimensional potential en-
ergy surface retrieved by Jensen and Bunker,28 133.93◦

and 1.075 Å for the bending angle and the bond length,
respectively. For the linear configuration, these authors
obtained an energy of 1916 cm−1 and a bond length of
1.067 Å. For the lower X+ 2A1 Renner-Teller substate
of the cation, the equilibrium geometry is characterized
by γ = 139.2◦ and r(CH) = 1.094 Å. This minimum is
975.7 cm−1 below the linear configuration characterized
by r(CH) = 1.089 Å. These values should be compared
to those reported by Bunker et al.31 for the minimum
of their tridimensional potential energy surface, 140.81◦

and 1.0933 Å, and, for the linear configuration, an en-
ergy of 1033 cm−1 and a bond length of 1.0889 Å. As
Bunker et al.,31 we find that the minimum of the up-
per A+ 2B1 Renner-Teller substate occurs at the linear
configuration. The energy difference calculated in this
work between the cation and the neutral for the linear
geometry is 10.2377 eV.

B. Rovibronic energies

In this calculation, the asymmetry doubling and the
spin-rotation and hyperfine couplings are ignored. In the
case of the cation, the spin-orbit splitting is also ignored.
For the neutral, bending-rotation energies are calculated

Figure 3. Variations with the bending angle γ = ∠HCH of
the r(CH) bond length in Å for the X 3B1 ground electronic
state of methylene and for the X+ 2A1 and A+ 2B1 substates
of the CH+

2 cation. Ab initio bond length values are indicated
by dots. Solid lines are the fitted bond lengths calculated with
Eq. (1).

Table I. Symmetry species of rovibrational wavefunctionsa

δ N

Kb v3 even v3 odd even odd
e +1 −1 A1 B1

e −1 +1 B1 A1

o +1 −1 A2 B2

o −1 +1 B2 A2

a C2v symmetry species of symmetry adapted wavefunctions
labeled by the rotational quantum numbers N,K, δ of Coudert
et al.

23 and the vibrational quantum number v3. The latter
should be ignored and the column headed ‘v3 even’ used for
symmetry adapted wavefunctions in Section III B.

b The symbols e and o stand for even and odd, respectively.

as in Section IIIA of Coudert et al.23 The maximum
value of n for the basis set functions in Eq. (4) of this
reference, nMax, is set to 33, α the parameter describ-
ing these basis set functions, to 10, and P the Gauss-
Jacobi quadrature number of points, to 33. Symmetry
adapted rovibrational wavefunctions appropriate for the
C2v symmetry group can be obtained from Eq. (11) of
Coudert et al.23 Rovibrational levels are labeled with the
bent molecule vibrational quantum number v2 and with
the rotational quantum numbers N,K, δ, where N is the
quantum number of the total value of the rotational an-
gular momentum, K ≥ 0 corresponds to the eigenvalue
of its molecule-fixed component Nz, and δ = ±1. In the
case of CH2, K = Ka and Ka+Kc is N and N +1 when
δ is +1 and −1, respectively. The symmetry species of
the levels should be retrieved using Table I.
For the cation, the Renner-Teller effect is accounted for

as in Section III B of Coudert et al.23 where the Cs sym-
metry labels A′ and A′′ of the Renner-Teller substates
should be replaced by those appropriate for CH+

2 , A1

and B1, respectively. An increased accuracy is achieved
taking two different γ-dependent reference configurations
for the Renner-Teller substates. Two generalized inverse
inertia tensors, denoted µ

A(t) and µ
B(t) for respectively

the A1 and B1 substates, then arise and several equations
of Coudert et al.23 should be altered. In their Eq. (13),
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the nondiagonal term V−(t) should be replaced by:

HΛ,N,k
− = 1

2Ptµ
−
tt(t)Pt + kΛµ−

zz(t)

+ 1
4 [N(N + 1)− k2][µ−

xx(t) + µ−
yy(t)] + V−(t),

(2)

where µ−
δδ(t), with δ = t, x, y, z, is expressed in terms of

diagonal components of the two generalized inverse iner-
tia tensors as [µA

δδ(t) − µB
δδ(t)]/2; and V−(t) = [V A(t) −

V B(t)]/2 involves the bending potentials of the A1 and
B1 substates. In Eqs. (14) and (15) of Coudert et al.,23

the diagonal components µδδ(t) should be replaced by
µ+
δδ(t) = [µA

δδ(t) + µB
δδ(t)]/2. The changes described by

Eq. (2) do not lead to additional singularities as µ−
tt(t),

µ−
xx(t), µ

−
yy(t), and µ−

zz(t) go to zero for the linear con-
figuration. This allows us to setup and diagonalize the
Renner-Teller Hamiltonian as in Coudert et al.23 and
nMax = 33, α± = 12, and P = 34 were taken. Sym-
metry adapted rovibronic wavefunctions in the case of
the C2v symmetry group can be retrieved from Eq. (17)
of Coudert et al.23 Their symmetry species should be re-
trieved from Table I. The rovibronic levels arising from
each Renner-Teller substate can be labeled with the bent
molecule vibrational quantum number v2 and with the
rotational quantum numbers N,K, δ.
The present calculation yields a theoretical value of

