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Abstract A non parametric method based on the empirical likelihood is proposed for detecting the change
in the coefficients of high-dimensional linear model where the number of model variables may increase as
the sample size increases. This amounts to testing the null hypothesis of no change against the alternative
of one change in the regression coefficients. Based on the theoretical asymptotic behaviour of the empirical
likelihood ratio statistic, we propose, for a fixed design, a simpler test statistic, easier to use in practice.
The asymptotic normality of the proposed test statistic under the null hypothesis is proved, a result which
is different from the χ2 law for a model with a fixed variable number. Under alternative hypothesis, the test
statistic diverges. We can then find the asymptotic confidence region for the difference of parameters of the
two phases. Some Monte-Carlo simulations study the behaviour of the proposed test statistic.

Keywords Two-sample · high-dimension · linear model · empirical likelihood test.

1 Introduction

The technology development and fast numerical techniques make possible to consider and study statistical
models with a large number of variables. High-dimensional model refers to a model whose the number p of
explanatory variables increases to infinity as the number n of observations converges to infinity. When p
diverges, traditional statistical methods may not work with this kind of growth dimensionality.
Most of the literature works on high-dimensional model utilize the LASSO (Least Absolute Shrinkage and

Selection Operator) type methods, in order to automatically select the significant variables. The principle
of these methods, introduced by Tibshirani (1996), is to optimize a penalized process, more precisely, a pro-
cess with a L1-type penalty. If the model contains outliers, the parameter estimators by the least squares
method with LASSO penalty have a large error. An alternative method is then the penalized quantile
method. Thereby, Dicker et al. (2013) consider a quantile model with seamless-L0 penalty when the num-
ber p of explanatory variables is such that p → ∞, p/n → 0 as n → ∞. For a general quantile regression,
Wu and Liu (2009) propose the SCAD penalty, while, in Zou and Yuan (2008), a composite quantile regres-
sion is considered with an adaptive LASSO penalty. The case p → ∞ is also considered in Fan and Peng
(2004) for a non-concave penalized likelihood method, when p5/n → ∞. Concerning the group selection
methods for high-dimensional models, the readers find in Huang et al. (2012) a review of methods.
All these methods are based first on the principle of selecting (automatically) the significant variables.
Then, the dependent variable is modeled only as a function of the significant variables, in order to have
more accurate parameter estimators and a better adjustment for the dependent variable.
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If the goal is to have the most accurate prediction and also robust, in the case of a model with outliers, one
possibility is to consider the empirical likelihood (EL) method. But, for this type of method, in literature,
most papers are devoted to the case of fixed p. For a high-dimensional linear regression model, we can refer
first to the paper of Guo et al (2013), when the design is deterministic. High-dimensional data are also
studied by Liu et al. (2013), where EL method is considered for a sequence of i.i.d. random vectors with
dimension p, when p → ∞ as n → ∞.
In this paper, we are interested by a change-point model, that is, a model which changes at some mo-

ment. The number p of explanatory variables varies with the number n of observations and p can converge
to infinity if n → ∞.
Since statistical techniques in high-dimension are fairly recent, there are not many papers in literature

that address the change-point problem in a high-dimensional model. Lung-Yut-Fong et al. (2013) propose
an approach for detection of a change-point in high-volume network traffic. The asymptotic distribution
of the test statistic proposed in Lung-Yut-Fong et al. (2013), under the null hypothesis that there is no
change-point, is the argsup of a Brownian Bridge. There are some papers where LASSO type methods
are used. Lee et al. (2015) consider a possible change-point in a high-dimensional regression with Gaussian
errors. The main result of the article is to show that the sparsity property is maintained, even if there is
a change in the model. There is no hypothesis test to decide the presence or absence of change in model.
In Ciuperca (2014), LASSO-type and adaptive LASSO estimators are studied, while in Ciuperca (2013)
quantile model with SCAD penalty is considered. These last two papers consider models with p fixed. In
order to choose the change-point number, a model selection criterion is also proposed by Ciuperca (2014).
To the authors’ knowledge, the EL technique has not yet been addressed in a high-dimensional two-sample

model, that makes the interest of this work. We study the asymptotic behaviour of the empirical likelihood
ratio test statistic when the design is deterministic.

We consider a first linear model:

Yi = Xt
iβ + εi, i = 1, · · · , n. (1.1)

Consider now a second linear model which changes at observation k. It is called two-phase model, or model
with one change-point:

Yi =

{
Xt

iβ + εi, 1 ≤ i ≤ k,
Xt

iβ2 + εi, k < i ≤ n,
(1.2)

where Xi is a p×1 vector of p explanatory variables, β and β2 are p×1 vectors of unknown parameters and
εi designates the model error. The parameter β of the first phase of (1.2) coincides with that of (1.1). For
models (1.1) and (1.2), Yi is observation i of the response variable. The errors εi are supposed independent
identically distributed (i.i.d), with mean zero and finite variance σ2.

We assume that the number p of explanatory variables Xi depends on the sample size n: p = pn, such
that pn → ∞ as n → ∞. The change-point k of (1.2) also depends on n. The change in model (1.2) takes
place far enough from the first observation and sufficiently previous to the last observation. So, we suppose
that limn→∞ k/n ∈ (0, 1).

In this paper, for given k, we use the empirical likelihood method to construct the confidence region for
β − β2, or equivalent to test the null hypothesis of no change in model (1.2). Under null hypothesis, the
model has the form (1.1), that is

H0 : β2 = β. (1.3)

The alternative hypothesis assumes that one change occurs in the regression parameters, that is

H1 : β2 6= β. (1.4)

The paper is organized as follows. In Section 2 we first present the EL method for the two-sample model.
Some notations used throughout the paper are defined and needed assumptions for the theoretical study
are also announced. In Section 3, we construct an empirical likelihood ratio test statistic and we study its
asymptotic behaviour. The asymptotic distribution under H0 of the test statistic is obtained, while, under
H1, this statistic diverges. Next, in Section 4, we analyse the coverage accuracy and the empirical power by
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means of simulations, which confirm the performance of proposed test. A new critical value is also proposed
in order to improve the coverage rate. The proofs of the main results are given in Appendix (Section 5)
followed by some Lemmas and their proofs.

2 Preliminares

In this section, we introduce the EL method for the two-sample model. Notations and assumptions are
also given.

Under null hypothesis H0, that is model (1.1), let β0 denote the true value of the parameter β. Under
alternative hypothesis H1, that is model (1.2), the true values of β, β2, respectively, are β

0, β0
2.

In order to define the profile empirical likelihood (under H0 and under H1), we introduce the following
random p-vector, for all β ∈ IRp and i = 1, · · · , n:

zi(β) ≡ Xi(Yi −Xt
iβ).

Consider also the vector
z0i ≡ Xiεi.

We remark that, under the hypothesis H0, we have z0i = zi(β0), for all i = 1, · · · , n and IE[z0i ] = 0p. On
the other hand, for fixed design (Xi)1≤i≤n, the random variables z0i are independent but not identically
distributed.
On the change-point, we consider the notation θnk = k/n. Thus, in view of the remark made in Introduction,
we assume that θnk → θ0 ∈ (0, 1) as n → ∞.

For the dependent variable Yi of model (1.2), let us consider the probability to observe the value yi
(respectively yj) : qi ≡ IP [Yi = yi], for i = 1, . . . , k and qj ≡ IP [Yj = yj ], for j = k+1, · · · , n. Obviously, these
probabilities satisfy the relations

∑k
i=1 qi = 1 and

∑n
j=k+1 qj = 1. Corresponding to these probabilities, we

define the probability vectors (q1, · · · , qk) and (qk+1, · · · , qn).
Under hypothesis H0 given by (1.3), the profile empirical likelihood for β is

Rnk(β) ≡ sup
(q1,··· ,qk)

sup
(qk+1,··· ,qn)

{ k∏

i=1

qi

n∏

j=k+1

qj ;

k∑

i=1

qi = 1,

n∑

j=k+1

qj = 1,

k∑

i=1

qizi(β) =

n∑

j=k+1

qjzj(β) = 0p

}
,

with 0p the p-vector with all components zero.
Similarly, under hypothesis H1 given by (1.4), the profile empirical likelihood is

Rnk(β,β2) ≡ sup
(q1,··· ,qk)

sup
(qk+1,··· ,qn)

{ k∏

i=1

qi

n∏

j=k+1

qj ;

k∑

i=1

qi = 1,

n∑

j=k+1

qj = 1,

k∑

i=1

qizi(β) = 0p,

n∑

j=k+1

qjzj(β2) = 0p

}
.

