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Uniting control laws: On obstacle avoidance and global stabilization of
underactuated linear systems

Philipp Braun1, Christopher M. Kellett1 and Luca Zaccarian2

Abstract— An important problem in safety-critical applica-
tions is that of simultaneous stabilization (of the origin) and
obstacle avoidance. When obstacles are defined by bounded
sets of the state space, state feedback controllers are necessarily
discontinuous and can be naturally formulated in the frame-
work of hybrid systems. In previous work, we developed such
hybrid controllers for linear systems when a point obstacle is
prohibited from being an induced equilibrium of a single-input
system or for multi-input systems when the input matrix has full
row rank. In this paper, we explore a design for simultaneous
stabilization of the origin and avoidance of an obstacle for
single-input systems when the point obstacle is an induced
equilibrium. The presented Lyapunov-based feedback control
design provably works for planar systems and may work for
systems of even degree.

I. INTRODUCTION

Global asymptotic stability properties of linear systems
are well understood. For example, pole placement or optimal
control discussed in almost every introductory textbook on
mathematical control theory can be used to design linear
feedback laws stabilizing equilibria or invariant sets. Aside
from stabilizing controllers investigating the convergence
towards a target set, dual concepts have been proposed
to ensure that a controller avoids certain unsafe areas or
obstacles in the state space. For example, barrier functions
have been introduced and defined in [15], as a certificate to
ensure that predefined regions in the state space are avoided.

While these independent concepts, i.e., stability and obsta-
cle avoidance, are well understood individually, combining
both concepts to define control laws that simultaneously
guarantee global asymptotic stability of a target set and ob-
stacle avoidance are less studied and the available results are
far from being complete. This is especially true in the case of
bounded obstacles, where discontinuous feedback laws need
to be considered due to topological obstructions, as argued
in [9, Ch. 4], for example. The topological obstructions
caused by bounded obstacles are particularly challenging in
controller design for underactuated systems where it is not
possible to move in every direction and the natural drift of
the system needs to be respected.
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The combined control problem, i.e., obstacle avoidance
plus target set stabilization, is also the motivation for artificial
potential fields originating in the works [7], [8]. However,
artificial potential fields are in general only discussed for
fully actuated dynamical systems and avoidance and stability
results only hold for domains in the state space excluding sets
of measure zero.

In this paper we study the simplest setting of combined ro-
bust global stabilization and obstacle avoidance of a bounded
set for underactuated systems. More specifically, we consider
an n-dimensional linear system

ẋ = Ax+Bu, x0 = x(0) ∈ Rn (1)

where we want to globally asymptotically stabilize the origin
x = 0, while avoiding an obstacle described through a single
point xa ∈ Rn\{0} for all initial values x(0) ∈ Rn\{xa}.
A rigorous understanding of this setting is necessary before
more complicated dynamics, invariant sets, and obstacles can
be studied.

Under the assumption that B ∈ Rn×1 (i.e., the input u
is one dimensional) and the pair (A,B) is stabilizable, a
solution of the combined control problem in the form of a
hybrid switching control law is provided in [4] for points xa
satisfying

xa /∈ {y ∈ Rn : ∃ν ∈ R, Ay +Bν = 0}.

In words, this means that the obstacle to be avoided cannot
be an induced equilibrium of (1); that is, there cannot be a
constant control input that maintains the system state at xa.
In [3] it is additionally argued that in the case B ∈ Rn×m,
m > 1 (and B has rank m), the hybrid controller design can
be used for all xa ∈ Rn\{0}. In this paper we thus address
the problem B ∈ Rn×1 and

xa ∈ {y ∈ Rn : ∃ν ∈ R, Ay +Bν = 0}

which means that xa is an induced equilibrium.
We provide here a fully constructive solution for planar

systems n = 2. Additionally, we conjecture that the con-
troller leads to the same results if the dimension n ∈ N is
even. As it turns out, it appears that for odd dimensions n ∈
N, if possible, a fundamentally different approach to solve
the combined control problem is necessary. Specifically, the
controller proposed in this paper does not solve the combined
control problem for n ∈ N odd.

Our work is highly influenced by the controller design
in [12] and [13], uniting local and global control laws in a
hybrid setting. In the same way as in our earlier work [3]



and [4], we embed our controller design in the framework
of hybrid dynamical systems and follow the descriptions and
notations used in the monograph [6].

The paper is structured as follows. In Section II, the setting
is introduced and the problem is formulated. In Section III,
stabilizing and destabilizing controllers are defined, solving
the individual avoidance and stabilization problems. The
difficulties in combining these control laws to simultaneously
guarantee avoidance and stability for underactuated systems
are highlighted in two examples in Section IV. The main
results of the paper are derived in Section V, in terms of
a hybrid controller, solving the combined control problem
for two dimensional linear systems. Numerical examples are
given in Section VI before the paper concludes with final
comments in Section VII.

