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Abstract The paper considers a linear model with grouped explanatory variables. If the model
errors are not with zero mean and bounded variance or if model contains outliers, then the least
squares framework is not appropriate. Thus, the quantile regression is an interesting alternative.
In order to automatically select the relevant variable groups, we propose and study here the adap-
tive group LASSO quantile estimator. We establish the sparsity and asymptotic normality of the
proposed estimator in two cases: fixed number and divergent number of variable groups. Numerical
study by Monte Carlo simulations confirms the theoretical results and illustrates the performance
of the proposed estimator.

Keywords group selection · quantile model · adaptive LASSO · selection consistency · oracle
properties.

Mathematics Subject Classification (2010) 62J05 · 62J07

1 Introduction

Classically, for the regression model, the errors are assumed to be independent, of mean zero and
bounded variance. Then, the model is estimated by the least squares (LS) method, eventually with
a penalty of LASSO type when automatic detection of significant variables is performed. If the
assumptions on the first two moments of the model error are not satisfied, then the LS framework
breaks down. In this case, an alternative is to consider the quantile regression with a LASSO type
penalty. This is one of the interests of this paper. The quantile regression is robust and allows
relaxation of the two first moment conditions of the model error.
Often enough in practice, for example in the variance analysis case, are considered the regression
linear models with grouped variables. For models with grouped explanatory variables it is more
meaningful to identify relevant variable groups instead of individual variables. If the errors have
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Normal distribution, then for detecting the relevant variable groups, the F-statistic test is used. If
the errors are not Gaussian and if more the number of groups is large, then the F-statistic test is
inappropriate. From where, another interest of this paper: we consider the quantile process with
LASSO type penalty in order to automatically detect the irrelevant variable groups.

The automatic selection method of the grouped variables using the LASSO penalties was in-
troduced by Yuan and Lin (2008) for gaussian errors, by proposing the LASSO group penalty for
the process of the error squares sum. Several recent papers have considered group selection using
LASSO type penalties. For fixed parameter space and mean zero, finite second moment i.i.d. model
errors, Nardi and Rinaldo (2008) established the model selection consistency and asymptotic nor-
mality of nonzero group LASSO estimator. The same estimator is studied by Nardi and Rinaldo
(2008) when number of covariates is larger, for particular case of normal errors. For gaussian errors,
Xu and Ghosh (2015) realize a Bayesian variable selection by penalization of the error squares sum
with Bayesian group LASSO. For this estimation method, the posterior median estimator satisfies
the sparsity property. The adaptive group LASSO estimators, when the number p of groups is fixed,
was studied by Wang and Leng (2008). For high-dimensional model, Wei and Huang (2010) studied
the selection and estimation properties of the adaptive group LASSO, but under assumption that
the errors are gaussian. Still for the error squares sum penalized with adaptive LASSO penalty,
Zhang and Xiang (2015) consider the case of the number of groups pn converges to infinity when
n → ∞, for i.i.d. errors ε such that IE[ε] = 0 and V ar[ε] < ∞. The consistency and asymptotic nor-
mality of the parameter estimator are established. A paper that doesn’t consider the LS penalized
process, but a process associated to a twice differentiable convex function, with LASSO penalty,
for the case p large and small n was considered by Wang et al. (2015). When the number of groups
can grow at a certain polynomial rate, the automatic selection property of variable groups for a
LS process with SCAD penalty has been proven in Guo et al. (2015). Automatic selection of the
relevant variable groups, when p converges to infinity, has also considered by Zou and Zhang (2009)
penalizing the LS process with adaptive elastic-net penalty. For a review of group selection methods
and several applications of these methods the reader can see Huang et al. (2012).

In this paper we consider the model selection problem and the estimation in a linear model with
p groups of explanatory variables. We propose and study the asymptotic properties of the adaptive
group LASSO quantile estimator in two cases: p fixed and p → ∞ as n → ∞. This estimator is the
minimizer of the quantile process penalized by an adaptive group LASSO penalty. The oracle prop-
erties, i.e. the automatic selection of significant variables groups and their asymptotic distribution,
are proved.

The remainder of the paper is organized as follows. In Section 2 we present the model and
introduce some notations used throughout in this paper. Oracle properties for the adaptive group
LASSO quantile estimator are proved for p fixed in Section 3 and for p → ∞ as n → ∞ in Sec-
tion 4. Section 5 reports some simulation results which illustrate the method interest. We compare
the adaptive group LASSO quantile estimation performance with the adaptive group LASSO least
squares estimations, proposed by Zhang and Xiang (2015). All proofs are given in Section 6.

2 Model and notations

In this section, we present the statistical model and we also introduce some notations used through-
out in the paper.
We begin by introducing some general notations. All vectors and matrices are denoted by bold sym-
bols and all vectors are written as column vectors. For a vector v, we denote by vt its transposed
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and by ‖v‖ its Euclidean norm. Notations
L−→

n→∞
,

P−→
n→∞

represent the convergence in distribution and

in probability, respectively, as n → ∞. For a positive definite matrix M, we denote by λmin(M)
and λmax(M) its the smallest and largest eigenvalues, respectively.
We will also use the following notations: if Vn and Un are random variable sequences, Vn = oIP (Un)
means that limn→∞ IP [|Un/Vn| > e] = 0 for any e > 0, Vn = OIP (Un) means that there exists
a finite C > 0 such that IP [|Un/Vn| > C] < e for any n and e. If Vn and Un are deterministic
sequences, Vn = o(Un) means that the sequence Vn/Un → 0 for n → ∞, Vn = O(Un) means that
the sequence Vn/Un is bounded for sufficiently large n.
Throughout this paper, C will denote generic constant; not depending on size n which may take
different values in different formula or even in different parts of the same formula. The value of C
is not of interest. We will also use the notation 0k for the zero k-vector.

We consider the following linear model with p groups of explanatory variables:

Yi =

p∑

j=1

Xt
ijβj + εi = X

t
iβ + εi, i = 1, · · · , n, (1)

with Yi, εi random variables. For each group j = 1, · · · , p, the vector of the parameters is βj ≡
(βj1, · · · , βjdj

) ∈ R
dj and the design for observation i is Xij , a column vector of size dj . The vector

with all coefficients is β ≡ (β1, · · · ,βp) and for observation i, the vector with all explanatory

variables is Xi = (Xi1, · · · ,Xip). Denote by β0
j = (β0

j1, · · · , β0
jdj

) the true value (unknown) of the
parameter βj . For observation i, we denote by Xij,k the kth variable of the jth group.
We emphasize that for the ith sample, we observe (Yi,Xi), i = 1, · · · , n.
The relevant groups of explanatory variables correspond to the nonzero vectors. Without loss of
generality, on suppose that the first p0 (p0 ≤ p) groups of explanatory variables are relevant:

‖β0
j‖ 6= 0, for all j ≤ p0 and ‖β0

j‖ = 0, for all j > p0,

where ‖.‖ is the Euclidean norm. Let r be the total number of explanatory variables, so r =
∑p

j=1 dj .

We denote by r0 =
∑p0

j=1 dj . So, p0 is the number of nonzero true parameter vectors and r0 is the
total number of parameters in these nonzero true vectors.
The multi-factor ANOVA model is an example of this model.