Then, using an idea similar to the maximum likelihood test for testing H0 against H1, we consider the
profile empirical likelihood ratio Rnk(β)/Rnk(β,β2).
Since Rnk(β,β2) = k−k(n− k)−(n−k), we have that the corresponding empirical log-likelihood ratio is

−2 sup
(q1,··· ,qk)

sup
(qk+1,··· ,qn)

{ k∑

i=1

log(kqi)+

n∑

j=k+1

log((n−k)qj);

k∑

i=1

qi =

n∑

j=k+1

qj = 1,

k∑

i=1

qizi(β) =

n∑

j=k+1

qjzj(β) = 0p

}
.

Applying the Lagrange multiplier method, the optimal probabilities qi and qj are

qi =
1

k + nλt
1zi(β)

, qj =
1

n− k − nλt
2zj(β)

, (2.1)

where λ1,λ2 ∈ IRp are the Lagrange multipliers. Consequently, the corresponding empirical log-likelihood
function can be written as

2

k∑

i=1

log
(
1 +

n

k
λ
t
1zi(β)

)
+ 2

n∑

j=k+1

log
(
1−

n

n− k
λ
t
2zj(β)

)
. (2.2)
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Taking into account relation (2.1), the derivative with respect to β of (2.2) is
∑k

i=1 qiXiX
t
iλ1−

∑n
j=k+1 qjXjX

t
jλ2 =

0p. We can apply Lemma 4 of Guo et al (2013) on each phase of model, that implies that ‖λ1‖ =
OIP (p

1/2k−1/2) and ‖λ2‖ = OIP (p
1/2(n − k)−1/2). Then, the probabilities qi and qj of (2.1) are approxi-

matively k−1 and (n− k)−1, respectively. Thus, we can restrict λ1 and λ2 such that

k−1
k∑

i=1

XiX
t
iλ1 = (n− k)−1

n∑

j=k+1

XjX
t
jλ2. (2.3)

If the symmetric matrices k−1 ∑k
i=1XiX

t
i and (n − k)−1 ∑n

j=k+1 XjX
t
j converge, as n → ∞, to two

strictly positive definite matrices, then the relation (2.3) can be written λ1 =
(
k−1 ∑k

i=1 XiX
t
i

)−1(
(n −

k)−1 ∑n
j=k+1 XjX

t
j

)
λ2. Noting by λ̃2 ≡

(
k−1 ∑k

i=1 XiX
t
i

)−1(
(n − k)−1 ∑n

j=k+1 XjX
t
j

)
λ2, we have the

new Lagrange multipliers such that λ1 = λ̃2. For the sake of readability, we denote λ̃2 by λ2.

With this remark, we will restrict the study to a particular case, when λ1 = λ2 = λ. Considering this
constraint, instead of statistic (2.2) we consider the following particular empirical likelihood ratio (ELR)
statistic

ELnk(β) ≡ 2

k∑

i=1

log
(
1 +

n

k
λ
tzi(β)

)
+ 2

n∑

j=k+1

log
(
1−

n

n− k
λ
tzj(β)

)
, (2.4)

where the Lagrange multiplier λ ∈ IRp satisfies

k∑

i=1

zi(β)

k/n+ λtzi(β)
−

n∑

j=k+1

zj(β)

1− k/n− λtzj(β)
= 0p. (2.5)

2.1 Notations

We provide a brief summary of notations used in the paper.

For exposition convenience, we define some general notation. All vectors are column and vt denotes
the transposed of v. All vectors and matrices are in bold. For a vector v, by ‖v‖ we denote its Eu-
clidean norm and by ‖v‖1 its L1-norm. For a symmetric p-square matrix A = (aij), let us denote by
γ1(A) ≥ γ2(A) ≥ . . . ≥ γp(A) the eigenvalues and tr(A) as the trace operator of the matrix A. Consider
also the following notation Mx(A) = max1≤i,j≤p |aij |. We denote by ‖A‖1 = maxj=1,··· ,p(

∑p
i=1 |aij |), the

subordinate norm to the vector norm ‖.‖1.
All throughout the paper, C denotes a generic constant which may be different from line to line and even
from formula to formula and whose value is not of interest.
Moreover, 0p denote the p−vector with all components zero.

At the beginning of this section, the notation θnk ≡ k/n was introduced. To simplify notations, we will
use the notation θ instead θnk.

For β0, the true value of the parameter β on the phase 1, · · · , k, and the test value under H0, we define
the following p-square matrix

Sn(β
0) ≡

1

nθ2

k∑

i=1

zi(β
0)zti(β

0) +
1

n(1− θ)2

n∑

j=k+1

zj(β
0)ztj(β

0) (2.6)

and the following p-vector

ψn(β
0) ≡

1

nθ

k∑

i=1

zi(β
0)−

1

n(1− θ)

n∑

j=k+1

zj(β
0). (2.7)
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Under null hypothesis, for the true value β0 of β, the mean of the random matrix Sn(β0) is the following
p-square matrix

V0
n ≡

1

nθ2

k∑

i=1

V0
(i) +

1

n(1− θ)2

n∑

j=k+1

V0
(j), (2.8)

where, for i = 1, . . . , n

V0
(i) ≡ Var (z0i ) = σ2XiX

t
i. (2.9)

For i = 1, · · · , n, let us also consider the following random vector

w0
i ≡ (V0

n)
−1/2zi(β

0).

Corresponding to the components of w0
i = (w0

i,1, . . . , w
0
i,p), we consider for i = 1, . . . , n, for r ∈ N

∗,
t1, · · · , tr ∈ {1, · · · , p}, the following scalar

αt1t2···tr ≡
1

nθr

k∑

i=1

IE
[
w0

i,t1w
0
i,t2 · · ·w

0
i,tr

]
+

1

n(θ − 1)r

n∑

j=k+1

IE
[
w0

j,t1w
0
j,t2 · · ·w

0
j,tr

]
(2.10)

and the following random variable

ωt1t2···tr ≡
1

nθr

k∑

i=1

w0
i,t1w

0
i,t2 · · ·w

0
i,tr +

1

n(θ − 1)r

n∑

j=k+1

w0
j,t1w

0
j,t2 · · ·w

0
j,tr − αt1t2···tr , (2.11)

where w0
i,tr is the r-th component of w0

i . In particular, for all t1, t2 ∈ {1, · · · , p}, αt1 = 0, αt1t2 = δt1t2 is
the Kronecker delta, that is αt1t2 = 1 if t1 = t2, and 0 otherwise.

2.2 Assumptions

We now state the assumptions on the design, on the errors, on the number p of the explanatory variables
and on the change-point location. These assumptions are needed in order to keep the properties obtained
for EL statistic in a high-dimensional model, without change-point.
For assumptions (A3)-(A6) the constant q is such that q ≥ 4.

(A1) There exist positive constants C0, C1 > 0, such that 0 < C0 < infn γ1(V
0
n) ≤ supn γ1(V

0
n) < C1 < ∞.

(A2) IE(ε41) < C2 for some C2 > 0 and for all n.
(A3) p−1 ∑p

s=1 |Xi,s|
q < C3, 1 ≤ i ≤ n, for some C3 > 0, and q ≥ 4;

(A4) IE|ǫ1|
2q < C4, for some C4 > 0.

(A5) p k(2−q)/(2q) → 0 and p (n− k)(2−q)/(2q) → 0, as n → ∞.
(A6) p2+4/q k−1 → 0 and p2+4/q (n− k)−1 → 0, as n → ∞.
(A7)

∑p
r,s=1 α

rrss = O(p2).

(A8)
∑p

r,s,u=1 α
rsuαrsu = O(p5/2) and

∑p
r,s,u=1 α

rssαsuu = O(p5/2).

(A9) For all i = 1, · · · , n, for l ∈ N
∗ , j1, · · · , jl ∈ {1, · · · , p} , and whenever

∑l
i=1 di ≤ 6, there exists a

positive absolute constant C5 < ∞, then IE(wd1

i,j1
· · ·wdl

i,jl
) ≤ C5.