II. SETTING & PROBLEM FORMULATION

Consider linear system (1) with state x ∈ Rn, one
dimensional input u ∈ R and matrices A ∈ Rn×n, B ∈ Rn,
and assume that the pair (A,B) is controllable. For a given
feedback law u : Rn → R, the solution of the linear system
is denoted by x(·;x0, u) : R≥0 → Rn. As motivated in the
introduction, we consider the problem discussed in [3] and
[4] but we make different assumptions on the linear systems
and on the unsafe point xa ∈ Rn\{0}. In particular, we will
address the following problem:

Problem 1: (Semiglobal xa-avoidance augmentation with
GAS) Given an “unsafe” point xa ∈ Rn that must be avoided
by the controller, and a stabilizing state feedback us(x) =
Ksx, design a feedback selection of u(x) that guarantees

(i) (GAS) uniform global asymptotic stability of the ori-
gin;

(ii) (semiglobal preservation) the feedback matches the
original stabilizer u(x) = us(x) = Ksx except for
a neighborhood around xa; and

(iii) (semiglobal xa-avoidance) all solutions starting a cer-
tain distance away from xa never enter a suitable
“safety” neighborhood of xa.

Assumption 1: Basic assumptions:
(a) The pair (A,B) is controllable.
(b) The unsafe point xa ∈ Rn\{0} is in the set of induced

equilibria

xa ∈ E := {y ∈ Rn : ∃ν ∈ R, 0 = Ay +Bν}. (2)

Note that in [3], [4] the case xa /∈ E is discussed and
solved. Additionally, for xa /∈ E , stabilizability of the pair
(A,B) is sufficient. As it turns out, to solve Problem 1 for
xa ∈ E , controllability is generally necessary (see Section
IV-A).

To simplify calculations and notations with respect to the
subspace of equilibria E in the following, we assume without
loss of generality that the matrix A is invertible and thus E
defined in (2) is given by

E = span(A−1B), (3)

where span(y) = {x ∈ Rn : x = λy, λ ∈ R} denotes the
one dimensional space generated by a vector y ∈ Rn\{0}.

If A is not invertible, we can consider the system ẋ =
Ax+BKx+Bv with v = u−Kx and A+BK invertible
instead, which is always possible due to the controllability
assumption on (A,B). Note that this transformation does not
change E .

In the following we will provide a comprehensive and
explicit solution for Problem 1 under Assumption 1 for two
dimensional systems (i.e., n = 2). For n ∈ N even and
n ≥ 4, we are currently unable to verify global asymptotic
stability of the closed loop using the approach presented
below, i.e., Problem 1(i) is not provably solved by our
approach. Surprisingly, if at all possible, for n ∈ N odd,
our approach is not applicable and a fundamentally different
solution seems to be necessary.

III. STABILIZING AND DESTABILIZING CONTROLLER
DESIGN

A. Construction of stabilizing and destabilizing controllers

The control law providing a solution to Problem 1 will be
composed of three independent control laws:

1. a stabilizing controller us : Rn → R globally asymp-
totically stabilizing the origin x = 0,

2. a stabilizing controller usa : Rn → R globally
asymptotically stabilizing the point xa ∈ E , and

3. a destabilizing controller ud : Rn → R globally
completely destabilizing the point xa ∈ E .

Here, in contrast to instability, complete instability means
that for every initial condition x0 ∈ R\{xa} the correspond-
ing solution x(·;x0, ud) drifts away from the point xa (e.g.,
instability as it is used and defined in [11] or [2]).

Since us is a special case of usa we start with the
construction of usa. To this end, let ηxa ∈ R denote the
input such that

Axa +Bηxa
= 0 (4)

is satisfied. We consider the coordinate transformation y =
x− xa and v = u− ηxa

leading to the dynamics

ẏ =
˙︷ ︸︸ ︷

x− xa = A(x− xa) +B(u− ηxa
) = Ay +Bv. (5)

Since (A,B) is controllable, we can use pole placement
(or linear quadratic optimal control) to construct a feedback
gain matrix Ksa ∈ R1×n such that Asa = A + BKsa is
Hurwitz and the equilibrium y = 0 in (5) using the feedback
v = Ksay is globally asymptotically stable. Thus usa can
be defined as

usa(x) = Ksax−Ksaxa + ηxa
, (6)

which globally asymptotically stabilizes the induced equilib-
rium xa. Additionally, for the feedback control that stabilizes
the origin, this implies that us can be defined as

us(x) = Ksx (7)

where As = A + BKs is Hurwitz for Ks ∈ R1×n. The
feedback gains Ks and Ksa can be defined to be equal, but
can also be defined independently.



