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We propose an approach based on geometric phase
for performing several types of shearing interfer-
ometry through a robust, compact, common-path
setup. The key elements are two identical paral-
lel plates with spatially-varying birefringence dis-
tributions, which perform the shearing by writing
opposite geometric phases on the two circular po-
larization components of the linearly polarized in-
cident wavefront. This setup allows the indepen-
dent control of the shearing magnitude and rela-
tive phase of the two wavefront replicas. The ap-
proach is first illustrated for the simplest case of
lateral shearing, and then extended to other ge-
ometries where the magnitude and direction of the
shear vary smoothly over the wavefront.

http://dx.doi.org/10.1364/optica.XX.XXXXXX

Introduction – Shearing interferometry is a widespread technique
for analyzing optical wavefronts. Its main feature is that of not
requiring a known reference; instead, two replicas of the test
wavefront are made to interfere after being displaced laterally
(lateral shearing), resized differently (radial shearing), or mu-
tually rotated (azimuthal shearing) [1, 2]. The interferogram’s
interpretation depends not only on the type of shearing but also
on its amount – the shear distance (SD) –, and the relative phase
difference between the replicas – the shear phase (SP). In typical
common-path layouts based on Snell refraction/reflection, such
as shear plates or more complex setups [3–5], the SD and SP are
coupled and depend on the position or orientation of an optical
element. Several mechanisms have been suggested to control SD
and SP independently [1, 6–9]. In particular, polarization-based
shearing naturally presents this feature because the two replicas
are orthogonally polarized. However, polarization-based shear-
ing interferometers often require several optical components
and tend to be bulky or expensive [10–14]. More recent propos-

als include the Quadriwave lateral shearing interferometer, a
compact diffraction-based device that allows the simultaneous
retrieval of two orthogonal directional derivatives [15–18].

In this work, we propose a novel and flexible mechanism
for implementing shearing interferometry, based on geometric
phase [19, 20]. This mechanism allows for a compact, common-
path simple setup for which the SD and SP can be varied con-
tinuously and independently. The wavefront under test is sepa-
rated into two orthogonally-polarized replicas that are mutually
displaced through an appropriate sequence of geometric and
dynamic phase transformations. The geometric phase is intro-
duced via devices referred to as Spatially Varying Axis birefrin-
gent Plates (SVAPs) [21–23]. We begin with the simplest case of
lateral shearing, and then discuss the flexibility of this approach
for implementing many types of shearing, including radial.

Methods – A SVAP is a half-wave retardation plate whose
fast-axis direction angle Θ(x, y) varies spatially. After passing
through it, a circularly-polarized input beam acquires a geometric
phase factor e±i2Θ(x,y), where the sign depends on the incident po-
larization handedness C± = (x± iy)/

√
2, which is reversed by

the SVAP. The geometric-phase shearing interferometer (GPSI)
is based on two identical SVAPs separated by a distance ζ.

The bottom-right inset in Fig. 1 shows the fast-axis distribu-
tion for the SVAP fabricated for lateral shearing – referred to
here as a Λ-plate – superimposed to its near-field white-light
image between crossed polarizers. For this device, the fast axis
rotates in the transverse plane along the x direction, the rotation
angle Θ increasing (or decreasing) linearly with x from 0 to π
over a distance Λ, representing the spatial period of the plate. A
Λ-plate then deflects light with circular polarization C± by an
angle ± arctan(λ/Λ), where λ is the wavelength (Fig. 1). At a
distance z from the plate, such deflection causes a lateral shear
±zλ/Λ from the incident propagation direction.

Consider now an incident linearly-polarized beam:

E(x, y, 0) = E(x, y, 0)x =
1√
2

E(x, y, 0) (C+ + C−) . (1)

After crossing the Λ-plate and propagating in free space, this
beam splits into two equally intense circularly-polarized beams,
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Fig. 1. Sketch of a GPSI. The linearly polarized light leaving
the polarizer P can be described as the sum of two identical
wavefronts with opposite circular polarizations. Two identical
Λ-plates with separation ζ introduce a controlled shear between
wavefront replicas, and an analyzer A selects the polarization
component used for studying their interference. The bottom-
right inset shows the fast-axis distribution of the Λ-plates we
fabricated, superposed to their experimental fringe pattern. The
spatial period Λ = (1.32± 0.01) mm corresponds to a fast-axis
rotation of π.

which are displaced, tilted replicas of the input beam:

E±(x, y, z) =
1√
2

E
(

x∓ λz
Λ

, y, z
)

exp
(
±i

2π

Λ
x
)

C±, (2)

where a common propagation phase is omitted. These replicas
are mutually sheared in x by SD(z) = 2zλ/Λ. A second Λ-plate
at z = ζ reverses again the replicas’ polarization handedness,
and deflects them back towards the original direction, fixing
their shear distance to SD = 2ζλ/Λ for z ≥ ζ. That is, varying
the Λ-plate separation ζ allows accurate control of the SD. The
pair of Λ-plates then behaves like a Savart plate of controllable
thickness, but with circular eigenpolarizations rather than linear.