Assumptions (A3) and (A6) guarantee that the eigenvalues of S0
n are close to those of V0

n (see Lemma
2). Assumption (A1) implies that V0

n is uniformly nonsingular and bounded, for large n. Then, for n large
enough, with probability close to one, S0

n is nonsingular and 0 < C0 < γp(S
0
n) ≤ γ1(S

0
n) < C1 < ∞. Assump-

tion (A3) is also assumed by Guo et al (2013), Hjort et al. (2009), Liu et al. (2013) for high-dimensional
model without change-point. Assumption (A4) together with (A3) and (A6) imply sup1≤i≤n |λtz0i | = op(1),
which leads to Taylor expansions of (2.4) and (2.5) (see Lemma 6). Assumptions (A1), (A2), (A4) are also
used by Guo et al (2013) for linear models without change-point with random design. Same assumption
(A1) is requested in Zi et al. (2012) for a two-sample model with fixed p. Assumptions (A5)-(A9) are also
assumed by Guo et al (2013), Liu et al. (2013), in order to have for the asymptotic normality of the ELR
statistic.
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3 Main Results

In this section, we present the main results of this paper. The asymptotic distribution of ELR test statistic
under hypothesis H0 will allow to build the asymptotic confidence region for the difference of the parameters
of the two phases of model. We can also test if the models changes after observation k. In comparison to the
obtained results for fixed p (see Liu et al. (2008), Zi et al. (2012) for linear model, Ciuperca and Salloum
(2015) for nonlinear model) where the asymptotic law is the χ2 distribution with p degrees of freedom, in
the case presented here, the test statistic is different and it has a standard normal asymptotic distribution.
In order to find this asymptotic distribution, we first need some intermediate results for studying the asymp-
totic behaviour of the ELR statistic.
We emphasize that the presence of the break point k complicates the study and leads to a different approach
in respect to a model without change-point.

Note that under the hypothesis H0, we have: zi(β0) = z0i = Xiεi, while under H1, the vector zi(β0),
for i = k + 1, · · · , n becomes

zi(β
0) = XiX

t
i(β

0
2 − β

0)− z0i . (3.1)

When H0 is true, we denote by S0
n the matrix Sn(β0):

S0
n ≡

1

nθ2

k∑

i=1

z0i z
0t
i +

1

n(1− θ)2

n∑

j=k+1

z0jz
0t
j (3.2)

and by ψ0
n the vector ψn(β

0):

ψ
0
n ≡

1

nθ

k∑

i=1

z0i −
1

n(1− θ)

n∑

j=k+1

z0j . (3.3)

The Lagrange multiplier λ is a key element in any empirical likelihood formulation. The first result
concerns the convergence rate to zero of λ defined in (2.5). When p is fixed, Zi et al. (2012) showed that
‖λ‖ = OIP (n

−1/2). When p is growing along with n, the above rate for ‖λ‖ is no longer valid as shown by
the following proposition. In the proof we use Lemma 2, Lemma 3 and Lemma 4.

Proposition 1 Suppose that assumptions (A1), (A3)-(A6) are satisfied. Then, under hypothesis H0, the
Lagrange multiplier λ satisfies ‖λ‖ = OIP (p

1/2n−1/2).

Accordingly to this Proposition, by assumption (A6), we have that ‖λ‖
IP
−→0, as n → ∞. More precisely,

the Lagrange multiplier λ has the following approximate form given by Proposition 2. The proof, given in
Appendix, is obtained by combining Lemma 4, Lemma 6 and Lemma 7. The p-square matrix V0

n is defined
by (2.8) and the p-vector ψ0

n by (3.3).

Proposition 2 If assumptions (A1), (A3)-(A6) are satisfied, then, under the null hypothesis H0, we have
λ = (V0

n)
−1ψ0

n(1 + oIP (1)).

We prove now the following two propositions, all satisfied under hypothesis H0. They give two ap-
proximations for the ELR statistic ELnk(β0), defined by (2.4), approximations which will allow to find its
asymptotic distribution.
In the proof of the following Proposition are used Lemma 5, Lemma 6, Proposition 2 and Lemma 7.

Proposition 3 Suppose that assumptions (A1)-(A8) are satisfied. Then, under the null hypothesis H0, we
have

ELnk(β
0) = nψ0t

n (S0
n)

−1
ψ

0
n + oIP (p

1/2).

For the proof of Proposition 4, given in Appendix, we use Lemma 4, Lemma 8, Proposition 2 and Proposition
3.

Proposition 4 Suppose that assumptions (A1), (A3), (A4), (A6) and (A7) are fulfilled. If the hypothesis
H0 is true, then we have

ELn(β
0) = nψ0t

n (V0
n)

−1
ψ

0
n + oIP (p1/2).
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The following theorem establishes the asymptotic normality of the ELR test statistic, when dimension p
of the explanatory variables increases to infinity as n → ∞. Its proof, given in Appendix, is very technical and
moreover the change-point presence in the model occurs in an essential way. Proposition 3 and Proposition
4 are used in the proof. We note that the variance of standardization ∆2

n depends localisation of the change
in the interval [1 : n].

Theorem 1 Under null hypothesis H0, if assumptions (A1)-(A9) are satisfied and p = o(n1/3), then
(i)

nψ0t
n (V0

n)
−1ψ0

n − p

∆n/n

L
−→
n→∞

N (0, 1), (3.4)

(ii)
ELnk(β

0)− p

∆n/n
L

−→
n→∞

N (0, 1),

where ∆2
n =

∑n
i=1 σ

2
i , with σ2

1 = θ−4
(
(Xt

1(V
0
n)

−1X1)
2IE[ε41]− [tr((V0

n)
−1V0

(1))]
2
)
and:

- for i = 2, · · · , k + 1,

σ2
i =

4

θ4

i−1∑

l=1

tr
(
(V0

n)
−1V0

(i)(V
0
n)

−1V0
(l)

)
+

(Xt
i(V

0
n)

−1Xi)
2IE[ε41]− [tr((V0

n)
−1V0

(i))]
2

θ4
,

- for i = k + 2, · · · , n,

σ2
i =

4

θ2(1− θ)2

k∑

l=1

tr
(
(V0

n)
−1V0

(i)(V
0
n)

−1V0
(l)

)
+

4

(1− θ)4

i−1∑

l=k+1

tr
(
(V0

n)
−1V0

(i)(V
0
n)

−1V0
(l)

)

+
(Xt

i(V
0
n)

−1Xi)
2IE[ε41]− [tr((V0

n)
−1V0

(i))]
2

(1− θ)4
.

The following result is an immediate corollary of Theorem 1.

Corollary 1 Testing the null hypothesis H0 : β = β2 = β0 against the alternative hypothesis H1 : β =
β0, β2 6= β0, is equivalent to constructing the confidence regions for γ = β0 − β0

2, or to testing the null
hypothesis H′

0 : γ = 0p. Then, based to Theorem 1, in order to test H0 against H1, we consider the following
asymptotic test statistic

Z(β0) ≡
nψt

n(β
0)
(
V0

n

)−1
ψn(β

0)− p

∆n/n
. (3.5)

Note that ψn(β
0) through zi(β0), given by relation (3.1), for i = k+1, · · · , n, depends of γ = β0−β0

2.

The asymptotic behaviour under hypothesis H1 of the test statistic Z(β0) is given by the following
theorem. We show that Z(β0) diverges under alternative hypothesis.

Theorem 2 Under alternative hypothesis H1, if assumptions (A1)-(A9) are satisfied and p = o(n1/3), then

|Z(β0)|
IP
−→
n→∞

∞.

Theorem 1 and Theorem 2 allow to build the asymptotic confidence region for the parameter γ = β0−β2.

Corollary 2 The α-level asymptotic confidence region for γ is

R1−α/2 =
{
γ :

∣∣Z(β0)
∣∣ < c1−α/2

}
, (3.6)

where c1−α/2 is the quantile of the standard normal distribution.

For simulations, in order to calculate R1−α/2, the matrix V0
n is firstly calculated by relation (2.8). Once

the model has been generated, we calculate z0i and then zi(β0) by relation (3.1). Finally, we calculate
ψn(β

0) by (2.7), ∆n by Theorem 1 and the test statistic Z(β0) by (3.5). For M Monte Carlo replications
of the model, the coverage rate (CR), is the number of times when |Z(β0)| is less than c1−α/2, divided by
M .
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For applications on real data, we will test model (1.1) against model (1.2). For these models, we know n
values for the response variable Y and for the p− 1 explanatory variables X2, · · · , Xp. The point k, where
we want to test if there is a change, is known, while the values of β0 on the first phase can be unknown.
If β0 is unknown, then it is estimated by a convergent estimator on the observations i = 1, · · · , k, for
example by LS method or quantile method, depending on the distribution of Y . Once we dispose of an
estimator β̂k for β0, the variance σ2 of ε is estimated afterwards by a convergent estimator, for instance

σ̂2
k = (k − p)−1 ∑k

i=1(Yi − Xt
iβ̂k)

2. We calculate thereby V0
(i) = σ̂2

kXiX
t
i, for any i = 1, · · · , n and then

V0
n by (2.8). For any i = 1, · · · , n we calculate zi(β̂k) = Xi(Yi − Xt

iβ̂k), which will allow us to calculate

the vector ψn(β̂k) of relation (2.7). With all of these elements in place, we can calculate the value of the

statistic Z(β̂k) =
(
nψt

n(β̂k)
(
V0

n

)−1
ψn(β̂k)− p

)
(∆n/n)

−1, using for ∆n the relation given in Theorem 1.