To construct a controller ud that destabilizes xa, we
consider the time reversal system of (5), i.e.,

ż = −Az −Bv. (8)

with z(t) = y(−t). Since the pair (−A,−B) is controllable,
Kd ∈ R1×n can again be defined in such a way that
−(A + BKd) is Hurwitz. Using the feedback v(y) = Kdy
implies that y = 0 is completely unstable for the closed-loop
dynamics (5). Thus, the destabilizing control law ud can be
defined as

ud(x) = Kdx−Kdxa + ηxa
. (9)

We use the notation Ad = A + BKd to denote the closed
loop matrix of the destabilizing controller.

B. Lyapunov and Chetaev functions

To obtain stability certificates we use Lyapunov and
Chetaev functions. Here, we follow the notation in [2]
using Chetaev functions to refer to instability, in contrast
to Lyapunov functions to describe stability properties. Since
As, Asa, and −Ad are Hurwitz, the Lyapunov equations

ATs Ps + PsAs = −Qs (10a)

ATsaPsa + PsaAsa = −Qsa (10b)

−ATd Pd − PdAd = −Qd (10c)

have unique positive definite solutions Ps, Psa, Pd ∈ Rn×n
for positive definite matrices Qs, Qsa, Qd ∈ Rn×n. More-
over, the Lyapunov functions Vs, Vsa : Rn → R≥0,

Vs(x) = xTPsx, (11)

Vsa(x) = (x− xa)TPsa(x− xa) (12)

satisfy the decrease conditions

〈∇Vs(x), Ax+Bus(x)〉 < 0, ∀x ∈ Rn\{0}
〈∇Vsa(x), Ax+Busa(x)〉 < 0, ∀x ∈ Rn\{xa}

while the Chetaev function Cd : Rn → R≥0,

Cd(x) = (x− xa)TPd(x− xa) (13)

satisfies the increase condition

〈∇Cd(x), Ax+Bud(x)〉 > 0, ∀x ∈ Rn\{xa}.

IV. MOTIVATING EXAMPLES

Before we combine the control laws (6), (7), and (9) in a
hybrid control framework, we discuss here two examples of
obstacle avoidance and target set stabilization for underactu-
ated systems highlighting the difficulties in the construction
of robust control laws.

A. Necessity of the controllability assumption

We consider the two dimensional stabilizable linear system[
ẋ1
ẋ2

]
=

[
1 0
0 −1

] [
x1
x2

]
+

[
1
0

]
u (14)

to demonstrate that the controllability assumption is essential
for avoiding a point xa ∈ E . Note that this is different from
the case xa /∈ E as demonstrated in [4], where stabilizability
is sufficient. It is easy to verify that the linear system (14)
is stabilizable but not controllable. The subspace of induced
equilibria (2) is given by E = span((1, 0)T ).

Since a solution x(·;x0, u) with initial value x0 ∈ E
satisfies x(t;x0, u) ∈ E for all t ∈ R≥0 regardless of u,
Problem 1 cannot be solved. In particular, it is possible to
avoid xa but simultaneous global asymptotic stability cannot
be guaranteed for all initial values x0 ∈ Rn\{xa} because
all solutions x(·;x0, u) starting at x0 = `xa with ` > 1 must
hit xa if they approach the origin.

With respect to the construction of the destabilizing con-
troller (9), observe that this construction is not possible if
(A,B) is stabilizable but not controllable. In particular if
(A,B) is stabilizable but not controllable, then (−A,−B)
is not stabilizable (and not controllable). Thus a stabilizing
control law for (8) (which completely destabilizes the in-
duced equilibria xa of the linear system (5)) does not exist.

B. Implications of the drift term

As a second example we consider the dynamics of the
controllable linear system[

ẋ1
ẋ2

]
=

[
0 −1
1 0

] [
x1
x2

]
+

[
1
0

]
u. (15)

The quiver plot of the uncontrolled dynamics is visualized
in Figure 1. The red arrows pointing to the right show the
direction B and the blue arrows visualize the drift term Ax.
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Fig. 1. Quiver plot of the dynamical system (15). The blue arrows indicate
the direction of the drift term Ax and the red arrows pointing to the right
indicate the direction B. The thick solid block indicates a possible obstacle
in E . Initial values with x1(0) > 0 arbitrarily small and x2(0) = 0.5 can
only increase x2 to avoid the obstacle. Due to the limitations in the input,
x2 cannot be decreased immediately.



The thick solid block [0.5, 1.5]× {0}, represents a possible
obstacle in the one dimensional subspace E = span((0, 1)T ).

Because the system is underactuated, the possible direc-
tions Ax + Bu are limited. This implies that the drift term
must be actively used to avoid the obstacle and the drift term
cannot simply be equalized by the input u before augmenting
the controller with an additional stabilizer and avoidance
controller.