10.3645 eV for the adiabatic ionization potential which is
0.022 eV below that retrieved by Willitsch et al.5 Table II
displays a comparison between the present rovibronic en-
ergies and previously calculated ones for levels belonging
to the ground stretching state with N = K = 0 and 1.
For CH2, the present energies are compared with those
of Jensen and Bunker28 after averaging K-type doublet
energies. For CH+

2 , the present energies are compared
with those of Jensen et al.30 after averaging also spin-
orbit components energies. For CH2, the discrepancies
range from 2.5 to 80 cm−1. For CH+

2 , the discrepancies
are larger, especially for the A+ 2B1 substate where they
are on the order of 200 cm−1.

C. Observed and calculated TPES

The threshold photoelectron spectrum is modeled us-
ing the results in Section IVB of Coudert et al.23 The to-
tal photoionization cross section σtot for a transition be-
longing to the X+Π← X Σ ionizing transition with up-
per and lower levels N+,K+, δ+, v+ and N ′′,K ′′, δ′′, v′′,
respectively, takes the form:

σtot = ρ′′



(q+v )
2
∑

|λ′′|≤l′′

Q+(l′′)B
(X)
l′′λ′′

2l′′ + 1

+(q−v )
2
∑

|λ′′|≤l′′

Q−(l′′)B
(X)
l′′λ′′

2l′′ + 1



 /2,

(3)

where B
(X)
l′′λ′′ is the electronic term defined in Eq. (10) of

Willitsch et al.;36 ρ′′ is a weighing factor depending on the

Table II. Calculated rovibronic energiesa of CH2 and CH+
2

State v2 N,K Calc.b This workc

X 3B1 0 1 78.9 81.4
1 0 963.1 975.0
1 1 1132.7 1157.5
2 0 1828.5 1848.3
2 1 2195.5 2242.2
3 0 2818.8 2874.1
3 1 3349.5 3431.1

X+ 2A1 0 1 76.3 68.8
1 0 995.6 988.5
1 1 962.1 923.8
2 0 2093.1 2106.4
2 1 1725.4 1690.5
3 0 3327.1 3385.3
3 1 2751.6 2768.6

A+ 2B1 0 0 2980.1 2919.1
0 1 4192.3 3978.0
1 0 5350.0 5383.6
1 1 6500.9 6574.5
2 0 7699.1 7840.6
2 1 8901.2 8735.8

a Levels are identified by their electronic state, the bent molecule
vibrational quantum number v2, and the rotational quantum
numbers N and K, taken equal.

b Energy in cm−1 reported by Jensen and Bunker28 for CH2 and

Jensen et al.30 for CH+
2 .

c Energy in cm−1 calculated in Section III B.

lower level; (q±v )2 are Franck-Condon factors; Q±(l′′) are
angular factors; and l′′ and λ′′ are the angular momentum
and its projection for the molecular orbital from which
ionization occurs. The Franck-Condon factors take the
following expression:

(q±v )
2 =

∣

∣

∣

∣

∫ +1

−1

dt ψN ′′,K′′

v′′ (t)

×
[

ψ+,N+,K+

v+ (t)± ψ−,N+,K+

v+ (t)
]

∣

∣

∣

∣

2

,

(4)

and involve the vibrational functions of the neutral and
cationic species. In Eq. (3), the angular factors Q±(l′′)
should be obtained from Eq. (20) of Coudert et al.23 after
making the change indicated in their Section IVB:

Q±(l′′) = (2N+ + 1)

[(

N+ l′′ N ′′

−K+ λ′′ K ′′

)

+ δ′′

(

N+ l′′ N ′′

−K+ λ′′ −K ′′

)

± δ+
(

N+ l′′ N ′′

K+ λ′′ K ′′

)

± δ+δ′′
(

N+ l′′ N ′′

K+ λ′′ −K ′′

)]2

/h(K+,K ′′).

(5)

where h(K+,K ′′) = 4(1 + δK+,0)(1 + δK′′,0).
When using Eq. (3), the restrictions on the quantum

numbers of the upper and lower levels due to the nature
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of the partial wave describing the photoelectron should
be taken into account.36,37 When l the orbital quantum
number of this partial wave is odd, the C2v symmetry
species of the upper and lower level should be the same.
Table I emphasizes that K+ and K ′′ should then have
the same parity. When l is even, the product of the
symmetry species should be A2 and K+ and K ′′ should
then have opposite parity.