For a given size α ∈ (0, 1), if the value of |Z(β̂k)| is less than c1−α/2, then hypothesis H0 is accepted, that
is to say that the model does not change after observation k, otherwise hypothesis H1 is accepted.
If β0 is known, we can consider as an estimator for σ2: σ̂2

k = (k−p)−1 ∑k
i=1(Yi−Xt

iβ
0)2. For any i = 1, · · · , n

we calculate zi(β0) = Xi(Yi −Xt
iβ

0) and afterwards ψn(β
0) by relation (2.7). Finally, the absolute value

of Z(β0) will be compared with c1−α/2.

Remark 1 Compared to Liu et al. (2008), where, for fixed p, a test statistic is proposed for testing the
presence of the change-point, by maximizing ELR in respect to β and λ, in the present work we fix the
parameter on the first phase and we test whether the parameter of the second phase is the same. In Liu et al.
(2008), the system of equations in λ and β of the score functions must be solved, which can be numerically
quite tedious. In this paper, apart from the fact that we consider p → ∞, using theoretical properties for the
Lagrange multiplier λ, we propose a simpler form for ELR statistic, easier to use in practice. Parameter
β0, if it is unknown, can be estimated on the observations 1, · · · , k by a simpler computational method, in
order to obtain β̂k a convergent estimator, i.e. ‖β̂k − β0‖ = oIP (1).

4 Simulation study

We now conduct simulation studies to evaluate, in terms of coverage accuracy and empirical power, the
test statistic specified by Theorem 1(ii), with ELnk(β

0) approximated by Proposition 4, ie Z(β0) given by
relation (3.5). For these studies, we use Monte Carlo simulations. Throughout, we consider the size α = 0.05.
The p explanatory variables are generated as follows: X1 = 1 and (X2, · · · , Xp) ∼ Np−1(0p−1,Σ), with

the covariance matrix Σ = (ςhl), ςhl = 2−|h−l|, 1 ≤ h, l ≤ p − 1, the same matrix considered by Guo et al
(2013), for a model without change-point. In order to be in a fixed design, we consider the same realization
for (Xi)1≤i≤n for each Monte Carlo replication.
Concerning the coefficients β0 of the model, under H0, we take β0 = (β0

1 , β
0
2 , · · · , β

0
p) = (1, 2, · · · , p).

For model (1.2), under hypothesis H0 : β = β2 = β0, we first calculate the coverage rate (CR) based on
Corollary 2, for a given change-point k.
We consider different values for n and k and two different distributions for the errors (εi): standard normal
distribution N (0, 1) and ε ∼ Exp(1)− 1, where Exp(1) is the exponential distribution with mean 1.

4.1 Importance of assumptions (A5), (A6)

In this subsection we realise throughout 2000 Monte Carlo replications for studying the behaviour of the
test statistic behaviour, under null hypothesis and afterwards, when model has a change-point. Coverage
rate and empirical power are investigated. Values of n and k are n ∈ {20, 100, 200,400, 600,1000}, k ∈
{5, 25, 75, 280, 350}.

Analyse of coverage rate. The results are summarized in Table 1 where we give CR = 1 - empirical size,
based on Corollary 2, relation (3.5). For n and k fixed, the CRs decrease when p increases, this decreasing
trend being more pronounced in the exponential error case. We observe that whether for exponential errors
or for gaussian errors, if assumptions (A5), (A6) are not satisfied, then the CRs are well below 0.95. These
results are in accordance with those obtained by Guo et al (2013), for models without change-point, with
fixed design.
In order to confirm this supposition, in Table 2, the values of n and k are varied such that θ = k/n = 1/2
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Table 1 Coverage rates (CR) for Exponential and Gaussian errors.

Exponential errors Gaussian errors
n k p CR CR

20 5 2 0.94 0.96
3 0.92 0.95
5 0.91 0.92
7 0.77 0.87

100 25 2 0.94 0.95
10 0.88 0.94
20 0.71 0.84

200 75 2 0.93 0.94
10 0.89 0.93
20 0.77 0.94
50 0.73 0.85

400 280 2 0.92 0.91
10 0.87 0.88
20 0.79 0.86
50 0.75 0.84
100 0.60 0.83

600 350 2 0.94 0.92
10 0.92 0.93
20 0.86 0.87
50 0.85 0.88
100 0.78 0.84
200 0.66 0.84
300 0.54 0.70

1000 350 2 0.95 0.94
50 0.86 0.92
100 0.84 0.89
200 0.78 0.80
300 0.52 0.77

and p satisfies (A5), (A6). We obtain then that the CRs are larger than 0.90.
Analyse of power. Under H1, we consider β0

2 = 1 − β0. In the all considered cases, for n, k, p and ε in
Tables 1 and 2, we obtain that the empirical powers are equal to 1.

Table 2 Coverage rates (CR), by 2000 Monte Carlo replications, for Exponential and Gaussian errors, θ = 1/2.

Exponential errors Gaussian errors
n k p CR CR

20 10 2 0.92 0.96
100 50 4 0.93 0.94
200 100 5 0.96 0.97
400 200 10 0.90 0.94
600 300 20 0.90 0.92
800 400 20 0.93 0.93
800 400 30 0.90 0.91
2000 1000 30 0.91 0.91

4.2 CR’s improvement

In order to obtain more precise false probabilities, for fixed size α, we will calculate, by 10000 Monte
Carlo replications, the (1−α/2) and α/2 quantiles, denoted ĉ1, ĉ2, respectively, for test statistic Z(β0). We
consider the new critical value ĉ1−α/2 ≡ max(ĉ1, |ĉ2|). These new critical values, for p = 50, for different
values of n and k, for N (0, 1) and Exp(1)− 1 distribution errors, are given in Table 3. These values are not
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influenced by value of k, for fixed n. This is observed by calculating ĉ1−α/2 for k such that θ1 = k/n = 3/8

and afterwards we calculate the CRs, denoted ĈR, for another k such that θ2 = k/n = 5/8. We observe
that the values of ĉ1−α/2 are larger than the quantile of the standard normal distribution and ĉ1−α/2 are
larger for exponential errors than those for normal errors. On the other hand, the values of ĉ1−α/2 decrease
when n (and k) increases and they approach to quantile of N (0, 1).
In the same Table, are given empirical powers, denoted π̂, calculated for β0

2 = 1−β0 under H1, considering
ĉ1−α/2 as critical value. We obtain that all π̂ are equal to 1.

If under H1, only two components of β0 change: β0
2 is such that β0

2,j = β0
j for all j ∈ {1, · · · , p} \ {3, 30},

β0
2,3 = β0

3 +1, β0
2,30 = β0

30+1, we always get π̂ = 1. Here we have denoted by β0
2,j the jth component of β0

2.
Hence, even if there is a small change in the coefficients, most coefficients remaining unchanged, the test
statistic detects this change.

Table 3 Empirical critical value ĉ1−α/2 and corresponding coverage rates (ĈR), empirical powers (π̂), for Exponential and

Gaussian errors, p = 50, β0
2 = 1− β0.

Exponential errors Gaussian errors

n k ĉ1−α/2 ĈR π̂ ĉ1−α ĈR π̂

200 75 4.01 0.97 1 3.24 0.97 1
125 0.97 1 0.93 1

400 150 3.41 0.97 1 2.96 0.97 1
250 0.97 1 0.98 1

600 225 3.40 0.97 1 2.85 0.97 1
375 0.97 1 0.98 1

800 300 2.68 0.95 1 2.43 0.97 1
500 0.95 1 0.95 1

2000 750 2.48 0.97 1 2.30 0.97 1
1250 0.95 1 0.93 1

4.3 Conclusion of simulations

Proposed test statistic (3.5), with N (0, 1) the asymptotic distribution under H0, involves the construction
of a confidence region for the parameters of the second phase of the model (on observations k + 1, · · · , n).
If assumptions (A5), (A6) are satisfied, then the coverage rates are close to the nominal coverage level. Con-
trariwise, if the coefficients change on the second phase, the test always detects this change. For improving
the coverage rate in the case n − k 6≫ p2 or k 6≫ p2, we proposed to calculate new critical values. With
these critical values, the rate of false changes is generally smaller than the size α. If there are changes in the
coefficients of the second phase of the model, the test statistic based on the new confidence region always
detects this change. For fixed p, if n and k increase, such that k/n=constant, then these new critical values
decrease and approach the (1− α) quantile of N (0, 1) distribution.