Consider for example the initial value x(0) = (0.2, 0.6)T .
Due to the orientation of the vector B, the input u can
only influence the x1-component of a closed-loop solution.
Due to the drift, it holds that ẋ2 > 0 whenever x1 > 0.
Thus [0.5, 1.5] × {0} can only be avoided by increasing
x2 resulting in a possibly large detour before the origin
is reached. Additionally, u can only be used to stall time,
keeping x(t;x0, u) away from the obstacle, while Ax is
actually responsible for the avoidance.

This example highlights the difficulties in the controller
design for underactuated systems.

V. A HYBRID CONTROLLER DESIGN

In this section we propose a hybrid controller switching
between stabilizing and avoidance control laws. The section
is divided in three parts. In Section V-A, we introduce sets
that will be used later to define the jump set and flow set of
a hybrid system. In Section V-B we define and analyze an
avoidance controller based on the definitions of usa and ud in
(6) and (9). Finally, in Section V-C the avoidance controller
is combined with the stabilizing controller us defined in (7),
to guarantee avoidance and stability of the closed loop, at
least in the two dimensional setting.

A. Key ingredients for defining jump and flow sets

To derive avoidance and stability properties, we will make
use of the fact that sublevel sets of Lyapunov functions, and
superlevel sets of Chetaev functions, define forward invariant
sets. For a given function H : Rn → R≥0 and a positive
constant r > 0 we define the set

Lrv(H) = {x ∈ Rn : H(x) v r} (16)

where v denotes a relation v∈ {<,≤,=,≥, >}.
Of particular interest in this paper are the level sets of the

functions (11)-(13) visualized in Figure 2. If x0 ∈ Lσ≤(Vs)
for a given σ > 0 and the control law us defined in (7) is used
as an input, then the closed loop satisfies x(t;x0, us)→ 0 for
t→∞ and x(t;x0, us) ∈ Lσ≤(Vs) for all t ∈ R≥0. Similarly,
for x0 ∈ Lα≤(Vsa) and α > 0, the solution x(·;x0, usa)
satisfies x(t;x0, usa) ∈ Lα≤(Vsa) for all t ∈ R≥0. The
destabilizing controller on the other hand guarantees that for
any δ > 0, x(t;x0, ud) /∈ Lδ<(Cd) for all t ∈ R≥0 as long
as x0 ∈ Lδ≥(Cd).

If the constants α, δ ∈ R>0 are selected such that

Lδ≤(Cd) ⊂ Lα≤(Vsa) (17)

(as visualized in Figure 2, for example), then ud and usa, can
be used as an input to ensure that a solution of the dynamical
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Fig. 2. Level sets of the Lyapunov functions Vs, Vsa, and the Chetaev
function Cd defined in (11), (12), and (13) for given constants σ, α, δ ∈
R>0. The dashed lines show a slightly enlarged and a slightly smaller level
set α+ h and σ − h based on a positive hysteresis parameter h ∈ R>0.

system (1) starting in the donut

x0 ∈ S := Lα≤(Vsa)\Lδ<(Cd) (18)

stays in the donut for all t ∈ R≥0. This can simply be
achieved by demanding that u(x) = usa(x) for all x ∈
Lα=(Vsa) and u(x) = ud(x) for all Lδ=(Cd), which is made
more precise in the next section.

The dashed lines in Figure 2 show slightly larger and
smaller level sets Lα+h≤ (Vsa) and Lσ−h≤ (Vs), respectively,
for a positive hysteresis parameter h ∈ R>0. The parameter
h will be used in the following sections to ensure robustness
properties while switching between control laws.

B. Analysis of the avoidance controller

In this section we concentrate on a combination of the
control laws usa defined in (6) and the control law ud defined
in (9). Additionally we assume that α, δ ∈ R>0 are selected
such that (17) is satisfied.

Lemma 1: Let µ : Rn → [0, 1] be defined as

µ(x) =


1, if x ∈ Lα≥(Vsa)

1−δ−1Cd(x)
α−1Vsa(x)−δ−1Cd(x)

, if x ∈ S
0, if x ∈ Lδ≤(Cd)

with S defined in (18), and let ua : Rn → R be defined as

ua(x) = µ(x)usa(x) + (1− µ(x))ud(x). (19)

Then, for any initial value x0 ∈ Rn\{xa} the solution
x(·;x0, ua) of the linear system (1) using the control law
(19) is such that:

(a) there exists T ∈ R≥0 such that x(T ;x0, ua) ∈ S, and,
(b) x(t;x0, ua) ∈ S for all t ≥ T .

In other words, the controller ua renders the set S attrac-
tive and forward invariant.