We introduce now the quantile framework. For a fixed quantile index τ ∈ (0, 1), the check
function ρτ (.) : R → R+ is defined by ρτ (u) = u(τ − 11u<0).
The quantile estimator of β, is the minimizer of the quantile process associated to model (1):

β̃n ≡ argmin
β∈Rr

n∑

i=1

ρτ (Yi − X
t
iβ). (2)

For the particular case τ = 1/2 we obtain the median regression and (2) becomes the least absolute
deviations estimator. A great advantage of the quantile framework is that, compared to classical
estimation methods that are sensitive to outliers, the quantile method provides more robust esti-
mators. Moreover, the required assumptions to the error moments are relaxed.

The estimator β̃n = (β̃n;1, β̃n;2, · · · , β̃n;p) has as dj -subvector β̃n;j for each group j = 1, · · · , p.
The quantile estimation method doesn’t perform automatic variable selection. For finding the zero
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vectors, i.e. the irrelevant groups of variables, hypothesis tests are required. However when model
(1) has a large group number p, it is useful to estimate simultaneously the parameter groups and
to eliminate the irrelevant groups without crossing every time by a hypothesis test. The adaptive
LASSO penalties have the advantage of automatic selection and of parameter estimation (see for
example Zhang and Xiang (2015), Wei and Huang (2010), Wang and Leng (2008)).

In order to introduce and study the adaptive LASSO estimator, we consider the following index
set

A ≡ {j; ‖β0
j‖ 6= 0} = {1, · · · , p0}

and Ac ≡ {j; ‖β0
j‖ = 0} = {p0 + 1, · · · , p} its complementary set. The set A contains the index set

corresponding to groups with nonzero true parameters.
For β a r-vector of parameters, we denote by βA the r0-subvector of β which contains βj , for
j = 1, · · · , p0. Similarly, the (r − r0)-vector βAc contains βj for j = p0 + 1, · · · , p.
In practice, the set A is unknown. Then, we must find the set A and estimate the corresponding
parameters.

In Sections 3 and 4 we will introduce an estimator, denoted β̂
∗
n, which minimizes the quantile

process penalized with an adaptive group LASSO penalty, for two cases: p fixed and p → ∞ as
n → ∞. We generalize the adaptive LASSO quantile estimator proposed by Ciuperca (2016) for
individual variable selection to the case of group selection. We call this estimator, adaptive group
LASSO quantile (ag LASSO Q) estimator.

We say that β̂
∗
n satisfies the oracle properties if:

(i) asymptotic normality:
√
n(β̂

∗
n − β

0)A converges in law to a centred Normal distribution.

(ii) sparsity property: limn→∞ P[A = {j = 1, · · · , p; ‖β̂∗
n;j‖ 6= 0dj

}] = 1.

3 Fixed p case

In this section we propose and study the asymptotic properties of the ag LASSO Q estimator for
the parameter β of model (1) when the group number p is fixed.
We define the ag LASSO Q estimator by:

β̂
∗
n ≡ argmin

β∈Rr

Q(β),

where Q(β) is the penalized quantile process with the adaptive group LASSO penalty:

Q(β) ≡
n∑

i=1

ρτ (Yi −
p∑

j=1

Xt
ijβj) + µn

p∑

j=1

ω̂n;j‖βj‖, (3)

with the weight ω̂n;j ≡ ‖β̃n;j‖−γ , γ > 0. The estimator β̂
∗
n is written as β̂

∗
n = (β̂

∗
n;1, · · · , β̂

∗
n;p) and

β̂
∗
n;j is a subvector of size dj , for j = 1, · · · , p.

For a particular case of a quantile model with non-grouped variables, dj = 1 for all j = 1, · · · , p,
we obtain the adaptive LASSO quantile estimator proposed and studied by Ciuperca (2016).
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Before presenting the main results for β̂
∗
n in the fixed p case, we give the required assumptions.

The tuning parameter µn and the constant γ are such that, for n → ∞,

µn → ∞,
µn√
n
→ 0, n(γ−1)/2µn → ∞. (4)

For the design (Xi)16i6n we consider the following assumption:
(A1) n−1 max1≤i≤n X

t
iXi −→

n→∞
0 and n−1

∑n
i=1 XiX

t
i −→n→∞

Υ, with Υ a r× r positive definite matrix.

For the errors εi we suppose that:
(A2) (εi)16i6n are independent, identically distributed, with F : B → [0, 1] the distribution func-
tion and a continuous positive density f in a neighborhood of 0. The τth quantile of εi is zero:
τ = F (0). Moreover, for every e ∈ int(B), 1r ∈ R

r we have

lim
n→∞

n−1
n∑

i=1

∫ xt
i1r

0

√
n[F (e+ v/

√
n)− F (e)]dv =

1

2
f(e)1t

rΥ1r, (5)

where 1r is the r-vector with all components 1. The set B is a real set, with 0 ∈ B.

Assumption (A1) is standard for LASSO methods and (A2) is classic for quantile regression
(see Ciuperca (2016), Koenker (2005), Zou and Yuan (2008), Wu and Liu (2009)). Assumption
(A1) requests that the design matrix has a reasonable good behaviour. For the tuning parameter
µn, the same conditions on (4) are required in Ciuperca (2016) for adaptive LASSO quantile model
but with ungrouped explanatory variables.

We make the remark that for ANOVA model, since in the analysis of variance there is a con-
straint for each level of a factor, we consider as constraint that the effect of this level is zero. Then
this zero level is not considered in the model in order that assumption (A1) is satisfied.

In order to study the asymptotic properties of the estimator β̂
∗
n, let us consider the index set

of the groups selected by the adaptive group LASSO quantile method:

Â∗
n ≡ {j ∈ {1, · · · , p}; ‖β̂∗

n;j‖ 6= 0}

and Â∗c
n its complementary set.

The following Theorem shows that the ag LASSO Q estimators with the index in the set A
are asymptotically Gaussian. Then, the estimators of the nonzero parameter vectors have the same
asymptotic distribution they would have if the zero parameter vectors were known.

Theorem 1 Under assumptions (A1), (A2) and condition (4), we have
√
n(β̂

∗
n − β0)A

L−→
n→∞

N
(
0r0 , τ(1 − τ)f−2(0)Υ−1

A
)
, with ΥA the submatrix of Υ with the row and column indices in

{1, · · · , d1, d1 + 1, · · · , d1 + d2, · · · ,
∑p0

j=1 dj}.
We give now the Karush-Kuhn-Tucker(KKT) optimality conditions, needed to prove the sparsity

property for β̂
∗
n.

For all j ∈ Â∗
n, we have, with probability one, the following dj equalities

τ
n∑

i=1

Xij −
n∑

i=1

Xij11Yi<Xt
i
β̂

∗

n
=

µnω̂n;jβ̂
∗
n;j

‖β̂∗
n;j‖

. (6)
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For all j 6∈ Â∗
n, for all k = 1, · · · , dj we have, with probability one, the following inequality

∣∣∣∣∣τ
n∑

i=1

Xij,k −
n∑

i=1

Xij,k11Yi<X
t
iβ̂

∗

n

∣∣∣∣∣ ≤ µnω̂n;j. (7)

The following theorem shows the sparsity property of the ag LASSO Q estimator. This result
states that the adaptive group LASSO quantile estimators of the nonzero parameter vectors are
exactly nonzero with a probability converging to one when n diverges to infinity.