5 Appendix

This section is divided into two subsections. In the first we give the proofs of the Propositions and of the
Theorems. In the second subsection, we present Lemmas ans their proofs.

We recall that under the hypothesis H0, the vector zi(β0) is z0i = Xiεi. Then, in the all proofs, if
hypothesis H0 is true, we will use z0i instead of zi(β0).
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5.1 Proposition and Theorem proofs

Proof of Proposition 1. Let us write λ as λ = ‖λ‖u, where u is a p-vector with norm one. Using Lemma
3, for θ = k/n, we have, for any i = 1, . . . , k, with probability one

0 < 1 +
‖λ‖

θ
utz0i ≤ 1 + ‖λ‖T 0

n, (5.1)

where T 0
n ≡ max 16i6k

k+16j6n

{
(k/n)−1‖z0i ‖, (1− k/n)−1‖z0j‖

}
. For j = k + 1, . . . , n we have, with probability

1,

0 < 1−
‖λ‖

1− θ
utz0j ≤ 1 + ‖λ‖T 0

n. (5.2)

Using relations (5.1) and (5.2), then we get from (2.5) that

0 =
1

n

k∑

i=1

utz0i
θ + λtz0i

−
1

n

n∑

j=k+1

utz0j

1− θ − λtz0j

=
1

nθ

k∑

i=1

utz0i −
1

nθ2
‖λ‖

k∑

i=1

utz0i z
0t
i u

1 + θ−1‖λ‖utz0i
−

1

n(1− θ)

n∑

j=k+1

utz0j −
1

n(1− θ)2
‖λ‖

n∑

j=k+1

utz0jz
0t
j u

1− (1− θ)−1‖λ‖utz0j
.

By the last equality, using also notations given by (3.2) and (3.3), it follows that

0 ≤ ut
ψ

0
n −

‖λ‖

1 + ‖λ‖T 0
n

utS0
nu.

Then, we have with probability one, that utψ0
n(1 + ‖λ‖T 0

n) ≥ ‖λ‖utS0
nu. Therefore

‖λ‖ ≤
utψ0

n

utS0
nu− utψ0

nT
0
n

. (5.3)

On the other hand, we have |utψ0
n| ≤ ‖ψ0

n‖. Then, using Lemma 4, we obtain that ‖ψ0
n‖ = OIP (n

−1/2p1/2),
which gives

ut
ψ

0
n = OIP (n

−1/2p1/2). (5.4)

Using Lemma 3 and relation (5.4), we have that utψ0
nT

0
n = OIP (n

−1/2p1/2)oIP (n
1/qp1/2) = oIP (n(−q+2)/2qp).

Then, by assumption (A5), we obtain that utψ0
nT

0
n = oIP (1).

On the other hand, according to Lemma 2, utS0
nu ≥ γp(S

0
n) > C0 > 0 holds with a probability tending to

1 as n → ∞. Then, for relation (5.3), we obtain that

‖λ‖ = OIP (|u
t
ψ

0
n|/C0) = OIP (‖ψ

0
n‖) = OIP (p

1/2n−1/2).

�

Proof of Proposition 2. By Lemma 6 we have that λ = (S0
n)

−1
(
R0

n + ψ0
n

)
(1 + oIP (1)).

In the other hand, by Lemma 4, we have that ‖ψ0
n‖ = OIP (p

1/2n−1/2). Using this fact and relation (5.64),
we obtain

‖R0
n‖

‖ψ0
n‖

= oIP (n1/qp1/2n−1/2p1/2) = oIP (pn(2−q)/2q).

Therefore, by assumption (A5) we obtain that R0
n = ψ0

noIP (1). Then λ = (S0
n)

−1ψ0
n(1 + oIP (1)).

In the other hand, by Lemma 7, we have that
(
(S0

n)
−1 − (V0

n)
−1

)
ψ0

n = (V0
n)

−1ψ0
nop(1). Then, (S

0
n)

−1ψ0
n =

(V0
n)

−1ψ0
n(1 + oIP (1)). Therefore, for λ = (S0

n)
−1ψ0

n(1 + oIP (1)), we obtain that

λ = (V0
n)

−1
ψ

0
n(1 + oIP (1)). (5.5)

�
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Proof of Proposition 3. By Lemma 5 we have that

ELnk(β
0) = 2nλt

ψ
0
n − nλtS0

nλ+ E3 + oIP (1), (5.6)

with E3 ≡
2

3

( 1

θ3

k∑

i=1

(z0ti λ)
3 −

1

(1− θ)3

n∑

j=k+1

(z0tj λ)
3).

Consider now, the following p-vector

R0
n ≡

1

nθ3

k∑

i=1

z0i (λ
tz0i )

2 −
1

n(1− θ)3

n∑

j=k+1

z0j (λ
tz0j )

2. (5.7)

By Lemma 6 we have that λ = (S0
n)

−1(R0
n + ψ0

n)(1 + oIP (1)). Then, we have for (5.6) that

ELnk(β
0) = nψ0t

n (S0
n)

−1
ψ

0
n − nR0t

n (S0
n)

−1R0
n + E3 + oIP (1). (5.8)

We now study E3 and n(R0
n)

t(S0
n)

−1R0
n in parallel. By Proposition 2, we have that λ = (V0

n)
−1ψ0

n(1 +
oIP (1)), which implies

z0ti λ = z0ti (V0
n)

−1
ψ

0
n(1 + oIP (1)). (5.9)

Then, E3 becomes

E3 =
2

3θ3

k∑

i=1

(
z0ti (V0

n)
−1/2(V0

n)
−1/2( 1

nθ

k∑

i=1

z0i +
1

n(θ − 1)

n∑

j=k+1

z0j
))3

(1 + oIP (1))

+
2

3(θ − 1)3

n∑

j=k+1

(
z0tj (V0

n)
−1/2(V0

n)
−1/2( 1

nθ

k∑

i=1

z0i +
1

n(θ − 1)

n∑

j=k+1

z0j
))3

(1 + oIP (1)).

Using notations given by (2.10), (2.11) and the strong law of large numbers (Markov’s Theorem), we obtain

E3 =
2

θ3

k∑

l=1

(
w0t

l

( 1

nθ

k∑

i=1

w0
i +

1

n(θ − 1)

n∑

j=k+1

w0
j

))3
+

2

(1− θ)3

n∑

l=k+1

(
w0t

l

( 1

nθ

k∑

i=1

w0
i +

1

n(θ − 1)

n∑

j=k+1

w0
j

))3
(1 + oIP (1))

=
2n

3

p∑

r,s,u=1

ωrωsωu( 1

nθ3

k∑

i=1

w0
i,rw

0
i,sw

0
i,u +

1

n(θ − 1)3

n∑

j=k+1

w0
j,rw

0
j,sw

0
j,u

)
(1 + oIP (1))

=
2n

3

p∑

r,s,u=1

ωrωsωuαrsu(1 + oIP (1)). (5.10)

In the other hand, replacing λ in relation (5.7) we obtain

R0
n =

(
1

nθ3

k∑

i=1

z0i
(
z0ti ψ

0t
n (V0

n)
−1)2 − 1

n(1− θ)3

n∑

j=k+1

z0j
(
z0tj ψ

0t
n (V0

n)
−1)2

)
(1 + oIP (1)). (5.11)

Consider now for n(R0
n)

t(S0
n)

−1R0
n the following decomposition

R0t
n (S0

n)
−1R0

n = R0t
n

(
(S0

n)
−1 − (V0

n)
−1)R0

n +R0t
n (V0

n)
−1R0

n. (5.12)

By Lemma 7(ii), we have that
(
(S0

n)
−1 − (V0

n)
−1

)
R0

n = (V0
n)

−1R0
noIP (1). Then, relation (5.12) becomes

R0t
n (S0

n)
−1R0

n = R0t
n (V0

n)
−1R0

n(1 + oIP (1)). Using relations (3.3), (5.7), (5.11) and the fact that w0
i =
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(V0
n)

−1/2z0i , for i = 1, · · · , n, we have that nR0t
n (S0

n)
−1R0

n can be written

nR0t
n (S0

n)
−1R0

n =

{
1

θ3

k∑

l=1

w0
l

[( 1

nθ

k∑

i=1

w0
i −

1

n(1− θ)

n∑

j=k+1

w0
j

)t
w0

l

]2

−
1

(1− θ)3

n∑

l=k+1

w0
l

[( 1

nθ

k∑

i=1

w0
i −

1

n(1− θ)

n∑

j=k+1

w0
j

)t
w0

l

]2

·

(
1

nθ3

k∑

l=1

w0
i

[( 1

nθ

k∑

i=1

w0
i −

1

n(1− θ)

n∑

j=k+1

w0
j

)t
w0

l

]2

−
1

n(1− θ)3

n∑

l=k+1

w0
l

[( 1

nθ

k∑

i=1

w0
i −

1

n(1− θ)

n∑

j=k+1

w0
j

)t
w0

l

]2
)}

(1 + oIP (1)).