Proof: First note that µ is defined based on the
condition

1 = µ(x) 1
αVsa(x) + (1− µ(x)) 1

δCd(x)

for x ∈ S. Condition (17) ensures that µ is well defined,
continuous, and µ(x) ∈ [0, 1] for all x ∈ Rn. With this
selection of µ, the definition of ua(x) in (19) ensures that
ua(x) = ud(x) if x ∈ Lδ≤(Cd), ua(x) = usa(x) if
x ∈ Lα≥(Vsa), and ua(x) is a convex combination of ud(x)
and usa(x) if x ∈ S . The stabilizing controller usa and
the destabilizing controller ud guarantee that every solution
x(·;x0, ua), x0 6= xa, reaches the set S in finite time
T (x0) ∈ R≥0. The selection of ua = usa and ua = ud
on the outer and inner boundary of S additionally ensures
that solutions cannot escape S for t ≥ T (x0).

In the remainder of this section we characterize the be-
havior of solutions in S. In particular, we analyze if there
exist induced equilibria x ∈ Rn, x 6= xa, satisfying

0 = Ax+Bua(x),

with ua in (19). Remember that induced equilibria can only
arise in the one-dimensional subspace E .

Lemma 2: Consider linear system (1), let xa ∈ E and let
usa and ud be defined as in (6) and (9). Then, for all x ∈ E
it holds that

Ax+Busa(x) = ρ(Ax+Bud(x)),

where ρ ∈ R is defined as

ρ =
1 +KsaA

−1B

1 +KdA−1B
. (20)

Additionally, ρ satisfies

sign(ρ) = (−1)n, (21)

where n ∈ N is the dimension of x.
Proof: Let x ∈ E be arbitrary. Since xa ∈ E by

definition, also vector x − xa belongs to the subspace
E = span(−A−1B). Thus, there exists κ ∈ R such that
x−xa = −A−1Bκ. Then the dynamics of linear system (1)
using controller usa correspond to

ẋ = Ax+Busa(x)

= Ax+BKsa(x− xa) +Bηxa

= A(x− xa) +BKsa(x− xa)

= −B(1 +KsaA
−1B)κ.

Similarly, for the destabilizing controller in (9) we obtain

ẋ = Ax+Bud(x) = −B(1 +KdA
−1B)κ

which proves identity (20).
To prove identity (21), we denote the eigenvalues of

A + BKs and A + BKd by λs1, . . . , λ
s
n and λd1, . . . , λ

d
n,

respectively. Since A+BKs and −(A+BKd) are Hurwitz,
the real parts of the eigenvalues satisfy Re(λsi ) < 0 and
Re(λdi ) > 0 for all i = 1, . . . , n. (Additionally note that a
pair of complex conjugate eigenvalues satisfies (a+ ib)(a−
ib) = a2 + b2 > 0 independent of the sign of a, b ∈ R\{0}.)

With these notations it holds that
n∏
i=1

λsi = det(A+BKs)

= det(A) det(1 +KsA
−1B)

= det(A)(1 +KsA
−1B)

where the second equality follows from Sylvester’s determi-
nant theorem [14], [1]. In the same way, the equality

n∏
i=1

λdi = det(A)(1 +KdA
−1B)

is obtained. Since

sign(
∏n
i=1 λ

s
i ) = (−1)n and sign(

∏n
i=1 λ

d
i ) = 1,

the identity (21) follows. (Recall that in (3) we showed that
A invertible can be assumed without loss of generality, which
ensures the existence of A−1 and det(A) 6= 0.)

Lemma 2 allows us to characterize the equilibria of the
nonlinear dynamical system

ẋ = Ax+Bua(x) (22)

(which is nonlinear due to the control law ua defined in (19)),
where the number of equilibria apparently is independent
of the control laws usa and ud and only depends on the
dimension n.

The relevance of Lemma 2 is highlighted next.
Corollary 1: Consider the nonlinear system (22) of di-

mension n ∈ N, n ≥ 2, where ua is defined in (19).
(a) If n is even, then xa ∈ E is the only equilibrium of

(22).
(b) If n is odd, then (22) has two equilibria in E ∩ S as

well as xa ∈ E as an equilibrium.

Proof: The result follows immediately from Lemma 2.
As already pointed out, equilibria can only occur on the
subspace E . Additionally, by construction, ẋ = Ax +
Busa(x) and ẋ = Ax + Bud(x) have xa as their only
equilibrium. Since ud = ua in a neighborhood of xa, then
xa is an equilibrium of (22). From Lemma 2 we know that
if n is even, then Ax + Busa(x) and Ax + Bud(x) are
linearly dependent and point in the same direction for all
x ∈ E\{xa}. Thus a convex combination (19) cannot lead
to an equilibrium which proves item (a). If n is odd, then
Ax+Busa(x) and Ax+Bud(x) are linearly dependent and
point in opposite directions. Thus the convex combination
(19) introduces an equilibrium. Due to symmetry of the
Lyapunov function Vsa and the Chetaev function Cd with
respect to the point xa and the subspace E , two equilibria
are introduced, proving (b).