In order to make the replicas interfere, an output linear ana-
lyzer is used. The intensity at a detector following the analyzer
depends on the angular mismatch ψ between the input linear
polarization direction and the axis of the analyzer, according to

I(ψ) ∝ |E+ei ψ + E−e−i ψ|2

= |S|2 cos2 ψ + |D|2 sin2 ψ + Im (SD∗) sin 2ψ, (3)

where S = E+ + E−, D = E+ − E− and ∗ denotes complex
conjugation. (Note that, for small SD, |S| � |D|.) That is, SP =
2ψ can be controlled by rotating either the input polarization
direction or the output analyzer. By setting ψ = 0, for example,
the GPSI’s output is the intensity of S , which for small SD is
very similar to the intensity of the input beam and provides no
significant new information. On the other hand, for ψ = π/2,
the GPSI operates in differential mode (henceforth referred to as
DM operation) and the output is the intensity of the difference
D between the replicas. Note that in DM operation, if SD� w,
where w denotes the characteristic length of the field transverse
profile, from Eq. (3), I(π/2) is approximately proportional to the
squared modulus of the x-derivative of the optical field in the
detector plane (otherwise, it returns a fringe pattern). To access
the sign of the derivative, one can slightly shift the angle ψ away

from π/2 such that the first and third terms in Eq. (3) become
the leading contributions and have similar peak values. Notice
that a similar strategy is used in differential image contrast (DIC)
microscopy [24, 25] as well as in weak measurements [26].
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Fig. 2. Sketch of the experimental apparatus. (a) A He-Ne laser
beam passes through a variable attenuator (VA) and is expanded
with a telescope (BE, 3× Mag). Two metallic mirrors (M1 and
M2), placed on flip mounts, enable including/excluding a spa-
tial light modulator (SLM) for generating test wavefronts holo-
graphically. When M1 and M2 are down, optical components
can be inserted into the apparatus and analyzed. The half-wave
plate HWP is used to rotate the input linear polarization with
respect to the axis of the analyzer A. A telescope is used to
image onto the CMOS camera the test beam’s transverse cross-
section. The lenses L1 and L2 have focal lengths f1 = 500 mm
and f2 = 100 mm respectively.

Experimental implementation – The setup is shown in Fig. 2
and described in its caption. The Λ-plates we fabricated con-
sist of a nematic liquid crystal film with nominal thickness
L = 6 µm, sandwiched between two glass substrates coated with
an azodye-based photoaligning material suited for molecule ori-
entational anchoring. As shown in the inset in Fig. 1, a real
Λ-plate imparts a geometric phase change that is only approx-
imately linear: there is a small deviation from linearity that
causes a change of the order of 10−2 for the field amplitude,
which is below the SNR of the interferometer.

The Λ-plate’s retardation is uniform and can be fine-tuned
to a half wave for any wavelength by applying an external AC
voltage (with RMS of the order of a few volts and frequency of
about 10 kHz). This fine-tunability is important in DM operation
given the small SNR. Further, the ability to electrically switch
the phase retardation between π and 0 enables turning on and
off the lateral shear without misalignment. The plates’ period
is Λ = (1.36± 0.01) mm. By using a linearly polarized He-Ne
laser (λ = 632.8 nm, Pout = 5 mW), we found that a change
of 1 mm in the plate separation ζ leads to a change of 1 µm in
SD. The minimum plate separation is ζmin = 4 mm due to the
plate mounting. The waist of the illuminating Gaussian beam
was expanded to 1.5 mm, effectively behaving as a plane wave
over an SD range of several tens of µm. Test wavefronts were
generated with a liquid-crystal-on-silicon spatial light modula-
tor from Meadowlark Optics 1920x1152 XY Phase Series, and
were imaged onto the CMOS detector by using two confocal
converging lenses (see Fig. 2), so that both the image and the SD
are scaled by a factor of − f2/ f1.

Figure 3 shows the measured interferograms for test wave-
fronts resulting from writing on the SLM spherical lenses of
focal lengths fS = 400, 500, and 600 mm. The Λ-plate spacing
was ζ = 12.0 mm, producing a shear of SD≈ 2.4 µm over a
beam waist w = 1.5 mm. For ψ = 0 and ψ = π/2 the intensity
approximately corresponds to that of the input beam and its
x-derivative, respectively. As expected, the latter decreases by
increasing fS while the former remains fairly constant.