Thus, using notations given by (2.10) and (2.11), we obtain

nR0t
n (S0

n)
−1R0

n = n

p∑

r,s,l,u,v=1

ωrωs[ 1

nθ3

k∑

i=1

w0
i,rw

0
i,sw

0
i,l −

1

n(1− θ)3

n∑

j=k+1

w0
j,rw

0
j,sw

0
j,l

]

·ωuωv[ 1

nθ3

k∑

i=1

w0
i,uw

0
i,vw

0
i,l −

1

n(1− θ)3

n∑

j=k+1

w0
j,uw

0
j,vw

0
j,l

]
(1 + oIP (1))

= n

p∑

r,s,l,u,v=1

αrslαuvlωrωsωuωv(1 + oIP (1)).

In conclusion, for E3 of (5.10) and for nR0t
n (S0

n)
−1R0

n, using assumptions (A6), (A7) and (A8), together with
the proof of Proposition 1 of Guo et al (2013), we obtain: E3 = oIP (p1/2) and nR0t

n (S0
n)

−1R0
n = oIP (p

1/2).
Combining the last two relations together relation (5.8), we obtain that

ELnk(β
0) = nψ0

n(S
0
n)

−1
ψ

0
n + oIP (p

1/2).

�

Proof of Proposition 4. We first prove

nψ0t
n

(
(V0

n)
−1 − (S0

n)
−1)

ψ
0
n = oIP (p1/2). (5.13)

For this, we introduce the following two p-square matrices

B0
n ≡ (V0

n)
−1/2 S0

n (V0
n)

−1/2, K0
n ≡ Ip −B0

n

and the following p-vector
η
0
n ≡ (V0

n)
−1/2

ψ
0
n.

With this notations, the left hand side of relation (5.13), can be written

nψ0t
n

(
(V0

n)
−1 − (S0

n)
−1)

ψ
0
n = nη0t

n

(
Ip − (V0

n)
1/2(S0

n)
−1(V0

n)
1/2)

η
0
n = nη0t

n (K0
n)

−1
η
0
n.

We consider the following decomposition for nη0t
n (K0

n)
−1η0

n

nη0t
n (K0

n)
−1
η
0
n =

(
nη0t

n K0
nη

0
n−nη0t

n (K0
n)

2
η
0
n−· · ·−(−1)bnη0t

n (K0
n)

b
η
0
n

)
+(−1)bnη0t

n (K0
n)

b(Ip−(B0
n)

−1)η0
n,

(5.14)
for any b ∈ N

∗.
We will study the convergence of the expansion given by (5.14). By Lemma 6 of Chen et al. (2009), we have
the inequality η0t

n Aη0
n ≤ ‖η0n‖

2(tr(A2))1/2, for any symmetric matrix A. Then, for the first term of the
right-hand side of relation (5.14) we have that, with probability one:

nη0t
n K0

nη
0
n ≤ n ‖η0

n‖
2(tr(K0

n)
2)1/2. (5.15)



14 Gabriela Ciuperca, Zahraa Salloum

Using assumption (A1) and Lemma 4 of Liu et al. (2013), we obtain that, with probability one:

‖η0
n‖

2 = ψ
0t
n (V0

n)
−1
ψ

0
n ≤

1

γ1(V0
n)

‖ψ0
n‖

2 ≤
1

C0
‖ψ0

n‖
2.

By Lemma 4, we have that ‖ψ0
n‖ = OIP (p

1/2n−1/2) and thus

‖η0
n‖

2 = OIP (pn
−1). (5.16)

By Lemma 8, for 1 ≤ r ≤ p, we have

γr(K
0
n) ≤ (tr(K0

n)
2)1/2 = OIP (pn

−1/2). (5.17)

Using relations (5.16), (5.17) and condition p = o(n1/2) obtained by assumption (A6), we have for (5.15)
that

nη0t
n K0

nη
0
n = n OIP (n

−1p) OIP (pn
−1/2) = OIP (p

2n−1/2) = oIP (p1/2). (5.18)

On the other hand, using relations (5.16) and (5.17), we obtain

|η0t
n (K0

n)
b
η
0
n| ≤ ‖η0

n‖
2 max
1≤r≤p

|γr(K
0
n)

b| ≤ ‖η0
n‖

2(tr(K0
n)

2)b/2 = OIP (pn
−1)OIP (p

bn−b/2),

which gives

η
0t
n (K0

n)
b
η
0
n = OIP (p

b+1n−(b+2)/2). (5.19)

The last equation means that the series n
∑∞

b=1(−1)b−1η0t
n (K0

n)
bη0

n is convergent for fixed n when p =

o(n1/2). Then, taking also into account relation (5.18), we can conclude that

n

∞∑

b=1

(−1)b−1
η
0t
n (K0

n)
b
η
0
n = oIP (p1/2). (5.20)

The remaining task is to prove that the term nη0t
n (K0

n)
b(Ip − (B0

n)
−1)η0

n in (5.14) is negligible as b → ∞.
For the last term of (5.14), we have that

|nη0t
n (K0

n)
b(Ip − (B0

n)
−1)η0

n| ≤ |nη0t
n (K0

n)
b
η
0
n|+ |n(η0n)

t(K0
n)

b(B0
n)

−1
η
0
n|. (5.21)

For the first term of the right hand side of (5.21), by relation (5.19), we have, with probability one, that
η0t
n (K0

n)
bη0

n = OIP (p
b+1n(−b−2)/2). Then

nη0t
n (K0

n)
b
η
0
n = OIP (p

b+1n−b/2). (5.22)

For the second term of the right hand side of (5.21), we have, with probability one, that

|nη0t
n (K0

n)
b(B0

n)
−1
η
0
n| ≤ n‖η0

n‖
2
Mx((K0

n)
b(B0

n)
−1). (5.23)

Furthermore, according to Lemma 4 of Liu et al. (2013), for any p×p symmetric matrix A = (aij), we have
Mx(A) ≤ max1≤i≤p |γi(A)|. Then, with probability one,

Mx((K0
n)

b(B0
n)

−1) ≤ p ·Mx(K0
n)

b ·Mx(B0
n)

−1 ≤ p · max
1≤r≤p

|γr(K
0
n)

b| · max
1≤r≤p

|γr(B
0
n)

−1|.

By Lemma 8, we know that |γr(K
0
n)| ≤ (tr(K0

n)
2)1/2 = OIP (pn

−1/2) and then, |γr(K
0
n)

b| ≤ (tr(K0
n)

2)b/2 =
OIP (p

bn−b/2). On the other hand, by Proposition 2 it is clear that γ1(B
0
n)

−1 = γ1((S
0
n)

−1V0
n) ≤ γ1(V

0
n)/C0,

with probability tending to one. All these imply Mx((K0
n)

b(B0
n)

−1) ≤ pOIP (p
bn−b/2). Then, we obtain

Mx((K0
n)

b(B0
n)

−1) = OIP (p
b+1n−b/2). (5.24)

Combining relations (5.16), (5.23) and (5.24), for the second term of the right hand side of (5.21), we obtain
that

|nη0t
n (K0

n)
b(B0

n)
−1
η
0
n| ≤ np‖η0n‖

2
Mx((K0

n)
b(B0

n)
−1) = Op(p

b+3n−b/2). (5.25)
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By relations (5.21), (5.22), (5.25) and assumption (A6), it follows that

nη0t
n (Ip −V0

n)η
0
n = OIP (p

b+1n−b/2) +Op(p
b+3n−b/2) = OIP ((p

2+4/bn−1)b) = oIP (1). (5.26)

Combining the results obtained in relations (5.20) and (5.26), we obtain (5.13).
The Proposition follows combining relation (5.13) and Proposition 3. �

Proof of Theorem 1. Since θ = k/n → θ0 ∈ (0, 1) and the point k, where the test is realised, is known,
we suppose that θ is θ0, then it is fixed.