Theorem 2 Under the assumptions of Theorem 1 and under the condition nγ/2−1λn → ∞, as
n → ∞, we have limn→∞ P[Â∗

n = A] = 1.

Theorem 1 and Theorem 2 establish the asymptotic normality and the sparsity of the ag LASSO Q
estimator, which means that this estimator still share the oracle properties in the case of fixed p.

Remark 1 For the weight ω̂n;j associated to the jth group, we considered the quantile estimator
norm to the power −γ. In view of the proofs of Theorem 1 and Theorem 2, these two theorems
remain true also when β̃n;j is replaced by any estimator of βj , with convergence rate n−1/2, under
assumptions (A1), (A2).

4 The case of p depending on n

Consider now same model (1) with grouped variables, but with the number p of groups depending
on n: p = pn and pn → ∞ as n → ∞. More precisely, we consider pn = O(nc), with the constant
c ∈ (0, 1). For readability, we keep the notation p instead of pn. Similarly, we have r =

∑p
j=1 dj ,

with r depending on n. Always for simplicity of notation, for the design Xi, for the parameter β,
ever if their dimension depends on n, we do not put subscript n.

We will first find the convergence rate of the quantile estimator β̃n of β. Afterwards, we will
propose for β an adaptive group LASSO quantile estimator. Even though the number p diverges as
n → ∞, this estimator keeps the oracle properties.

Since the design size depends on n, we need reconsider the assumptions on Xi. Then, let us
consider the following assumptions for the errors (εi), design (Xi) and for the number p of groups:
(A3) (εi)1≤i≤n are i.i.d. Let F be the distribution function and f be the density function of (εi). The
density function f is continuously, strictly positive in a neighbourhood of zero and has a bounded
first derivative in the neighbourhood of 0. The τth quantile of εi is zero: τ = F (0).
(A4) There exist two constants 0 < m0 ≤ M0 < ∞, such that m0 ≤ λmin(n

−1
∑n

i=1 XiX
t
i) ≤

λmax(n
−1
∑n

i=1 XiX
t
i) ≤ M0.

(A5) (p/n)
1/2

max16i6n ‖Xi‖ → 0, as n → ∞.
(A6) p is such that p = O(nc), with 0 < c < 1.

Since p → ∞, condition (5) of assumption (A2) for the case p fixed is now replaced by f ′ bounded
in the neighborhood of 0. This assumption also been considered for always high-dimensional quan-
tile model, with seamless L0 penalty by Ciuperca (2015). In Ciuperca (2015), assumptions (A4) and
(A5) are also required. Assumption (A6) was considered by Zhang and Xiang (2015) for an high-
dimensional linear model where the objective function is the error squares sum, penalized with
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an adaptive group LASSO penalty. Assumptions (A4), (A5), (A6) are also required for an high-
dimensional linear model by Zou and Zhang (2009), which penalize the LS process with adaptive
elastic-net penalty. In respect to the case p fixed, assumptions (A4) and (A5) are the similar of (A1).

We will start by finding the convergence rate of quantile estimator (2) in the case p → ∞ as
n → ∞. For this, consider the quantile process:

Gn(β) ≡
n∑

i=1

ρτ (Yi − X
t
iβ).

For the quantile estimator existence, we assume that the total number r of parameters is strictly
less than n.

We recall that in the case p fixed, the convergence rate of the quantile estimator β̃n is of
order n−1/2 (see for example Koenker (2005)). We will show that, the quantile estimator has the
convergence of order (p/n)1/2, when the explanatory group variable number diverges with the

sample size. In view of the proof of Lemma 1, the convergence rate of β̃n depends only of p and
not of total number r of parameters, thanks to assumption (A5). One needs the convergence rate
of the quantile estimator is necessary for studying the asymptotic behaviour of the penalty which
intervenes in adaptive group LASSO quantile process.

Lemma 1 Under assumptions (A3)-(A6), we have ‖β̃n − β0‖ = OP

(√
p
n

)
.

Consider now the following adaptive group LASSO quantile (ag LASSO Q) estimator:

β̂
∗
n ≡ argmin

β∈Rd


 1

n
Gn(β) + λn

p∑

j=1

ω̂n;j‖βj‖


 ,

where λn is a tuning parameter (positive) and the weights of the LASSO penalty are ω̂n;j ≡
‖β̃n;j‖−γ , with γ > 0. The relation between the tuning parameter µn of relation (3) for the case
p fixed and λn for the case p depending on n is λn = µn/n. We prefer to consider these forms as
tuning parameter and as objective process, for having a similarity with the adaptive group LASSO
LS (ag LASSO LS ) case considered by Zhang and Xiang (2015).

In order to study the asymptotic normality of β̂
∗
n we need to impose an additional condition on

the total number of nonzero parameters. More precisely, r0 it is assumed to be the same order as
p0. This is for controlling the penalty, so that it is smaller than the quantile process.

Concerning the size of the nonzero parameter vectors, we take the following assumption:
(A7) r0 = O(p0).
For the smallest nonzero vector norm and on constant c of assumption (A6) we assume:
(A8) Let us denote h0 ≡ min16j6p0 ‖β0

j‖. There exists a constant M > 0 such that M ≤ n−αh0

and α > (c− 1)/2.

These two assumptions were also found in the paper Zhang and Xiang (2015), for ag LASSO LS
method in high-dimensional linear model, but with a supplementary condition for r: r = O(p).
Here, we do not need this requirement, since assumption (A5) is imposed. On the other hand, in
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Zhang and Xiang (2015), instead of assumption (A5) the condition n−1/2 max16i6n ‖Xi,A‖2 → 0,
as n → ∞, is required.

The following theorem gives the convergence rate of the ag LASSO Q estimator when p → ∞.
We obtain the same convergence rate that of quantile estimator when group number diverges. This
convergence rate is also obtained by Zhang and Xiang (2015) for the ag LASSO LS estimator, but
for errors (ε)16i6n with mean zero and bounded variance.

Theorem 3 Under assumptions (A3)-(A6), (A8) and the tuning parameter (λn)n∈N satisfying

λnn
(1+c)/2−αγ → 0, as n → ∞, we have ‖β̂∗

n − β0‖ = OP

(√ p
n

)
.

The following theorem shows the oracle properties for ag LASSO Q estimator when the number
p of groups diverges. We denote by Xi,A a r0-vector which contains the sub-vectors Xi,j , for j ∈
{1, · · · , p0}.

Theorem 4 Suppose that assumptions (A3)-(A6), (A8) are satisfied and also that the tuning pa-
rameter satisfies λnn

(1−c)(1+γ)/2 → ∞, λnn
(c+1)/2−αγ → 0, as n → ∞. Then:

(i) P

[
Â∗

n = A
]
→ 1, for n → ∞.

(ii) If moreover assumption (A7) holds, then, for any vector u of size r0 such that ‖u‖ = 1, with

notation Υn,A ≡ n−1
∑n

i=1 Xi,AXt
i,A, we have

√
n(utΥ−1

n,Au)
−1/2ut(β̂

∗
n − β0)A

L−→
n→∞

N
(
0, τ(1 −

τ)f−2(0)
)
.

For the tuning parameter λn, the same conditions are required in Zhang and Xiang (2015) such
that, the ag LASSO LS estimator in an high-dimensional linear model satisfies the oracle properties.