Since in CH2 the photoelectron is ejected from a πu
orbital, λ′′ should be set to 1 and the summation in
Eq. (3) was restricted to the first l′′ = 1 term. The
photoionization cross sections were calculated adding the
contributions of lines with 0 ≤ v′′ ≤ 10, 0 ≤ v+ ≤ 25,
0 ≤ N ′′, N+ ≤ 25, and 0 ≤ K ′′,K+ ≤ 12. The weighing
factor ρ′′ in Eq. (3) was evaluated assuming a Boltzmann
equilibrium characterized by a temperature of 300 K. A
nuclear spin statistical weight equal to 1 (3) was taken
for lower levels belonging to the symmetry species A1 or
A2 (B1 or B2). The orbital quantum number l of the
photoelectron partial wave is assumed to be even.36,37 A
Gaussian line shape with a half width at half maximum of
137 cm−1 was taken for each individual line in agreement
with Section II.

Observed and calculated TPES are plotted in Fig. 4.
The calculated TPES displays a narrow feature where
a K-type structure can easily be seen and a broad fea-
ture dominated by several Franck-Condon progressions.
The three prominent ones correspond to transitions con-
necting rotational levels with K ′′ = 0 and 1 of the neu-
tral ground vibrational state and rovibronic levels of the
cation belonging to the A+ 2B1 Renner-Teller substate
with 0 ≤ v+2 ≤ 4 and 0 ≤ K+ ≤ 2. A fourth progression,
not drawn in Fig. 4, corresponds to transitions originat-
ing from levels with K ′′ = 2. This progression leads to
a broadening of the bands calculated at 11.2, 11.5, and
11.8 eV.

Comparing observed and calculated spectra, we can
see that there is an agreement between the widths of
the narrow features, but the K-structure is not seen in
the observed spectrum. Also, line positions and relative
line intensities do not agree. Although there is an agree-
ment between line positions for the six bands from 10.74
to 11.47 eV, this is not the case for the three remain-
ing ones at 11.61, 11.75, and 11.89 eV with calculated
counterparts characterized by too high energies of 11.64,
11.79, and 11.94 eV, respectively. The observed band
near 10.74 eV, which is the strongest line of the broad
feature, only has a weak counterpart in the calculated
spectrum. Matching the position of the narrow features
and accounting for the experimental field induced shift
described in Section II, the experimental adiabatic ion-
ization potential was found to be 10.385(6) eV where the
6 meV uncertainty accounts for the 4 meV measurement
accuracy plus the 2 meV error of the matching process.
This value of the adiabatic ionization potential is 1.4 meV
below that retrieved by Willitsch et al.5

Figure 4. Observed (Calculated) TPES of the X+ 2Πu ←

X 3B1 ionizing transition of CH2 in the upper (lower) panel.
The theoretical TPES was obtained using the bending model
of Section III. The y-axes scales are multiplied by 2 for a pho-
ton energy larger than 10.54 eV. In the lower panel, Franck-
Condon progression a originates from the neutral v′′2 = K′′ =
0 level and connects the v+2 ,K+ = 1 level of the cation A+ 2B1

substate. Progressions b and c both originate from the neu-
tral v′′2 = 0,K′′ = 1 level and connect the v+2 ,K+ = 2 and
K+ = 0 levels of the cation A+ 2B1 substate, respectively.
The value of the bent molecule vibrational quantum number
v+2 appears in the figure.

IV. TRIDIMENSIONAL TREATMENT

The treatment described below can be used for calcu-
lating the TPES spectrum of a C2v symmetry XY2 neu-
tral molecule with an X Σ ground electronic state and
an XY+

2 cation with a Renner-Teller split X+Π ground
electronic state. For the neutral, the approach of Gutle
and Coudert24 designed to solve the Schrödinger equa-
tion for a triatomic molecule is used to calculate the
rovibronic energies. This approach is also used for the
cation and the Renner-Teller effects are accounted for as
in Mitrushchenkov.25 The TPES is modeled adding both
stretching modes in the treatment of Section III C. These
results are applied to the water molecule and to CH2.

A. Rovibronic energies of the neutral

The results of Section 3 of Gutle and Coudert24 are
used and the Hamiltonian is written using the Radau38,39

stretching coordinates R1 and R2, and the bending co-
ordinate t = cos γ̃, where γ̃ is the Radau bending an-
gle. The molecule-fixed axis system is attached to the
molecule as in Gutle and Coudert24 and the exact Hamil-
tonian, given in their Eqs. (5)–(8), is written:

Kvib + V (R1, R2, t) +Hrot, (6)

where V (R1, R2, t) is the potential energy function; Hrot

is the rotational Hamiltonian given in Eq. (8) of Gutle
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and Coudert;24 andKvib is the vibrational kinetic energy:

Kvib =
P 2
R1

2m
+
P 2
R2

2m
+

1

2m

(

1

R2
1

+
1

R2
2

)