Control law ua in (19) guarantees global avoidance of the
point xa and boundedness of solutions of the linear system
(1). In the next section we embed the control law ua in a
hybrid control framework and combine it with the control
law us defined in (7), to discuss additional robust global
stability properties for n = 2.

We conclude this section with the following observation.



Lemma 3: Consider the nonlinear dynamical system (22)
in the planar case n = 2. Then the set S contains a periodic
orbit centered around xa.

Proof: The result follows immediately from the Poin-
caré-Bendixson Theorem (see [10, Thm. 6.12], for example)
combined with Lemma 1, Lemma 2, and Corollary 1.

C. The hybrid avoidance controller stabilizing the origin

In this section we combine the control law ua defined in
(19) with the stabilizing control law us defined in (7). We
assume that the parameters σ, α, δ ∈ R>0 and hysteresis
parameter h ∈ R>0 are selected such that the following
properties are satisfied:

Lδ≤(Cd) ⊂ Lα≤(Vsa), (23a)

Lδ<(Cd) ∩ Lσ−h< (Vs) 6= ∅, (23b)
xa /∈ Lσ≤(Vs). (23c)

Note that the selection of σ, α, δ, h ∈ R>0 satisfying these
properties is always possible, for every Vs, Vsa, and Cd.
(In the setting visualized in Figure 2, conditions (23) are
satisfied.)

To obtain a hybrid system with a switching control law
we augment the state x and define ξ = (xT , q)T where q ∈
{0, 1} is responsible for the controller selection. In particular
we define the feedback selection

γ(ξ) =

{
us(x), if q = 0
ua(x), if q = 1

(24)

and the flow map

ξ̇ =

[
ẋ
q̇

]
=

[
Ax+Bγ(x, q)

0

]
, ξ ∈ C, (25)

where the flow set C ⊂ Rn × {0, 1} is defined below as the
closure of the complement of the jump set. To complete the
hybrid system we define the jump map

ξ+ :=

[
x+

q+

]
=

[
x

1− q

]
, ξ ∈ D0 ∪ D1. (26)

The jump set D = D0 ∪ D1, responsible for the controller
selection us and ua in (24) by toggling q, is defined as

D0 := Lσ−h≤ (Vs) ∪ Lα+h≥ (Vsa)× {1}, (27a)

D1 := Lα≤(Vsa)\Lσ<(Vs)× {0}, (27b)

and thus the flow set C is given by C = Ξ\D where Ξ =
Rn × {0, 1}. The x-component of the jump sets D0 and D1

are defined based on the level sets visualized in Figure 2 and
are visualized in Figure 3.

The definition of D0 ensures that if the sublevel set
Lσ−h≤ (Vs) of the Lyapunov function Vs is reached, the
stabilizing controller us is used. Since Lσ−h≤ (Vs) is forward
invariant with respect to us and Lσ−h≤ (Vs) does not contain
xa according to (23b), the control law us guarantees asymp-
totic stability of the origin without leaving Lσ−h≤ (Vs).

Additionally, the component Lα+h≥ (Vsa) × {1} ensures
that the avoidance controller uav only has local impact. In
particular, if we start with an initial value ξ0 = (xT0 , 1)T

D0

D1

Fig. 3. Visualization of the x-component of the jump sets D0 and D1

corresponding to the setting in Figure 2. With slight abuse of notation the
x-component without q-component is denoted as D0 and D1 in the figure.

where the x-component x0 /∈ Lα+h≤ (Vsa), the definition of
D0 together with the toggling mechanism in (26) ensure that
the controller immediately jumps to the stabilizing controller
us. As argued in Lemma 1, if we start inside the sublevel
set Lα+h≤ (Vsa) with the avoidance controller ua, then the x-
component cannot leave Lα+h≤ (Vsa) as long as ua is used as
an input (namely with q = 1).

The set D1 is defined in such a way that if the sublevel
set of the Chetaev function Lδ≤(Cd) is entered with the
stabilizing controller us and x is not in the forward invariant
sublevel set Lσ<(Vs) of the Lyapunov function Vs, then the
avoidance controller is activated. The margin h > 0 of the
hysteresis parameter is introduced to guarantee robustness of
the control law and to avoid Zeno behavior.

Remark 1: Similar to [3, Lemma 2] we point out that
the closed-loop dynamics (24)-(27) satisfies the hybrid basic
conditions [6, Assumption 6.5] and all maximal solutions are
complete.
With these definitions we are able to show the following
closed-loop properties of the hybrid system (24)-(27).

Theorem 1: (Obstacle avoidance) For n ∈ N, n ≥ 2,
the hybrid system (24)-(27) satisfies the following avoidance
properties:

(a) For any initial value ξ0 ∈ Ξ\({xa} × {0, 1}), the
solution ξ(·, ·; ξ0, γ) satisfies

ξ(t, j; ξ0, γ) /∈ {xa} × {0, 1} ∀ (t, j) ∈ dom(ξ).