Remark 2 As for the case p fixed, we considered the weight ω̂n;j = ‖β̃n;j‖−γ , with β̃n;j the quantile
estimator of the dj -vector βj , for any j = 1, · · · , p. In view of the proof of Theorem 4, the oracle

properties for ag LASSO Q estimator remain true also when β̃n;j is replaced by any (p/n)1/2-
estimator of βj , under assumptions (A3)-(A6).

Remark 3 If h0, defined in assumption (A8), doesn’t depend on n, then α = 0. In this case, the
conditions required on (λn)n∈N in Theorem 3 imply γ > 2c/(1− c), and then γ can take values in
the interval (0,∞). The value of γ increase with that of c ∈ (0, 1). For example, if c = 1/2 then
γ > 2.

5 Simulations

In order to evaluate the performance of the proposed estimation method, Monte Carlo simula-
tions are realized in this section. To assess this performance we compare the ag LASSO Q and
ag LASSO LS estimation methods.

The designXi is generated in the same way as in paper Wei and Huang (2010): X = (X1, · · · ,Xp),
with the group explanatory variables Xj = (X5(j−1)+1, · · · , X5j), for all j = 1, · · · , p. We first
generate r = 5p independent random variables R1, · · · , Rr of standard normal distribution. We
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also generate the variables Zj of multivariate normal distribution with mean zero and covariance
Cov(Zj1 , Zj2) = 0.9|j1−j2|. Finally, the variables X1, · · · , Xr are generated as:

X5(j−1)+k =
Zj +R5(j−1)+k√

2
, 1 ≤ j ≤ p, 1 ≤ k ≤ 5.

Two model errors are considered: Normal N (0, 32) and Cauchy C(0, 32). For the parameters we
take: β0

1 = (0.5, 1, 1.5, 1, 0.5), β0
2 = (1, 1, 1, 1, 1), β0

3 = (−1, 0, 1, 2, 1.5), β0
4 = (−1.5, 1, 0.5, 0.5, 0.5)

and all other parameters are zero vectors. The nonzero vectors were also considered in Example 2
of Wei and Huang (2010) for errors N (0, 32), p = 10, when the parameters were estimated by LS
method with adaptive group LASSO penalty.
The constant c of assumption (A6) is c = 0.43. Then, we will consider the following value cou-
ples for n and p: (30, 5), (60, 5), (60, 10), (100, 10), (200, 10), (400, 15), (1000, 25) and (1000, 100).
On the other hand, p0 will always be equal to 4. The response variable Y is generated as: Yi =∑p

j=1 X
t
ijβ

0
j + εi, for i = 1, · · · , n.

We will compare the obtained results by the adaptive group LASSO quantile method, proposed in
this paper, with those obtained by the adaptive group LASSO LS method, proposed byWei and Huang
(2010), Zhang and Xiang (2015).
For simulations, we used the R language. After a scale transformation, we can use the group LASSO
methods instead of the adaptive LASSO group methods. Then, in order to calculate the adaptive
group LASSO LS estimations we have used the function grpreg of package grpreg, the tuning pa-
rameter being chosen on a value grid, using the AIC criterion. In order to calculate the adaptive
group LASSO quantile estimations, we have used the function groupQICD of package rqPen and
the tuning parameter varies on a value grid.
For each considered case, 1000 Monte Carlo replications was made.

In Table 1 we give how the two estimation methods identify the parameter vectors (zero or
nonzero), for the part that contains the four nonzero parameter vectors β0

j , j = 1, · · · , 4, and
for the part with p − 4 zero vectors. We present the minimum, three quartiles (Q1, median, Q3),
the mean and the maximum of the number of nonzero vectors (j = 1, · · · , 4), respectively, zero
(j = 5, · · · , p), found by the two estimation methods.
For n large (equal to 100, 200, 400, 1000), we observe that for errors of N (0, 32) law, the two
estimation methods well identify the zero and nonzero parameter vectors. However, for Cauchy er-
rors, the ag LASSO LS method poorly identifies nonzero vectors (the group of the four significant
variables). The zero vectors are very well identified by the two methods.
For n small (equal to 30 or 60), the two estimation methods well identify the four relevant vari-
able groups, that errors are Normal or Cauchy (except for ag LASSO Q, in the case n = 60,
p = 5, ε ∼ C(0, 32)). However, the (p − 4) irrelevant variable groups are not well identified by the
ag LASSO LS method.

Conclusion
For gaussian errors, the ag LASSO LS method identifies well the two (relevant and irrelevant)

variable groups for n large. For n small, the irrelevant variable groups are not well identified. For
Cauchy errors, this method, either does not identify the relevant variable groups or irrelevant vari-
able groups, regardless of the value n. Then, for Cauchy errors, the ag LASSO LS estimations do
not have the sparsity property.
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The ag LASSO Q method, for the two types of errors, identifies the two variable groups (signif-
icant and irrelevant), the precision increasing with n. Then, the ag LASSO Q estimations have the
sparsity property.

We conclude then that the simulations confirm the theoretical results for the ag LASSO Q es-
timators.

6 Proofs

In this section we provide the proofs of all results presented in Sections 3 and 4.

6.1 Proofs for results of Section 3

Proof of Theorem 1. The proof is similar to that of Theorem 4.1 of Zou and Yuan (2008).

We denote
√
n(β̂

∗
n − β0) ≡ ûn, and in general

√
n(β − β0) ≡ u ≡ (u1, · · · ,up), with uj =

(uj,1, · · · , uj,dj
), for j = 1, · · · , p.

Since Yi = X
t
iβ

0 + εi, then Yi − X
t
iβ =

X
t
iu√
n
+ εi. Let us consider the following random variables

Di ≡ (1− τ)11εi<0 − τ11εi≥0, (8)

vn ≡ 1√
n

n∑

i=1

Di,

Bn(u) ≡
n∑

i=1

∫
X

t
iu/

√
n

0

[11εi<t − 11εi<0]dt

and the random vector

zn ≡ 1√
n

n∑

i=1

XiDi.

Obviously, IE[Di] = 0 et IE[zn] = 0r. By the CLT, using assumptions (A1) and (A2), we have

zn
L−→

n→∞
N (0r, τ(1 − τ)Υ), vn

L−→
n→∞

N (0, τ(1 − τ)). (9)

The vector ûn is the minimizer of the following random process:

Ln(u) ≡
n∑

i=1

[
ρτ
(
εi −

X
t
iu√
n

)
− ρτ (εi)

]
+ µn

p∑

j=1

ω̂n;j

[ ∥∥∥∥β
0
j +

uj√
n

∥∥∥∥− ‖β0
j‖
]
,

which can be written under the following form:

Ln(u) = [ztnu+Bn(u)] + µn

p∑

j=1

ω̂n;j

[ ∥∥∥∥β
0
j +

uj√
n

∥∥∥∥− ‖β0
j‖
]√n√

n
. (10)

We first study the last sum of the right hand side of (10).
For all j ≤ p0 (thus ‖β0

j‖ 6= 0) we have, since the quantile estimators are consistent:

ω̂n;j
P−→

n→∞
‖β0

j‖−γ 6= 0 (11)
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nonzero true parameter vectors zero true parameter vectors
n p ε min Q1 Q2 mean Q3 max true min Q1 Q2 mean Q3 max