Pt(1− t2)Pt, (7)

where m is the mass of the Y terminal atom; and PR1
,

PR2
, and Pt are conjugated momenta to R1, R2, and

t, respectively. As in Section III B, rovibronic energies
are calculated ignoring the spin-rotation and hyperfine
couplings, and the asymmetry doubling. The rotational
function is therefore taken as a symmetric top rotational
function |N, k〉 characterized by N the quantum number
of the total angular momentum and by k the eigenvalue of
its molecule-fixed component Nz. The rotational Hamil-
tonian in Eq. (8) of Gutle and Coudert24 can be replaced
by its matrix element between too symmetric top rota-
tional functions leading to:

HN,K
rot (X) = 1

2m

(

1
R2

1

+ 1
R2

2

)

×
[

X2

2(1 + t)

+ [N(N + 1)−K2]( 1
4(1− t) +

1
8
)

]

,

(8)

where K = |k|. Rovibrational energies for each value
of N and k are then obtained solving the Schrödinger
equation for the vibrational Hamiltonian:

Kvib + V (R1, R2, t) +HN,K
rot (K). (9)

Vibrational energies and eigenfunctions are computed
as outlined in Section 3 of Gutle and Coudert.24 The pa-
rameters γ and δ describing the basis set bending func-
tions in Eq. (12) of this reference are respectively set

to
√

[N(N + 1)−K2]/2 and K in order to account for

the singularities in the vibrational operator HN,K
rot (K) of

Eq. (8) for the t = −1 linear and t = +1 folded configu-
rations. The parameters ξ and ρ describing the basis set
stretching functions in Eq. (11) of Gutle and Coudert24

depend on the potential energy function V (R1, R2, t) and
can be obtained using Eqs. (A4) and (A5) of Partridge
and Schwenke26 once the Radau bending coordinate t
is set to its equilibrium value. Rovibronic energies and
eigenfunctions take the form:

E(v1, v2, v3, N,K) and ψN,K
v1,v2,v3(R1, R2, t)|N, k〉, (10)

where v1 and v3 are the usual vibrational quantum num-
bers for the symmetrical and antisymmetrical stretching
modes, respectively; and v2 is the bent molecule quan-
tum number. Using the Wang-type rotational wavefunc-
tion in Eq. (10) of Coudert et al.,23 symmetry adapted
wavefunctions can be built:

Ψv,N,K,δ = ψN,K
v (R1, R2, t)|NKδ〉, (11)

where v is a shorthand notation for v1, v2, v3. Their sym-
metry species can be obtained from Table I. As stressed
in Section III B, the usual rotational quantum number
Ka is equal to K and Kc can be deduced from δ.

Table III. Calculated rovibronic energiesa of CH2

(v1, v2, v3) N K Calc.b This workc

(0, 0, 0) 1 0 15.6 15.6
1 1 78.9 78.9

(0, 1, 0) 0 0 963.1 963.4
1 0 978.6 978.9
1 1 1132.7 1132.7

(0, 2, 0) 0 0 1828.5 1829.0
1 0 1843.9 1844.5
1 1 2195.5 2195.6

(0, 3, 0) 0 0 2818.8 2818.2
1 0 2834.5 2834.0
1 1 3349.6 3349.5

(1, 0, 0) 0 0 2992.0 2992.3
1 0 3007.4 3007.7
1 1 3066.9 3067.0

(0, 0, 1) 0 0 3213.5 3213.6
1 0 3228.9 3229.0
1 1 3286.0 3286.2

(1, 1, 0) 0 0 3957.8 3949.7
1 0 3973.1 3965.1
1 1 4120.1 4120.2

(0, 4, 0) 0 0 4000.0 4006.7
1 0 4015.8 4022.6
1 1 4614.3 4614.3

(0, 1, 1) 0 0 4193.2 4192.8
1 0 4208.4 4208.1
1 1 4337.8 4337.9

a Levels are identified by the bent molecule vibrational quantum
number v2, the stretching vibrational quantum numbers v1 and
v3, and the rotational quantum numbers N and K. The
asymmetry doubling is neglected.

b Energy in cm−1 reported by Jensen and Bunker.28
c Energy in cm−1 calculated in Section IVA.