(b) For any initial value ξ0 ∈ Rn\(Lδ≤(Cd)\Lσ<(Vs)) ×
{0}, the x-component of the solution ξ(·, ·; ξ0, γ) sat-
isfies

x(t, j; ξ0, γ) /∈ Lδ≤(Cd)\Lσ<(Vs) ∀ (t, j) ∈ dom(ξ).

Proof: The statements (a) and (b) follow immediately
from Lemma 1, the properties of the control laws us, usa,
and ud, and the definitions of the jump set D.
Item (a): If ξ(t, j; ξ0, γ) ∈ Lσ−h< (Vs) × {0, 1} for (t, j) ∈
dom(ξ) then the definition of D0 and us ensures that
ξ(T, J ; ξ0, γ) ∈ Lσ−h< (Vs)×{0, 1} for all (T, J) ∈ dom(ξ),
(T, J) ≥ (t, j). If ξ ∈ Lδ<(Cd)×{0, 1}, either Lemma 1 en-
sures that the set S×{0, 1} is reached by the solution without
going through {xa}×{0, 1} if γ(ξ) = ua(x), or the forward
invariance of Lσ<(Vs) ensures that the solution ξ(·, ·; ξ0, γ)
does not go through {xa} × {0, 1} if γ(ξ) = us(x). Again,
by Lemma 1, it follows that once ξ(·, ·; ξ0, ua) enters the



set S × {0, 1} the solution needs to stay in S × {0, 1}.
The solution can only leave S × {0, 1} if γ(ξ) switches to
us and then xa is avoided due to assumption (23c). These
considerations also cover the case ξ ∈ Lδ≥(Cd)× {0, 1}.
Item (b): The assumption on the initial condition ξ0 ensures
that if x0 ∈ Lα≤(Vsa)∩Lσ<(Vs) then q0 = 0 and thus γ(ξ) =
us(x) ensures that x(t, j; ξ0, γ) /∈ Lα≤(Vsa)\Lσ<(Vs) for all
(t, j) ∈ dom(ξ). If x0 /∈ Lδ≤(Cd), Lemma 1 together with
the definition of D1 show the assertion.

The following result establishes (almost) global asymp-
totic stability for the case n = 2. Its extension to higher
dimensions will be subject of future investigations. The result
provides almost global properties since only the point xa
needs to be excluded from the stability analysis.

Theorem 2: (Almost global asymptotic stability) For n =
2, the hybrid system (24)-(27) has the following stability
property. For any initial value ξ0 ∈ Rn\{xa} × {0, 1}, the
hybrid solution satisfies

ξ(t, j; ξ0, γ)→ (0, 0)T

for (t, j) → ∞ and (t, j) ∈ dom(ξ), namely the origin is
almost globally asymptotically stable.

Proof: First note that local stability follows from the
fact that D0 contains a neighborhood of the origin and after a
jump to q = 0 the closed-loop dynamics is linear continuous-
time and exponentially stable. It is thus sufficient to show that
every solution ξ(·, ·; ξ0, γ), ξ0 /∈ {xa}×{0, 1}, converges to
the origin to establish asymptotic stability.

The x-component of every solution starting outside the set
Lα≤(Vsa) ∪ Lσ−h≤ (Vs) reaches the set Lα≤(Vsa) ∪ Lσ−h≤ (Vs)
in finite time due the control law us. Combined with the
properties of the control law ua derived in Lemma 1, the
x-component of every solution starting in x0 ∈ Rn\{xa}
reaches the set S∪Lσ−h≤ (Vs) in finite time. Finally, Lemma 3
combined with condition (23b) ensures that the x-component
of every solution starting in x0 ∈ Rn\{xa} reaches the set
Lσ−h≤ (Vs) in finite time from where asymptotic convergence
follows from the definition of us.

Observe that Theorem 1 combined with Theorem 2 pro-
vides a solution to Problem 1 in the planar case n = 2. In
higher dimensions asymptotic stability cannot be guaranteed
with our current methods but will be the focus of future
research. Surprisingly, for n ≥ 3 odd, global asymptotic sta-
bility cannot hold due to Corollary 1. Thus, a fundamentally
different approach seems to be necessary if possible at all.
For n ≥ 4 even, the statement in Theorem 2 might be true,
but we cannot prove that every x-component of a solution
reaches the set Lσ−h≤ (Vs) in finite time since we rely on the
Poincaré-Bendixson Theorem which is only applicable in the
planar setting. Promising directions are given by the recent
results in [5].