LS Q LS Q LS Q LS Q LS Q LS Q LS Q LS Q LS Q LS Q LS Q LS Q
30 5 C 0 0 4 3 4 3 3.5 3.3 4 4 4 4 1 0 0 0 0 0 1 0.1 0.7 0 1 1 1

N 4 3 4 4 4 4 4 3.8 4 4 4 4 1 0 0 0 0 0 1 0.01 0.5 0 1 1 1
60 5 C 0 1 0 3 1 4 1.3 3.6 4 4 4 4 1 0 0 0 1 1 1 0.7 0.8 1 1 1 1

N 4 3 4 4 4 4 4 3.9 4 4 4 4 1 0 0 0 0 0 1 0.1 0.7 0 1 1 1
60 10 C 0 0 4 3 4 4 3.4 3.5 4 4 4 4 6 0 2 0 5 0 5 0.8 5.2 0 6 6 6

N 4 3 4 4 4 4 4 3.9 4 4 4 4 6 0 1 0 4 0 4 0.06 4.3 0 5 6 6
100 10 C 0 3 0 4 0 4 0.9 3.9 1 4 4 4 6 0 2 5 4 6 5 5 5 6 6 6 6

N 4 3 4 4 4 4 4 3.9 4 4 4 4 6 0 1 0 4 0 5 2 4.4 5 5 6 6
200 10 C 0 3 0 3 0 4 0.5 3.7 1 4 4 4 6 0 2 6 6 6 6 5.7 5.7 6 6 6 6

N 4 3 4 4 4 4 4 3.9 4 4 4 4 6 0 3 0 5 4 6 3.1 5.5 6 6 6 6
400 15 C 0 3 0 3 0 4 0.4 3.6 11 0 4 4 4 8 10 11 11 11 11 10.8 10.9 11 11 11 11

N 4 3 4 4 4 4 4 3.99 4 4 4 4 11 0 9 9 11 10 11 9.3 10.8 11 11 11 11
1000 25 C 0 4 0 4 0 4 0.5 4 1 4 4 4 21 19 19 21 21 21 21 20.8 20.7 21 21 21 21

N 4 4 4 4 4 4 4 4 4 4 4 4 21 17 20 20 21 21 21 20.3 20.9 21 21 21 21
100 C 0 3 0 3 0 4 0.3 3.5 0 4 3 4 96 94 96 96 96 96 96 95.8 96 96 96 96 96

N 4 3 4 4 4 4 4 3.98 4 4 4 4 96 92 95 95 96 96 96 95.4 96 96 96 96 96
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and by elementary calculus

√
n
[
‖β0

j + n−1/2uj‖ − ‖β0
j‖
]
−→
n→∞

ut
jβ

0
j

‖β0
j‖

. (12)

Then, using condition µnn
−1/2 → 0, when n → ∞, taking into account relations (11) and (12), by

Slutsky’s Lemma, we have:

µn

p0∑

j=1

ω̂n;j

[
‖β0

j + n−1/2uj‖ − ‖β0
j‖
]

P−→
n→∞

0. (13)

For j > p0, we have β0
j = 0dj

. Then:
√
n
[
‖β0

j + n−1/2uj‖ − ‖β0
j‖
]
= ‖uj‖. Since ω̂n;j

P−→
n→∞

∞, by

assumption n(γ−1)/2µn → ∞, we have n−1/2µnω̂n;j
P−→

n→∞
∞. Thus

µnω̂n,j

√
n√
n

[
‖β0

j + n−1/2uj‖ − ‖β0
j‖
] P−→
n→∞

{
0, if uj = 0dj

∞, if ‖uj‖ 6= 0.
(14)

Then, taking into account relations (13) and (14), we have the following result for the third term
of the right hand side of (10):

µn

p∑

j=1

ω̂n;j

[ ∥∥∥∥β
0
j +

uj√
n

∥∥∥∥− ‖β0
j‖
]√n√

n

P−→
n→∞

p∑

j=1

W (β0
j ,u), (15)

with

W (β0
j ,u) ≡





0, if β0
j 6= 0dj

0, if β0
j = 0dj

and uj = 0dj

∞, if β0
j = 0dj

and uj 6= 0dj
.

On the other hand, by the two results of (9), we have for the first two terms of the right hand side
of (10), with z a random d-vector of law N (0d, τ(1− τ)Υ), that

ztnu
L−→

n→∞
ztu, Bn(u)

P−→
n→∞

1

2
f(0)utΥu.

Taking into account these last two results and relation (15), then, Ln(u) of relation (10) has an
asymptotic distribution:

Ln(u)
L−→

n→∞
ztu+

1

2
f(0)utΥu+

p∑

j=1

W (β0
j ,u).

Let us denote u = (u1,u2) with u1 of size r0, u2 of size r − r0 and ûn = (û1n, û2n), where û1n

contains the first
∑p0

j=1 dj = r0 elements of u. Since ûn = argminu∈Rr Ln(u), we obtain that

û2n
P−→

n→∞
0r−r0 et û1n

L−→
n→∞

N (0r0 , τ(1 − τ)f−2(0)Υ−1
A ). �
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Proof of Theorem 2. By Theorem 1, for all j ∈ A we have that
√
n(β̂

∗
n;j −β0

j )
L−→ N (0dj

, τ(1−
τ)f−2(0)ΥAj

) as n → ∞. The square matrix ΥAj
of size dj × dj is the submatrix of Υ with the

row and column indices in {dj−1 + 1, dj−1 + 2, · · · , dj}, with d0 = 0. Since β0
j 6= 0dj

, then

lim
n→∞

P[A ⊆ Â∗
n] = 1. (16)

To finish the proof we show that for all j 6∈ A we have P[j ∈ Â∗
n] → 0 as n → ∞. Since j 6∈ A, then

β
0
j = 0dj

. Considering the Eucildean norm for equalities (6) we have with probability one, since we

suppose j ∈ Â∗
n, that:

µnω̂n;j < 2‖
n∑

i=1

Xij‖ ≤ 2

n∑

i=1

‖Xij‖ = 2

n∑

i=1




dj∑

k=1

X2
ij,k




1/2

.

By the Cauchy-Schwarz inequality, we have that,

n∑

i=1

1

n




dj∑

k=1

X2
ij,k




1/2

≤


 1

n

n∑

i=1




dj∑

k=1

X2
ij,k






1/2

=

(
1

n

n∑

i=1

‖Xij‖2
)1/2

.

Then, taking into account assumption (A1), there exists a bounded constant C1 > 0 such that

1

n
µnω̂n;j < 2

(
1

n

n∑

i=1

‖Xij‖2
)1/2

≤ C1 < ∞. (17)

On the other hand, left-hand side of inequality (17), can be written:

µnω̂n;j

n
=

µn

nγ/2‖β̃n;j‖γ
nγ/2

n
.