In the case of both the water molecule and CH2,
vtMax = 21 and vrMax = 15 were taken. In the
case of the water molecule, the potential energy func-
tion V (R1, R2, t) was obtained from Partridge and
Schwenke.26 In the case of CH2, the potential en-
ergy function was evaluated with the help of Eqs. (1)–
(3) of Jensen and Bunker,28 taking the fitted param-
eters in their Table II. In the case of both molecules,
Eqs. (2.21) and (2.22) of Johnson and Reinhardt39 were
used to transform from the Radau coordinates to the
usual stretching and bending coordinates. For the wa-
ter molecule, rovibrational energies were calculated up
to the (002) vibrational states and are within 0.5 cm−1

from those of Partridge and Schwenke26 for N = K = 0.
For CH2, Table III displays a comparison between the
rovibronic energies of Jensen and Bunker28 and those
calculated in this work. For K = 1, as in Section III B,
the average of the K-type doublet energies of Jensen and
Bunker28 was taken. Both sets of energies agree within
better than 1 cm−1, except for the close lying (1, 1, 0) and
(0, 4, 0) states displaying discrepancies of approximately
±8 cm−1 for K = 0.



Renner-Teller effects in TPES of CH2 7

B. Rovibronic energies of the cation

The vibronic Hamiltonian is obtained from Sec-
tion II of Mitrushchenkov25 using the x-embedding and
Radau38,39 coordinates. The Renner-Teller effect leads
to A1 and B1 electronic substates with potential energy
functions denoted V A(R1, R2, t) and V B(R1, R2, t), re-
spectively. For a given value of the rotational quantum
numbers N and K, the vibronic wavefunction is written:

|+Λ〉χ+,N,K
v (R1, R2, t) + |−Λ〉χ−,N,K

v (R1, R2, t), (12)

where |±Λ〉 are electronic wavefunctions which are eigen-
functions of Lz with eigenvalues ±Λ in the linear limit;
and χ±,N,K

v (R1, R2, t) are vibrational functions identified
by the three vibrational quantum numbers v1, v2, v3 indi-
cated by the shorthand notation v. The Hamiltonian for
these two functions, from Eq. (13) of Mitrushchenkov,25

is the 2× 2 matrix operator given below:

(Kvib +W+)I +

(

HN,K
rot (K − Λ) W−

W− HN,K
rot (K + Λ)

)

,

(13)

where I is the 2× 2 identity matrix; Kvib and HN,K
rot (X)

are defined in Eqs. (7) and (8), respectively; and W±

are potential energy terms equal to [V A(R1, R2, t) ±
V B(R1, R2, t)]/2.
The χ±,N,K

v (R1, R2, t) vibrational functions are ex-
panded using the basis set functions in Eqs. (9)–(12) of
Gutle and Coudert.24 The parameters γ± and δ± describ-
ing the bending basis set functions are set respectively to
√

[N(N + 1)−K2]/2 and |K±Λ| in order to account for

the singularities of the vibrational operatorHN,K
rot (K±Λ)

in Eq. (13). The parameters ξ and ρ describing the
stretching basis set functions should be retrieved as in
Section IVA using the W+ potential energy functions
and setting the Radau bending coordinate t to the value
minimizing W+. Setting-up the matrix of the Hamilto-
nian in Eq. (13) requires evaluating matrix elements of
W−. As the χ+,N,K

v (R1, R2, t) and χ
−,N,K
v (R1, R2, t) vi-

brational functions are expanded using bending basis set
functions characterized by a different value of δ, Eq. (A1)
should be utilized.
Based on Eq. (17) of Coudert et al.,23 symmetry

adapted rovibronic wavefunctions can be built:

Ψv,Λ,N,K,δ = {|A′〉 [χ+
v + χ−

v

]

|NKδ〉
+ i|A′′〉[χ+

v − χ−
v ]|NK−δ〉}/

√
2,

(14)

where χ±
v is a shorthand notation for the vibrational

functions χ±,N,K
v (R1, R2, t) in Eq. (12). Table I should

be used to obtain the symmetry species of the rovibronic
wavefunctions in Eq. (14). In agreement with this equa-
tion, the levels arising from each Renner-Teller substate
are labeled using the three vibrational quantum numbers
(v1, v2, v3) and the rotational quantum numbers N,K, δ.
As in Jensen et al.,30 v2 is the bent molecule vibrational
quantum number. This quantum number was defined

Table IV. Calculated vibronic energiesa of H2O
+

State (v1, v2, v3) Calc.b This workc

X+ 2B1 (0, 1, 0) 1417.8 1418.3
(0, 2, 0) 2784.4 2785.4
(1, 0, 0) 3209.5 3212.5
(0, 0, 1) 3255.2 3258.4
(0, 3, 0) 4097.3 4098.7
(0, 4, 0) 5351.9 5353.6
(0, 5, 0) 6552.2 6554.3
(0, 6, 0) 7732.5 7735.2
(0, 7, 1) 8950.7 8953.9
(0, 8, 0) 10240.2 10244.1
(0, 9, 0) 11601.3 11604.1
(0, 10, 0) 13021.8 13027.7

A+ 2A1 (0, 0, 0) 8416.8 8418.2
(0, 1, 0) 9922.0 9923.7
(0, 2, 0) 11601.7 11606.2
(0, 3, 0) 13408.0 13410.9
(0, 4, 0) 15301.2 15304.9
(0, 5, 0) 17261.7 17266.2
(0, 6, 0) 19276.2 19281.0

a Vibronic states are identified by their electronic state, the bent
molecule vibrational quantum number v2, and the stretching
vibrational quantum numbers v1 and v3.