(i) We prove relation (3.4), by constructing a martingale and applying the martingale central limit
theorem (see Chow and Teicher (1997)). We will prove this relation in four steps. In Step 1 we construct a
martingale, in Steps 2 and 3 we propose two sufficient conditions for applying a central limit theorem and
finally, in Step 4 we prove relation (3.4).
Step 1. In this step, we will construct a martingale.

For i = 1, · · · , n, let us define the following random vector sequence:

G0
i ≡





1

θ

i∑

j=1

w0
j , if i ≤ k,

1

θ

k∑

j=1

w0
j −

1

1− θ

i∑

j=k+1

w0
j , if i > k,

and also the random variable H0
i ≡ ‖G0

i ‖
2 − ip.

Then, the left hand side of (3.4) can be written

nψ0t
n (V0

n)
−1ψ0

n − p

∆n/n
=

H0
n

∆n
.

The relation between G0
i and G0

i−1 is:

G0
i =





G0
i−1 +

w0
i

θ
, if i ≤ k,

G0
i−1 −

w0
i

1− θ
, if i > k,

with G0
0 ≡ 0.

Consider now the following filtration Fi = σ(w0
1, · · · ,w

0
i ) = σ(G0

1, · · · ,G
0
i ) for i = 1 . . . , n the σ-field

generated by w0
1, · · · ,w

0
i or by G0

1, · · · ,G
0
i . Firstly, we study if {H0

i ,Fi}i≥1 is a martingale. For this,
consider for example i such that i > k. Then

IE[H0
i |Fi−1] = ‖G0

i−1‖
2 +

IE[‖w0
i ‖

2]

(1− θ)2
− ip 6= H0

i−1.

Consequently, {H0
i ,Fi}i≥1 is not a martingale.We will now construct a martingale based onG0

n with respect
to the filtration {Fi}i≥1. For this, we define the following random variable sequence Ui ≡ H0

i −H0
i−1, for

i = 1, · · · , n, with H0
0 = 0. Then

U0
i =





2

θ
G0t

i−1w
0
i +

‖w0
i ‖

2

θ2
− p, if i ≤ k,

−
2

1− θ
G0t

i−1w
0
i +

‖w0
i ‖

2

(1− θ)2
− p, if i > k.

We consider the following two random variable sequences:

τ0
i ≡ U0

i − IE[U0
i ],
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and

ϕ0
i ≡

i∑

j=1

τ0
j = H0

i −
i∑

j=1

IE[U0
j ].

For all i such that i ≤ k we have that the condition expectation of ϕ0
i given the σ-field Fi−1 is:

IE[ϕ0
i |Fi−1] = ‖G0

i−1‖
2 +

IE[‖w0
i ‖

2]

θ2
− ip−

i∑

j=1

IE[U0
j ] = ‖G0

i−1‖
2 − (i− 1)p−

i−1∑

j=1

IE[U0
j ] = ϕ0

i−1

and for all i > k:

IE[ϕ0
i |Fi−1] = ‖G0

i−1‖
2 +

IE[‖w0
i ‖

2]

(1− θ)2
− ip−

i∑

j=1

IE[U0
j ] = ϕ0

i−1.

Thus, {ϕ0
i }i≥1 is a martingale with respect to {Fi}i≥1.

To apply the martingale central limit theorem of Chow and Teicher (1997) for {ϕ0
i ,Fi, i ≥ 1}, it suffices

to show that
n∑

i=1

IE
[
|τ0

i |
3] = o(∆3

n) (5.27)

and
n∑

i=1

IE
[
|IE

[
(τ0

i )
2|Fi−1

]
− σ2

i |
]
= o(∆2

n), (5.28)

Step 2. In this step, we will prove relation (5.27).
In order to facilitate writing, for i = 1, · · · , n, we denote

N0
i ≡

w0
i

θ
11i≤k −

w0
i

1− θ
11i>k. (5.29)

Then, the random variable τ0
i can be written

τ0
i = 2G0t

i−1N
0
i + ‖N0

i ‖
2 − IE[‖N0

i ‖
2]. (5.30)

By assumption (A9), for some positive absolute constant C7 < ∞, for all i = 1, · · · , n and all j1, . . . , jl =
1, . . . , p, l ∈ N, whenever

∑l
i=1 di ≤ 6, we have

IE[N0d1

i,j1
· · ·N0dl

i,jl
] ≤ C7, (5.31)

with N0
i,j1 is the j1-th components of the vector N0

i defined in (5.29). By the Holder inequality, for any
b ≤ 3 we have

IE[‖N0
i ‖

2b] ≤ CIE[
( p∑

j=1

w2
ij

)b
] ≤ Cpb−1

p∑

j=1

IE[w2b
ij ] ≤ Cpb. (5.32)

By the Cauchy Schwartz’s inequality, we have that

IE
[
N0t

i G0
i−1

]3
≤

[
IE[N0t

i G0
i−1]

6]1/2. (5.33)

On the other hand, by Lemma 7 of Guo et al (2013), we have

IE[N0t
i G0

i−1]
6 ≤ C p6(i3 + i2 + i). (5.34)

Then, by (5.33) and (5.34), we obtain that IE
[
N0t

i G0
i−1

]3
≤ [C p6(i3 + i2 + i)]1/2. This implies that

IE
[
N0t

i G0
i−1

]3
≤ C p3(i3/2 + i+ i1/2). (5.35)

On the other hand, we have

IE
[
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
]3

= IE
[
‖N0

i ‖
6 − 3‖N0

i ‖
4IE[‖N0

i ‖
2] + 3‖N0

i ‖
2(IE[‖N0

i ‖
2])2 − (IE[‖N0

i ‖
2])3

]
.
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Using (5.32), we obtain that ∣∣∣IE
[
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
]3∣∣∣ ≤ Cp3. (5.36)

Using relations (5.35) and (5.36), we can write IE[|τ0
i |

3] ≤ Cp3(1 + i3/2 + i+ i1/2). Then
∑n

i=1 IE[|τ0
i |

3] ≤

Cnp3(1 + n3/2 + n+ n1/2), which gives

n∑

i=1

IE[|τ0
i |

3] ≤ Cp3(n5/2 + n2 + n3/2 + n). (5.37)

On the other hand, using assumption (A1), by similar arguments as for relation (16) of Guo et al (2013),
we have that ∆2

n ≥ Cn2p+Op(p
2n). Then

∆3
n ≥ Cn3p3/2 +Op(p

3n3/2). (5.38)

From relations (5.37) and (5.38), we obtain

∑n
i=1 IE[|τ0

i |
3]

∆3
n

≤ C
p3n5/2

n3p3/2
= Op

(
(p3/n)1/2

)
.

Since p = o(n1/3), relation (5.27) follows.
Step 3. Now, in this step we prove relation (5.28).

By elementary calculations and using relation (5.32), we obtain (τ0
i )

2 = 4G0t
i−1N

0
iN

0t
i G0

i−1+4G0t
i−1N

0
i (‖N

0
i ‖

2−
IE[‖N0

i ‖
2]) +OIP (p

2). We observe also that σ2
i = IE

[
(τ0

i )
2
]
. Then

IE
[
(τ0

i )
2|Fi−1

]
= 4G0t

i−1IE
[
N0

iN
0t
i

]
G0

i−1 + 4G0t
i−1IE

[
N0

i

(
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
)]

+OIP (p
2) (5.39)

and
σ2
i = 4IE

[
G0t

i−1IE[N0
iN

0t
i ]G0

i−1

]
+ IE

[(
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
)2]

+O(p2).

By inequality (5.32) we have IE
[(
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
)2]

= O(p2). Then

σ2
i = 4IE

[
G0t

i−1IE[N0
iN

0t
i ]G0

i−1

]
+O(p2). (5.40)

Using relations (5.39) and (5.40), we obtain that, for any i = 1, · · · , n,

IE
[∣∣IE[τ2

i |Fi−1]− σ2
i

∣∣2] ≤ 16

(
IE
[
G0t

i−1IE[N0
iN

0t
i ]G0

i−1 − IE[G0t
i−1N

0
iN

0t
i G0

i−1]
]2

+IE
[
N0t

i

(
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
)]
IE
[
G0

i−1G
0t
i−1

]
IE
[
N0

i

(
‖N0

i ‖
2 − IE[‖N0

i ‖
2]
)]

+O(p4)

)

≡ 16
(
A+B +O(p4)

)
(5.41)

For the term A of (5.41), we have the decomposition

A = IE
[
G0t

i−1IE[N0
iN

0t
i ]G0

i−1

]2
−

(
IE[G0t

i−1N
0
iN

0t
i G0

i−1]
)2

≡ A1 −A2. (5.42)

Before analysing the terms A1 and A2, we note that

IE(N0
iN

0t
i ) = (V0

n)
−1/2[ 1

θ2
11i≤k +

1

(1− θ)2
11i>k

]
V0

(i)(V
0
n)

−1/2. (5.43)

In order to facilitate writing, we consider the following matrix

M0
i ≡

(
1

θ2
11i≤k +

1

(1− θ)2
11i>k

)
V0

(i).