Since we have supposed that j ∈ Â∗
n and j 6∈ A, we have that for all ǫ > 0, there exists ηǫ > 0

such that P[n−1/2‖β̃n;j‖−1 > ηǫ] > 1 − ǫ. The last two relations, together with the supposition

nγ/2−1µn → ∞, imply, for all constant A > 0,

lim
n→∞

P

[
µnω̂n;j

n
> A

]
= 1. (18)

Then, relations (17) and (18) are in contradiction. Thus

lim
n→∞

P[j ∈ Ac ∩ Â∗
n] = 0. (19)

The theorem follows from relations (16) and (19). �
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6.2 Proofs for results of Section 4

Proof of Lemma 1. We show that for all ǫ > 0, there exists a constant Bǫ > 0 (without loss of
generality, we consider Bǫ > 0, otherwise we take |Bǫ|) large enough such that for n large enough:

P

[
inf

‖u‖=1
Gn

(
β0 +Bǫ

√
p

n
u

)
> Gn(β

0)

]
≥ 1− ǫ. (20)

For this, we consider for some constant C > 0, the expectation of the difference:

IE

[
Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0)

]
=

n∑

i=1

IE

[
ρτ

(
εi − C

√
p

n
X

t
iu

)
− ρτ (εi)

]

=

n∑

i=1

IE

[∫ C
√

p

n
X

t
iu

0

110<εi<tdt

]
=

n∑

i=1

∫ C
√

p

n
X

t
iu

0

[F (t)− F (0)] dt. (21)

By assumption (A6) we have p/n → 0. Moreover, by assumption (A5), we have that
√

p
nX

t
iu = o(1),

for ‖u‖ = 1. Thus, by mean value theorem and since the density f has a bounded first derivative
in the neighbourhood of 0, relation (21) becomes:

=
f(0)

2
C2 p

n

n∑

i=1

(Xt
iu)

2 + o

(
p

n

n∑

i=1

ut(Xt
iXi)u

)
.

Then, taking into account assumption (A4),

1

n
IE

[
Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0)

]
= C2 f(0)

2

p

n

1

n

n∑

i=1

(Xt
iu)

2(1 + o(1)). (22)

Let be the following random variable

Ri ≡ ρτ

(
εi − C

√
p

n
X

t
iu

)
− ρτ (εi)− C

√
p

n
DiX

t
iu

and the following random vector

Wn ≡ C

√
p

n

n∑

i=1

DiX
t
i,

with the random variable Di defined by (8). The vector Wn is the similar of the vector zn when p
was fixed. Then, the process Gn can be written:

Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0) = IE

[
Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0)

]
+Wnu+

n∑

i=1

[Ri − IE[Ri]].

(23)
First all, remark that

‖u‖2λmin

( 1
n
XiX

t
i

)
≤ 1

n

n∑

i=1

ut
XiX

t
iu ≤ ‖u‖2λmax

( 1
n
XiX

t
i

)
. (24)
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Since the errors (εi)16i6n are independent, using also |Ri| < C
√

p
n |Xt

iu| 11|εi|<C
√

p

n |Xt
i
u|, together

with assumption (A5), we obtain

IE
[
11|εi|<C

√
p

n |Xt
i
u|
]
≤ C

√
p

n
‖Xi‖ ≤ C

√
p

n
max
16i6n

‖Xi‖ = o(1),

which imply, since (εi)16i6n are i.i.d.,

IE

[
n∑

i=1

[Ri − IE[Ri]]

]2
=

n∑

i=1

IE[Ri − IE[Ri]]
2 ≤

n∑

i=1

IE[R2
i ]

and by assumptions (A3), (A5) together with relation (24), we have

≤ C2 p

n

n∑

i=1

|Xt
iu|2IE

[
11|εi|<C

√
p

n |Xt
i
u|
]
= o

(
p

n

n∑

i=1

ut
XiX

t
iu

)
= o(p). (25)

For the last relation we have used assumption (A4).
Let be the following random variable Un ≡ p−1/2

∑n
i=1[Ri − IE[Ri]]. Then, relation (25) implies

IE[U2
n] = o(1). This, together with IE[Un] = 0, imply, by the Bienaymé-Tchebychev inequality, that

Un
P−→

n→∞
0. Thus

∑n
i=1[Ri − IE[Ri]] = oP(p

1/2). Then, relation (23) becomes

Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0) = IE

[
Gn

(
β0 + C

√
p

n
u

)
−Gn(β

0)

]
+Wnu+ oP(p

1/2) (26)

which is equal to, using (22):

=

[
C2 f(0)

2
p

(
1

n

n∑

i=1

ut
XiX

t
iu

)
+ C

√
p

(
n∑

i=1

DiX
t
i√

n

)
u

]
(1 + oP(1)) + oP(p

1/2).

Since IE[Di] = 0, V ar[DiX
t
iu] = τ(1 − τ)ut

XiX
t
iu and ‖u‖ = 1, then, using (24), we have that

n−1/2
∑n

i=1 DiX
t
iu converges in law to a centred Gaussian distribution. Taking into account as-

sumptions (A4) and (A6), for B large enough, we obtain

Gn

(
β0 +B

√
p

n
u

)
−Gn(β

0) = B2f(0)p

(
1

n

n∑

i=1

ut
XiX

t
iu

)
(1 + oP(1)) > 0, (27)

for n large enough. Thus, relation (20) follows taking into account assumptions (A3) and (A4). �

Proof of Theorem 3. We have the following inequality, with probability 1, for the quantile
estimator β̃n;j :

min
j∈A

‖β0
j‖ ≤ max

j∈A
‖β̃n;j − β0

j‖+min
j∈A

‖β̃n;j‖.

By Lemma 1, we have that maxj∈A ‖β̃n;j − β0
j‖ = OP((p/n)

1/2)) = OP(n
(c−1)/2). On the other

hand, we denoted in assumption (A8), h0 = minj∈A ‖β0
j‖. Then, we have with probability one,
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h0n
−α ≤ OP(n

(c−1)/2−α) + n−αminj∈A ‖β̃n;j‖ and taking into account assumption (A8): M ≤
oP(1) + n−α minj∈A ‖β̃n;j‖. Hence:

lim
n→∞

P

[
min
j∈A

‖β̃n;j‖ >
Mnα

2

]
= 1. (28)

We consider the r-vector u such that ‖u‖ = 1. Similarly to Theorem 2.1 of Zhang and Xiang (2015),
we have, for a constant B,

p∑

j=1

‖β̃n;j‖−γ

[
‖β0

j +B

√
p

n
uj‖ − ‖β0

j‖
]
≥

p0∑

j=1

‖β̃n;j‖−γ

[
‖β0

j +B

√
p

n
uj‖ − ‖β0

j‖
]
≥ −B

√
p

n

p0∑

j=1

‖β̃n;j‖−γ‖uj‖.

Since ‖u‖ = 1, taking into account relation (28), applying the Cauchy-Schwarz inequality, we obtain

−
√

p

n
λn

p0∑

j=1

‖β̃n;j‖−γ‖uj‖ ≥ −
√

p

n
λn

( p0∑

j=1

‖β̃n;j‖−2γ
)1/2‖u‖ ≥ −

√
p

n

λn
√
p0(

minj∈A ‖β̃n;j‖
)γ ≥ −

√
p

n

λn
√
p0(

Mnα

2

)γ

and by assumption λnn
(1+c)/2−αγ −→

n→∞
0, we obtain:

= OP

( p
n

)
. (29)

The Theorem is proved if we have the similar of inequality (20) for

1

n
Gn

(
β0 +B

√
p

n
u

)
− 1

n
Gn(β

0)+

p∑

j=1

λnω̂n;j

[
‖β0

j +

√
p

n
Buj‖ − ‖β0

j‖
]
≡ Qn

(
β0 +B

√
p

n
u

)
−Qn(β

0).