b Energy in cm−1 reported by from Wu et al.
27

c Energy in cm−1 calculated in Section IVB.

differently by Wang et al.17 who used the linear molecule
notation.
Vibronic energies of H2O

+ and CH+
2 were calculated

taking vtMax = 15 and vrMax = 17. For H2O
+, the poten-

tial energy terms W+ andW− in Eq. (13) were obtained
from Wu et al.27 For CH+

2 , these potential energy terms
were obtained using Eqs. (1)–(5) of Kraemer et al.29 with
the parameters in Table 1 of Bunker et al.31 Parameters

f
(1,−)
0 and f

(0)
13 were set to −9883.7 and −1310.7 cm−1,

respectively, the values determined through adjustment
by these authors. Tables IV and V display a comparison
between the vibronic energies calculated in this work and
those of Wu et al.27 and Bunker et al.31 for H2O

+ and
CH+

2 , respectively. Both sets of energies agree within
better than 10 and 5 cm−1 for the former and latter
molecules, respectively. Since calculated rovibronic en-
ergies are not reported for the upper A+ 2B1 electronic
substate of CH+

2 in Bunker et al.,31 the calculated en-
ergy for this substate in Table V were taken from Jensen
et al.30 and their energy was computed in this work us-
ing the parameters in in Table 1 of Kraemer et al.29 and
accounting for the correction in Section II of Jensen et
al.30

C. TPES modeling

The results of Section III C are extended to include
the two stretching modes. The expressions of the total
photoionization cross section σtot in Eq. (3) and of the
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Table V. Calculated vibronic energiesa of CH+
2

State (v1, v2, v3) Calc.b This workc

X+ 2A1 (0, 1, 0) 997.0 997.0
(0, 2, 0) 2102.2 2102.4
(1, 0, 0) 2899.5 2899.4
(0, 0, 1) 3131.6 3131.5
(0, 3, 0) 3346.4 3346.4
(1, 1, 0) 3888.6 3889.0
(0, 1, 1) 4111.9 4112.3
(0, 4, 0) 4701.0 4701.0
(1, 2, 0) 4986.8 4987.9
(0, 2, 1) 5187.7 5188.7
(2, 0, 0) 5736.4 5735.8
(1, 0, 1) 5923.4 5922.6
(0, 5, 0) 6114.7 6115.2
(0, 0, 2) 6202.4 6202.4
(1, 3, 0) 6251.6 6252.7
(0, 3, 1) 6397.2 6398.7
(2, 1, 0) 6717.1 6717.8
(1, 1, 1) 6894.9 6895.5

A+ 2B1 (0, 0, 0) 2980.1 2980.7
(0, 1, 0) 5350.0 5350.6
(1, 0, 0) 5866.3 5867.9
(0, 0, 1) 6130.2 6131.8
(0, 2, 0) 7699.1 7699.9
(1, 1, 0) 8212.3 8215.2
(0, 1, 1) 8443.9 8446.7
(2, 0, 0) 8689.2 8692.5
(1, 0, 1) 8906.2 8909.7
(0, 0, 2) 9219.9 9223.4
(0, 3, 0) 10028.4 10029.5
(1, 2, 0) 10536.1 10540.2
(0, 2, 1) 10736.8 10740.7

a Vibronic states are identified by their electronic state, the bent
molecule vibrational quantum number v2, and the stretching
vibrational quantum numbers v1 and v3.

b Energy in cm−1 reported by Bunker et al.
31 for the X+ 2A1

substate and by Jensen et al.
30 for the A+ 2B1 substate.

c Energy in cm−1 calculated in Section IVB. For the A+ 2B1

substate, the parameters of Kraemer et al.
29 and Jensen et

al.
30 were used.

angular factors Q±(l′′) in Eq. (5) do not need to be mod-
ified. The Franck-Condon factors (q±v )2 in Eq. (4) should
be rewritten as:

(q±v )2 =

∣

∣

∣

∣

∫∫∫

dR1 dR2 dt ψ
N ′′,K′′

v′′ (R1, R2, t)

×
[

χ+,N+,K+

v+ (R1, R2, t)

± χ−,N+,K+

v+ (R1, R2, t)
]

∣

∣

∣

∣

2

,

(15)

and involve the vibrational function of the neutral in
Eq. (11) and those of the cation in Eq. (14). The inte-
gral over vibrational coordinates can be evaluated using
Eqs. (A1) and (A2) since the vibrational function of the
neutral and the cation are expanded with basis set func-
tions of Gutle and Coudert24 characterized by different
values of γ, δ, ξ, and ρ.