Figure 4 shows interferograms for the SLM displaying a cylin-
drical lens of focal length fC = 400 mm, whose axis is rotated
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Fig. 3. Linear shearing interferograms of light focused by lenses
implemented holographically via a SLM. In each row, from the
top down, fS = 400 mm, 500 mm and 600 mm. The first and third
columns contain respectively the experimental and theoretical
profiles for ψ = 0, while the second and fourth columns show
the same for ψ = 90◦. The plates’ separation is ζ = 12.0 mm.
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Fig. 4. Linear shearing interferograms for light focused by a
cylindrical lens of focal length fC = 400 mm with different orien-
tations, implemented on a SLM. The rows correspond to angles
γ = 0◦, 30◦, and 60◦ between the lens axis and the shearing
direction x. The first and third rows show the experimental
and theoretical profiles for ψ = 0◦, while the second and fourth
rows show the same for ψ = 90◦. The plates’ separation is
ζ = 12.0 mm.

with respect to the x-direction by 0◦, 30◦, and 60◦. The input’s
round shape is preserved for ψ = 0 but not for ψ = π/2, since
the square of the derivative gives two lobes that rotate and be-
come fainter as the lens’ focusing direction becomes orthogonal
to the derivative direction.

A final example, shown in Fig. 5, corresponds to the measure-
ment of the helicoidal wavefront of a hypergeometric-Gaussian
beam [27] resulting form the passage of a Gaussian beam
through a q-plate [23] (a SVAP whose optic axis distribution
has a topological charge q, equal to unity in this case). The phase
of this waverfront is Φ(x, y) = φ = arctan(x, y), the azimuthal
angle. Again, ψ = 0 essentially yields the input Gaussian inten-
sity, while the pattern for ψ = π/2 is dominated by the regions
near the origin, where the phase’s x-derivative is strongest. As
mentioned earlier, the symmetry of this signal can be broken by
slightly shifting ψ away from DM operation, allowing the deter-

mination of the sign of the derivative and hence the handedness
of the vortex.
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Fig. 5. Linear shearing interferograms (with ζ = 20 mm) for
a beam emerging from a q-plate (q = 1). The top row shows
the measured profiles and the bottom row shows the theoretical
predictions. From left to right, the columns correspond to ψ =
0◦, 90◦, 86◦ and 94◦, respectively. Note that the sign of the
x-derivative can be inferred from either of the latter two.

Extension to radial and other geometries – An important feature
of SVAP-based shearing is the freedom it provides for imple-
menting different geometries, as discussed in the Supplement 1.
This is now illustrated by replacing the Λ-plates with two Geo-
metric Phase Lenses (GPLs), so that the interferometer performs
a radial shear, resulting from the interference of two differently
sized replicas of the test beam (Fig. 6). In this case, instead of
a SD parameter we have a shear expansion (SE) between the
replicas. A GPL acts as a positive or negative lens depending
on the circularly polarized input handedness [28]. The SE is
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Fig. 6. Sketch of a radial GPSI. This device is identical to the
GPSI in Fig. (1), but with the Λ-plates replaced by GPLs with
focal length f = (130± 1) mm. The bottom-right inset shows the
fast-axis distribution of the GPLs we fabricated, superimposed
onto the experimental polarization fringe pattern of the GPL.

proportional to the distance ζ between the GPLs. The resulting
interferometer is essentially equivalent to the one introduced by
Hariharan [29], but using GPLs allows a much simpler set-up.
When ζ is much smaller than the focal length f of the GPLs,
SE ≈ ζw/ f where w is the input beam spot size, and the third
term in Eq. (3), Im(SD∗), returns the beam’s radial derivative.
This is shown in Fig. 7 for a cylindrical lens of focal length
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f = (400± 1) mm. Details of the method will be provided in a
upcoming work.
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Fig. 7. Radial shearing interferogram of a cylindrical lens phase
profile with focal length f = (400 ± 1) mm. The derivative
pattern can be obtained as difference between the interference
pattern at ψ = +45◦ and ψ = −45◦, ψ being the mismatch an-
gle between the input polarization direction and the axis of the
analyzer A. On the upper line, we show a numerical simula-
tion of the derivative pattern; on the lower line, we show the
experimentally observed pattern.

1. CONCLUDING REMARKS

We have shown that shearing interferometry can be imple-
mented efficiently using a pair of geometrical phase optical ele-
ments, such as SVAPs. This approach enhances the flexibility of
this type of interferometer in terms of reusability, manageability,
compactness and independent control of the two fundamental
parameters: SD/SE and SP. More importantly, it is suitable not
only for linear shearing but also other geometries such as radial
shearing. The spatial parameters SD/SE, in fact, are related to
the geometric properties of SVAPs, while SP is related to suitable
polarization manipulations. The full potential of the approach,
however, is clear when the SVAPs are tailored to achieve non-
uniform derivatives, which would be difficult if not unfeasible
by other setups.

Also notice that, while SVAPs can be implemented with other
technologies such as dielectric metasurfaces, the use of liquid
crystals not only guarantees a high transmissivity but also al-
lows fine-tuning of the operation wavelength and control of the
overall shearing efficiency by means of an externally applied
voltage. In particular, the possibility to switch the device on
and off enables combining, upon requirement, the action of sev-
eral shearing mechanisms allowing not only differentiation with
respect to a single variable, but in general a full 2D differential.
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