We show that for all ǫ > 0 there exists Bǫ large enough, such that, for any n large enough

P

[
inf

‖u‖=1
Qn

(
β0 +Bǫ

√
p

n
u

)
> Qn(β

0)

]
> 1− ǫ. (30)

By the definition of Qn, we have for all constant B > 0, that

Qn

(
β0 +B

√
p

n
u

)
−Qn(β

0) =
1

n
Gn

(
β0 +B

√
p

n
u

)
− 1

n
Gn(β

0)+

p∑

j=1

λnω̂n,j

[
‖β0

j +

√
p

n
Buj‖ − ‖β0

j‖
]

and using relations (27) and (29)

> B2f(0)
p

n

(
1

n

n∑

i=1

ut
XiX

t
iu

)
(1 + oP(1))−BOP

( p
n

)
.

Relation (30) follows from the last relation, for n and B large enough and using assumption (A4). �

Proof of Theorem 4. (i) By Theorem 3, we have that β̂
∗
n belongs, with a probability converging

to one, to the set: Vp(β
0) ≡

{
β; ‖β − β0‖ ≤ B

√
p
n

}
, with B > 0 large enough as in relation (30).



Adaptive group LASSO selection in quantile models 17

For p > p0, we show that for all β = (βA,βAc) ∈ Vp(β
0) such that ‖βA − β0

A‖ = O
(√

p
n

)
and for

all constant C ∈ (0, B), we have

Qn(βA,0p−p0) = min
‖βAc‖≤C

√
p

n

Qn(βA,βAc), (31)

with a probability tending to one, as sample size n → ∞.
Let us consider the parameter set Wn ≡

{
β ∈ Vp(β

0); ‖βAc‖ > 0
}
.

We show that P[β̂
∗
n ∈ Wn] → 0, as n → ∞. For this, we firstly consider two parameter vectors

β = (βA,βAc) ∈ Wn and β(1) = (β
(1)
A ,β

(1)
Ac) ∈ Vp(β

0), such that β
(1)
A = βA and β

(1)
Ac = 0d−d0 .

Let us take the difference of the objective random process for the two parameter vectors. We denote
this difference Dn(β,β

(1)):

Dn(β,β
(1)) ≡ Qn(β)−Qn(β

(1))

= n−1
∑n

i=1

[
ρτ (Yi − X

t
iβ)− ρτ (Yi − X

t
iβ

(1))
]
+
∑p

j=p0+1 λnω̂n;j‖βj‖.
(32)

From Knight (1998), we have the following identity, for any x, y ∈ R:

ρτ (x− y)− ρτ (x) = y(11x≤0 − τ) +

∫ y

0

(11x≤t − 11x≤0)dt.

Using this relation for the first sum of (32), we obtain:

1

n

n∑

i=1

[
ρτ (Yi − X

t
iβ)− ρτ (Yi − X

t
iβ

(1))
]
=

1

n
(β − β(1))t

n∑

i=1

Xi[11Yi−Xt
i
β(1)≤0 − τ ]

+
1

n

n∑

i=1

∫ X
t
i(β−β(1))

0

[11Yi−Xt
i
β(1)≤t − 11Yi−Xt

i
β(1)≤0]dt ≡ T1n + T2n.

(33)

For T1n, since the density f is bounded in a neighbourhood of 0, we have, by assumption (A5),
that:

IE[T1n] = (β−β(1))t
1

n

n∑

i=1

Xi[F (Xt
i(β

(1)−β0))−F (0)] = (β−β(1))t
f(0)

n

n∑

i=1

XiX
t
i(β

0−β(1))(1+o(1)).

Then, |IE[T1n]| ≤ ‖β − β(1)‖ ·
∥∥n−1

∑n
i=1 XiX

t
i

∥∥ · ‖β0 − β(1)‖f(0)(1 + o(1)). Since the matrix
n−1

∑n
i=1 XiX

t
i is Hermitian, we have, taking into account assumption (A4), that n−1 ‖∑n

i=1 XiX
t
i‖

= λmax(n
−1
∑n

i=1 XiX
t
i) ≤ M0. Hence, we have |IE[T1n]| ≤ M0f(0)‖β−β(1)‖·‖β0−β(1)‖. Therefore

IE[T1n] = O(‖β − β(1)‖2). By calculations analogous to IE[T1n], using independence of (εi)16i6n,

we have that IE[T 2
1n] = Cn−1‖β − β(1)‖3 → 0, for n → ∞. Since V ar[T1n] ≤ IE[T 2

1n], using the
Bienaymé-Tchebychev inequality, we have:

T1n = C‖β − β̃‖2(1 + oP(1)). (34)

Consider now T2n of relation (33), which can be written as:

T2n = n−1
n∑

i=1

∫
X

t
i(β−β(1))

0

[11εi≤t−Xt
i
(β0−β(1)) − 11εi≤−Xt

i
(β0−β(1))]dt.
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Taking into account that β ∈ Vp(β
0
n), together with assumptions (A3), (A5), we get IE[T2n] =

n−1
∑n

i=1

∫ X
t
i(β−β(1))

0 [F (t−X
t
i(β

0−β
(1)))−F (−X

t
i(β

0−β
(1)))]dt = n−1

∑n
i=1

∫ X
t
i(β−β(1))

0 [tf(Xt
i(β

(1)

−β0)) + o(t)]dt.

By the proof of Lemma 1, assumptions (A3), (A5), we obtain that f(Xt
i(β

(1) −β0)) is bounded by
a constant C > 0. Thus, as for T1n, using assumption (A4) and the fact that n−1

∑n
i=1 ‖Xi‖2 −

tr
(
n−1

∑n
i=1 XiX

t
i

)
−→
n→∞

0, we have |IE[T2n]| ≤ Cn−1
∑n

i=1 ‖Xi‖2‖β−β(1)‖·‖β(1)−β0‖+o
(
n−1

∑n
i=1

X
t
i(β − β(1))

)
= C‖β − β(1)‖2. We show similarly that IE[T 2

2n] = Cn−1‖β − β(1)‖3. Then, by the
Bienaymé-Tchebychev inequality, we get:

T2n = C‖β − β(1)‖2(1 + oP(1)). (35)

Hence, by relations (34), (35), we obtain

T1n + T2n = C‖β − β(1)‖2(1 + oP(1)). (36)

This last relation together with relations (33), (36), give for relation (32):

Dn(β,β
(1)) = C‖β − β(1)‖2(1 + oP(1)) +

p∑

j=p0+1

λnω̂n;j‖βj‖.

On the other hand, by Lemma 1, we have

ω̂n;j =
1

‖β̃n;j‖γ
=

1

‖β̃n;j − β0
j‖γ

= OP

(( p
n

)−γ/2
)

and moreover for all j ≥ p0 + 1, since β ∈ Wn ⊆ Vp(β
0) we have 0 < ‖βj‖ = O

(√
p
n

)
. Then

p∑

j=p0+1

λnω̂n;j‖βj‖ =

p∑

j=p0+1

λnOP

(( p
n

)(1−γ)/2
)
.

Thus
Dn(β,β

(1))

‖β − β(1)‖
≥ C‖β − β(1)‖(1 + oP(1)) +

p∑

j=p0+1

λnOP

(( p
n

)−γ/2
)
.