Figure 5. Experimental and simulated TPES of the
X+ 2B1 ← X 1A1 ionizing transition of H2O are plotted in
the upper and lower panels, respectively. The experimental
TPES was taken from Fig. 3 of Truong et al.40 The theoreti-
cal TPES was obtained using the tridimensional treatment of
Section IV.

D. Observed and calculated TPES

In the case of the water molecule, just as in CH2, the
photoelectron is ejected from a πu orbital. As in Sec-
tion III C, λ′′ is set to 1 and the summation in Eq. (3) is
restricted to the first l′′ = 1 term. The TPES were calcu-
lated adding the contribution in Eq. (3) from lines with
0 ≤ N ′′, N+ ≤ 20 and 0 ≤ K ′′,K+ ≤ 12. The weighing
factor ρ′′ was evaluated as in Section III C and the orbital
quantum number l of the photoelectron partial wave was
assumed to be even.36,37

Observed and calculated TPES for the water molecule
are plotted in Fig. 5 for the X+ 2B1 ← X 1A1 ionizing
transition and in Fig. 6 for the A+ 2A1 ← X 1A1 ion-
izing transition. The observed TPES was taken from
Truong et al.40 for both figures. The calculated TPES
were computed assuming a temperature of 300 K and a
Gaussian line shape with a half width at half maximum
of 70 cm−1. This leads to a reasonable agreement with
the experimental spectra.
Assuming a temperature of 300 K and a Gaussian line

shape with a half width at half maximum of 137 cm−1,
as in Section III C, the TPES of CH2 was computed and
is compared with the experimental spectrum in Fig. 7.
As in Fig. 4, the calculated spectrum displays a broad
feature dominated by Franck-Condon progressions due
to the bending mode. The spectrum calculated in this
section is, however, closer to the experimental spectrum.
For the broad feature, a better agreement for line posi-
tions can be seen, especially for the three high energy
bands at 11.61, 11.75, and 11.89 eV. A more satisfactory
agreement also arises for relative line intensities. The ob-
served line near 10.74 eV has a stronger counterpart in
the calculated spectrum. Shifting the theoretical spec-
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Figure 6. Experimental and simulated TPES of theA+ 2A1 ←

X 1A1 ionizing transition of H2O are plotted in the upper
and lower panels, respectively. The experimental TPES was
taken from Fig. 4 of Truong et al.40 The theoretical TPES was
obtained using the tridimensional treatment of Section IV.

trum so as to obtain the best match with the experi-
mental one, the experimental value obtained for the adi-
abatic ionization potential was found to be 10.386(6) eV,
accounting for the experimental field induced shift and
estimating the uncertainty as in Section III C. This new
experimental value of the adiabatic ionization potential
is more reliable than that obtained in Section III C and
is 0.4 meV below that retrieved by Willitsch et al.5

V. DISCUSSION

The TPES of the X+ 2Πu ← X 3B1 ionizing transi-
tion of methylene has been recorded in this investigation
with the experimental setup described in Section II. This
spectrum is analyzed with a previously developed bend-
ing model23 and a new model presented in this work.
Both approaches allow us to model the TPES of the
X+Π ← X Σ ionizing transition of a C2v symmetry
molecule where the X+ Π electronic state of the cation is
Renner-Teller split.
The bending model23 relies on ab initio bending po-

tentials retrieved in this work for CH2 and presented in
Section IIIA. The new model, designed for triatomic
molecules, is described in Section IV and is based on
the exact Hamiltonian24 of a triatomic molecule writ-
ten using Radau Coordinates.38,39 The Renner-Teller
coupling in the X+ Π electronic state is treated as in
Mitrushchenkov.25

The new model is first tested in the case of
the X+ 2Πu ← X 1A1 ionizing transition of the
water molecule using tridimensional potential energy
surfaces26,27 for H2O and H2O

+. The theoretical TPES,
shown in Figs. 5 and 6, compares well with the exper-
imental one.40 In the case of CH2, the TPES is com-

Figure 7. Observed (Calculated) TPES of the X+ 2Πu ←

X 3B1 ionizing transition of CH2 in the upper (lower) panel.
The theoretical TPES was obtained using the tridimensional
treatment of Section IV. The y-axes scales are multiplied
by 2 for a photon energy larger than 10.54 eV. In the lower
panel, Franck-Condon progression a originates from the neu-
tral (000), K′′ = 0 level and connects the (0v+2 0),K+ = 1
level of the cation A+ 2B1 substate. Progressions b and c both
originate from the neutral (000), K′′ = 1 level and connect the
(0v+2 0),K+ = 2 and K+ = 0 level of the cation A+ 2B1 sub-
state, respectively. The value of the bent molecule vibrational
quantum number v+2 is given in the figure.

puted using tridimensional potential energy surfaces28,31

for CH2 and CH+
2 .