VI. NUMERICAL EXAMPLE

A. A planar underactuated linear system

As a numerical example, we consider the controllable
underactuated planar system[

ẋ1
ẋ2

]
=

[
0 1
−1 1

] [
x1
x2

]
+

[
0
1

]
u. (28)

The subspace of induced equilibria is given by E =
span((1, 0)T ) and we select the unsafe point xa =
(−1, 0)T ∈ E . The feedback gain matrices Ks and Ksa are
obtained through pole placement with λ1 = λ2 = −1 and
Kd is obtained through pole placement with λ1 = λ2 = 1.

The Lyapunov functions Vs and Vsa and the Chetaev func-
tion are calculated through the Lyapunov equations (10) for
Qs = Qsa = Qd = I , where I ∈ R2×2 denotes the identity
matrix. The parameters defining the level sets are selected as
δ = 0.1, α = 0.6, σ = 0.7, and the hysteresis parameter is
set to h = 0.1. The parameters satisfy the conditions (23),
which can be visually verified in Figure 4. Figure 4 shows
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Fig. 4. Visualization of the x-component of the solution of the hybrid
system (24)-(27) for different initial values. All solutions converge to
the origin while avoiding the unsafe point xa. The decrease/increase of
functions Vs and Cd as well as the input γ with respect to the solution in
magenta are shown in Figure 5.

the closed-loop solutions for several initial values ξ0 =
(xT0 , q0)T using the hybrid control law γ defined in (24). As
expected all solutions converge to the origin and avoid the
unsafe point xa. Solutions starting outside the level set x0 /∈
Lδ≤(Cd) additionally never enter the set Lδ≤(Cd)\Lσ<(Vs).
In Figure 5, Cd(x(t;x0, γ(ξ)), Vs(x(t;x0, γ(ξ)) and γ(ξ)
for the initial value x0 = −(0.5, 1)T and q0 = 1 are shown.
The controller ua ensures that Cd(x(t;x0, γ(ξ)) ≥ δ for all
t ∈ [0, 8]. A monotonic decrease of the Lyapunov function
is only guaranteed after Vs((x(t;x0, γ(ξ)) ≤ σ − h and ua
is switched to us. A discontinuity in γ(ξ) can be observed
when the controller is switched. The red lines indicate the
level sets Lσ−h= (Vs), Lα=(Vsa) and Lδ=(Cd), respectively.
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Fig. 5. Decrease/Increase of the functions Vs, Vsa and Cd as well as the
input γ with respect to the x-component of the solution of the hybrid system
(24)-(27) for the initial value ξ0 = (−0.5,−1, 1)T . The x-component
converges to the origin and satisfies Cd(x(t;x0, γ(ξ)) ≥ δ for all t ∈
[0, 8].

B. A four dimensional system

As a second example we consider the controllable four
dimensional system[

ẋ1
ẋ2
ẋ3
ẋ4

]
=

[
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

] [
x1
x2
x3
x4

]
+

[
0
0
0
1

]
u (29)

with the subspace of induced equilibria E =
span((1, 0, 0, 0)T ). For the numerical results shown in
Figure 6, the unsafe point xa = (2, 0, 0, 0)T ∈ E and
the initial value x0 = (2.1, 0.1, 0.1, 0.1)T , q0 = 1T were
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Fig. 6. Decrease/Increase of the functions Vs, Vsa and Cd as well as
the input γ with respect to the x-component of the solution of the hybrid
system (24)-(27) for the initial value x0 = (2.1, 0.1, 0.1, 0.1)T , q0 = 1
for the linear system (29). Even though not guaranteed by the theoretical
results, the closed-loop dynamics show the same avoidance and stability
properties as in the two dimensional setting 2.

used. The feedback gain matrices Ks, Ksa, Kd and the
corresponding Lyapunov/Chetaev functions were again
obtained through pole placement using the eigenvalues −1
and 1, and the identity matrix in the Lyapunov equations
(10). The level sets of the Lyapunov and the Chetaev
functions are defined through the parameters δ = 0.1,
α = 2.5, σ = 5.5, and h = 0.1. The solution visualized in
Figure 6 shows the same closed-loop behavior as the two
dimensional setting in Figure 5 even though asymptotic
stability is not guaranteed through Theorem 2.

VII. CONCLUSIONS

In this paper we extend earlier work in [3] and [4] address-
ing the problem of robust controller design mechanisms for
underactuated linear systems. In particular, we study hybrid
switching control laws which simultaneously guarantee the
avoidance of a neighborhood around an unsafe point xa and
convergence of solutions to the origin. In contrast to the
work in [3] and [4], in this paper we consider unsafe points
in the one dimensional subspace xa ∈ {y ∈ Rn : ∃ν ∈
R, Ay + Bν = 0}. While we provide a complete solution
for planar linear systems, convergence results of the proposed
controller in higher dimension n > 2 are still open and will
be the subject of future investigations.
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