We have that ‖β−β(1)‖ = O
((

p
n

)1/2)
. Since p/n = O(nc−1), under the assumption that λnn

(1−c)(1+γ)/2 →
∞, as n → ∞, and p > p0, we have

Dn(β,β
(1))

‖β − β(1)‖
≥ λnOP

(
nγ(1−c)/2

)
. (37)

To finish the proof of relation (31), consider now other two parameter vectors: β0 the true value

and β(1) a parameter such that β(1) ≡ (β
(1)
A ,β

(1)
Ac), β

(1)
A = βA, β

(1)
Ac = β0

Ac = 0d−d0. We obtain as
for (36) that:

Dn(β
0,β(1)) = n−1

n∑

i=1

[
ρτ (Yi − X

t
iβ

0)− ρτ (Yi − X
t
iβ

(1))
]
= C‖(β0 − β(1))A‖2(1 + oP(1)).
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Then

Dn(β
0,β(1))

‖β0 − β(1)‖
= C‖(β0 − β(1))A‖(1 + oP(1)) = OP

(( p
n

)1/2)
= OP

(
n(c−1)/2

)
. (38)

Since λnn
(1−c)(1+γ)/2 → ∞ as n → ∞, we have that (37) is much bigger than (38), for n large

enough. Then, relation (31) follows.
To finish the proof of (i), we will show that

lim
n→∞

P

[
min
j∈A

‖β̂∗
n;j‖ > 0

]
= 1. (39)

With probability 1, we have that: minj∈A ‖β̂∗
n;j‖ ≥ minj∈A ‖β0

j‖−maxj∈A ‖β̂∗
n;j−β

0
j‖. By Theorem

3 and assumption (A8), we have,

lim
n→∞

P

[
n−α min

j∈A
‖β̂∗

n;j‖ ≥ M

2

]
= 1,

which implies

lim
n→∞

P

[
n−α min

j∈A
‖β̂∗

n;j‖ > 0

]
= 1,

from which relation (39) follows. Relations (39) and (31) imply (i).

(ii) Taking into account claim (i) and assumption (A7), the estimator β̂
∗
n can be written with a

probability converging to 1 as β̂
∗
n = β0+

√
p
nδ, with δ = (δA, δAc), δAc = 0r−r0, ‖δA‖ ≤ C. Then

Qn

(
β0 +

√
p

n
δ

)
−Qn(β

0) =
1

n

n∑

i=1

[
ρτ

(
Yi − X

t
i(β

0 +

√
p

n
δ)

)
− ρτ (εi)

]
+ P , (40)

with P ≡∑p0

j=1 λnω̂n;j

[
‖βj‖ − ‖β0

j‖
]
.

For all j ∈ {1, · · · , p0} we have
∣∣∣‖β̂

∗
n;j‖ − ‖β0

j‖
∣∣∣ = C

√
p
nδ

t
jβ

0
j , with a probability converging to 1.

On the other hand, using assumption (A8) and Lemma 1 we have for the quantile estimators

‖β̃n;j‖ = ‖β0
j‖+OP

(√
p

n

)
≥ h0 +OP

(
n−(1−c)/2

)
= O(nα) +OP

(
n−(1−c)/2

)
= O(nα).

Thus, we have ω̂n;j ≤ OP(n
−αγ), for all j ∈ A. Then, for the the second term on the right hand

side of (40), we have with a probability converging to one:

|P| =
p0∑

j=1

λnω̂n;j

∣∣∣∣‖β
0
j +

√
p

n
δj‖ − ‖β0

j‖
∣∣∣∣ ≤ Cn−αγ

p0∑

j=1

λn

√
p

n

∣∣δt
jβ

0
j

∣∣

≤ Cn−αγ

√
p

n
λn

p0∑

j=1

‖δj‖ · ‖β0
j‖ ≤ C

√
p

n
r0λnn

−αγ = Cr0λnn
(c−1)/2−αγ . (41)

We study now the first term of the right hand side of (40), which can be written as:

1

n

n∑

i=1

[
ρτ

(
Yi − X

t
i

(
β0 +

√
p

n
δ

))
− ρτ (εi)

]
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=
1

n

√
p

n

n∑

i=1

X
t
iδ[11ε≤0 − τ ] +

1

n

n∑

i=1

∫ √
p

n
X

t
iδ

0

[11εi≤t − 11εi≤0]dt ≡ J1 + J2.

Since IE[J1] = 0, using assumption (A5) and the Cauchy-Schwarz inequality, we have:

V ar[J1] ≤ IE[J2
1 ] =

1

n2

p

n
τ(1−τ)

n∑

i=1

(Xt
iδ)

2 ≤ p

n3
τ(1−τ)

n∑

i=1

‖Xi,A‖2‖δA‖2 ≤ C
p

n3
n max

1≤i≤n
‖Xi,A‖2 −→

n→∞
0.

Using assumption (A2), we have for the expectation of J2:

IE[J2] =
1

n

∫ √
p

n
X

t
iδ

0

(tf(0) + o(t2))dt =
f(0)

2

p

n
δt

1

n

n∑

i=1

XiX
t
iδ(1 + o(1)). (42)

Using assumption (A4) and relation (24), we have that

f(0)pn−1‖δ‖22λmin

(
n−1

n∑

i=1

XiX
t
i

)
≤ IE[J2] ≤ f(0)pn−1‖δ‖22λmax

(
n−1

n∑

i=1

XiX
t
i

)
.

Taking into account the fact that ‖δ‖22 = ‖δA‖22 ≤ C, we have:

IE[J2] = Cf(0)
p

n
. (43)

Similarly we obtain V ar[J2] = O
(

1
n

(
p
n

)3/2)→ 0, as n → ∞.

But IE[J2] = O
(
nc−1

)
and by assumption (A7), together with relation (41), we have |P| ≤

OP

(
λnn

cn(c−1)/2−αγ
)
= OP

(
λnn

(3c−1)/2−αγ
)
. Then |P|

IE[J2]
= OP

(
λnn

(c+1)/2−αγ
)
→ 0 and thus

IE[J2] ≫ |P|.
Hence, minimizing (40) amounts to minimizing J1 + J2, with respect to

√
p
nδ. Using relation (42),

we obtain:

1

n

n∑

i=1

[ρτ (Yi−X
t
i(β

0
n+

√
p

n
δ))−ρτ (εi)] =

√
p
n

n

n∑

i=1

X
t
i,AδA[11εi<0−τ ]+

f(0)

2

p

n
δ
t
AΥn,AδA(1+oP(1)).

The minimizer of the right hand side of the last equation is:
√

p

n
δA = − 1

n

1

f(0)
Υ−1

n,A
( n∑

i=1

Xi,A(11εi≤0 − τ)
)
. (44)

For studying (44), let us consider the following independent random variable sequence, for i =
1, · · · , n,

Wi ≡ (f(0))−1utΥ−1
n,AXiA(11εi≤0 − τ),

with u a vector of dimension r0, such that ‖u‖2 = 1. We have that IE[Wi] = 0 and
∑n

i=1 V ar[Wi] =
nτ(1− τ)(f(0))−2utΥ−1

n,Au. Then, by CLT for independent random variable sequences (Wi)16i6n,
we have

√
nf(0)

ut(β̂A − β
0
A)√

τ(1 − τ)(utΥ−1
n,Au)

L−→
n→∞

N (0, 1). (45)

Claim (ii) results by taking into account of the fact that β̂A−β0
A =

√
p
nδA, together with relations

(44), (45).
�
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