The TPES of the X+ 2Πu ← X 3B1 ionizing transition
of CH2 calculated with the bending model23 and the new
model are shown in Figs. 4 and 7, respectively, where
they are compared with the experimental TPES. Both
treatments lead to a theoretical spectrum dominated by
Franck-Condon progressions due to the large amplitude
bending mode. Although both theoretical spectra are
qualitatively similar, a much better agreement with the
experimental spectrum is achieved with the new model
for line positions. For relative line intensities, however,
the agreement with the experimental data is not satisfac-
tory for both treatments, especially for the high energy
region of the spectrum.
The ab initio bending potentials and the bending

model23 lead to a value of 10.3645 eV for the adiabatic
ionization potential which, as stressed in Section III B,
is 0.022 eV below that retrieved by Willitsch et al.5

The comparison between observed and calculated TPES
carried out in Section III C in the case of the bending
model23 leads to a larger value of 10.385(6) eV which is
1.4 eV below that retrieved by Willitsch et al.5 The com-
parison carried out in Section IVD using the new model
leads to the a slightly larger value of 10.386(6) eV, which
is our preferred value. It is only 0.4 meV below that
retrieved by Willitsch et al.5 and agrees within exper-
imental uncertainty with their value. The satisfactory
agreement for the adiabatic ionization potential and for
the line positions of the TPES suggests that the accu-
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racy achieved with the tridimensional potential energy
surfaces28,31 used for CH2 and CH+

2 is satisfactory.

The main issue of the present investigation is the in-
tensity of the TPES lines. More precisely the discrep-
ancy between experimental and theoretical TPES for the
intensity ratio between the narrow isolated feature at
10.38 eV and the broad feature spanning the 10.6 to
12 eV energy range. This discrepancy may be due to
experimental and theoretical reasons.

With the experimental setup used in this investiga-
tion, the population of the methylene energy levels is
not known accurately as it is a reactive species produced
through hydrogen atom abstractions. This may result in
a cell temperature differing substantially from the room
temperature selected for Figs. 4 and 7. The theoretical
TPES of CH2 presented in these figures were recalcu-
lated for a lower temperature of 200 K and a higher one
of 400 K. Although changes of the theoretical TPES were
observed, they were not large enough to account for the
intensity ratio discrepancy.

As pointed out in previous investigations of unstable
species,33,41,42 line intensities should be modeled using a
non Boltzmannian equilibrium with a high vibrational
temperature and a lower rotational temperature. Al-
though this might explain the intensity ratio discrepancy,
applying these ideas to methylene is not straightforward.
Due to the quasilinearity, rotation about the a axis leads
to rotational energies which are no longer small com-
pared to the vibrational spacing. Table II emphasizes
that the energy difference between the K = 1 and 0 ro-
tational levels is 530.7 cm−1 for v2 = 3 which is not small
compared to the fundamental frequency of the ν2 mode,
963.1 cm−1.

In the theoretical line intensity calculation, the elec-

tronic terms B
(X)
l′′λ′′ introduced by Willitsch et al.36 and

appearing in Eq. (3) of the present paper were assumed to
be constants independent on the stretching coordinates
and on the bending angle γ. In the case of non-rigid
molecules like methylene and its cation CH+

2 , character-
ized by a low barrier to linearity, the bending wavefunc-
tion samples a large angular range and adding a depen-

dence of the B
(X)
l′′λ′′ electronic terms on the angle γ might

lead to significant changes of the line intensity. Ab initio

calculations, outside of the scope of the present paper,
are needed to confirm this assumption. Perturbations to
the intensity of the lines in a TPES may also be due to
autoionization. This effect, shown to be important in the
CH radical,33 was ignored in the theoretical modeling.

Appendix A: Basis set functions and matrix elements

The bending basis set functions vγδm (t) in Eq. (12) of
Gutle and Coudert24 are identical to the θαβn (t) in Eq. (4)
of Coudert et al.23 provided α = γ and β = δ. Matrix
elements of an F (t) function between two such basis set

functions:

〈vγ1δ1
n |F (t)|vγ2δ2

m 〉, (A1)

should be calculated using the Gauss-Jacobi quadrature
suited for a weight function of the form (1 − t)γ(1 + t)δ

with γ = (γ1 + γ2)/2 and δ = (δ1 + δ2)/2.
Evaluation of the matrix element of an F (R) func-

tion between two stretching basis set functions uρξn (R)
in Eq. (11) of Gutle and Coudert24:

〈uρ1ξ1
n |F (R)|uρ2ξ2

m 〉, (A2)

should be carried out using the Gauss-Laguerre quadra-
ture suited for a weight function of the form xρ exp(−x)
with x = ξR, ρ = (ρ1 + ρ2)/2, and ξρ = (ξ1

ρ1/2 +

ξ2
ρ2/2)/2.
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