Then, IE[N0
iN

0t
i ] can be expressed as:

IE[N0
iN

0t
i ] = (V0

n)
−1/2 M0

i (V
0
n)

−1/2. (5.44)
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Hence, the term A1 of (5.42), can be written

A1 = IE
[
G0t

i−1(V
0
n)

−1/2M0
i (V0

n)
−1/2G0

i−1

]2
.

Taking into account that the random vectors w0
i are independent, with mean zero, for all i = 1, . . . , n, we

can decompose A1 as

A1 ≡ A11 +A12 +A13, (5.45)

with
- if i− 1 ≤ k:

A11 ≡
1

θ4

i−1∑

h6=l=1

IE
[
w0

h(V
0
n)

−1/2M0
i (V0

n)
−1/2w0

h

]
IE
[
w0

l (V
0
n)

−1/2M0
i (V0

n)
−1/2w0

l

]
,

A12 ≡
2

θ4

i−1∑

h6=l=1

IE
[
w0

h(V
0
n)

−1/2M0
i (V

0
n)

−1/2w0
l w

0t
h (V0

n)
−1/2M0

i (V
0
n)

−1/2w0
l

]

A13 ≡
1

θ4

i−1∑

h=1

IE
[
w0t

h (V0
n)

−1/2M0
i (V0

n)
−1/2 w0

h

]2
.

- if i− 1 > k:

A11 ≡
1

θ4

k∑

h6=l=1

IE
[
w0

h(V
0
n)

−1/2M0
i (V0

n)
−1/2w0

h

]
IE
[
w0

l (V
0
n)

−1/2M0
i (V0

n)
−1/2w0

l

]

+
1

(1− θ)4

i−1∑

h′ 6=l′=k+1

IE
[
w0

h′(V0
n)

−1/2M0
i (V0

n)
−1/2w0

h′

]
IE
[
w0

l′(V
0
n)

−1/2M0
i (V0

n)
−1/2w0

l′
]
,

A12 ≡
2

θ4

k∑

h6=l=1

IE
[
w0

h(V
0
n)

−1/2M0
i (V

0
n)

−1/2w0
l w

0t
h (V0

n)
−1/2M0

i (V
0
n)

−1/2w0
l

]

+
2

(1− θ)4

i−1∑

h′ 6=l′=k+1

IE
[
w0

h′ (V0
n)

−1/2M0
i (V

0
n)

−1/2w0
l′w

0t
h′(V0

n)
−1/2M0

i (V
0
n)

−1/2w0
l′
]
.

A13 ≡
1

θ4

k∑

h=1

IE
[
w0t

h (V0
n)

−1/2M0
i (V0

n)
−1/2 w0

h

]2
+

1

(1− θ)4

i−1∑

h′=k+1

IE
[
w0t

h′ (V0
n)

−1/2M0
i (V0

n)
−1/2 w0

h′

]2
.

We study A11, A12, A13. For this, we consider the case i− 1 > k, the other is similar.
For A11, applying Cauchy-Schwarz inequality, we have

A11 ≤
1

θ4

( k∑

h=1

IE
[
w0t

h (V0
n)

−1/2M0
i (V0

n)
−1/2w0

h

])2
+

1

(1− θ)4

( i−1∑

h′=k+1

IE
[
w0t

h′(V0
n)

−1/2M0
i (V0

n)
−1/2w0

h′

])2

=
1

θ4

( k∑

h=1

IE
[
z0th (V0

n)
−1M0

i (V0
n)

−1z0h
])2

+
1

(1− θ)4

( i−1∑

h′=k+1

IE
[
z0th′(V0

n)
−1M0

i (V0
n)

−1z0h′

])2
.

Then, since (εi)1≤i≤n are independent, we have:

A11 =
1

θ4

( k∑

h=1

tr
(
V0

(h)(V
0
n)

−1M0
i (V

0
n)

−1))2
+

1

(1− θ)4

( i−1∑

h′=k+1

tr
(
V0

(h′)(V
0
n)

−1M0
i (V0

n)
−1))2

. (5.46)
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Similarly, we have for A12:

A12 =
2

θ4
IE
[ k∑

h6=l=1

w0
h(V

0
n)

−1/2M0
i (V

0
n)

−1/2w0
l w

0t
l (V0

n)
−1/2M0

i (V
0
n)

−1/2w0
h

]

+
2

(1− θ)4
IE
[ i−1∑

h′ 6=l′=k+1

w0
h′(V0

n)
−1/2M0

i (V
0
n)

−1/2w0
l′w

0t
l′ (V

0
n)

−1/2M0
i (V

0
n)

−1/2w0
h′

]

=
2

θ4
IE
[ k∑

h6=l=1

w0
h(V

0
n)

−1/2M0
i (V

0
n)

−1/2IE
[
w0

l w
0t
l

]
(V0

n)
−1/2M0

i (V
0
n)

−1/2w0
h

]

+
2

(1− θ)4
IE
[ i−1∑

h′ 6=l′=k+1

w0
h′(V0

n)
−1/2M0

i (V
0
n)

−1/2IE
[
w0

l′w
0t
l′
]
(V0

n)
−1/2M0

i (V
0
n)

−1/2w0
h′

]

≤
2

θ4
pk2γ4

1(V
0
n)

−1 sup
h,l∈{1,··· ,k}

(
γ1(V

0
(l)) γ1(V

0
(h))

)
· γ2

1(M
0
i )

+
2

(1− θ)4
p
(
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)2
γ4
1(V

0
n)

−1 sup
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(
γ1(V

0
(l′)) γ1(V

0
(h′))

)
· γ2

1(M
0
i ).

Taking into account assumption (A1), we obtain that

A12 ≤ Cp(i− 1)2. (5.47)

For the term A13 of (5.45), we have

A13 =
1

θ4

k∑

h=1

p∑

j,l,s,t=1

(
(V0

n)
−1/2M0

i (V
0
n)

−1/2
)
jl

(
(V0

n)
−1/2M0

i (V
0
n)

−1/2
)
st
IE[w0

h,jw
0
h,lw

0
h,sw

0
h,t]

+
1

(1− θ)4
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p∑

j,l,s,t=1

(
(V0

n)
−1/2M0

i (V
0
n)

−1/2
)
jl

(
(V0

n)
−1/2M0

i (V
0
n)

−1/2
)
st
IE[w0

h′,jw
0
h′,lw

0
h′,sw

0
h′,t].

Taking into account assumption (A9), we obtain that

A13 ≤
1

θ4
Cp4kγ4

1(V
0
n)

−1γ2
1(M

0
i ) +

1

(1− θ)4
Cp4(i− k)γ4

1(V
0
n)

−1γ2
1(M

0
i ).

Using also assumption (A1), we obtain get

A13 ≤ Cp4(i− 1). (5.48)

For the term A2 of (5.42), by similar calculations, we obtain that
- if i− 1 ≤ k:

A2 =
1

θ4

( i−1∑

h=1

tr
(
V0

(h)(V
0
n)

−1M0
i (V

0
n)

−1))2

- if i− 1 > k:

A2 =
1

θ4

( k∑

h=1

tr
(
V0

(h)(V
0
n)

−1M0
i (V

0
n)

−1))2
+

1

(1− θ)4

( i−1∑

h′=k+1

tr
(
V0

(h′)(V
0
n)

−1M0
i (V0

n)
−1))2

. (5.49)

For i− 1 > k, by relations (5.46) and (5.49), we obtain that

A11 −A2 ≤ 0. (5.50)

Inequality (5.50) is also true for i− 1 ≤ k.
Then, since the term A of (5.42) can be written A = (A11 + A12 + A13) − A2, combining relations (5.47),
(5.48) and (5.50), we obtain that

A ≤ Cp(i− 1)2 + Cp4(i− 1). (5.51)
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For the term B of (5.41), in the case i−1 > k, taking into account the fact that IE(N0
h) = 0p, IE(w0

h) = 0p

for all h = 1, . . . , n and the fact w0
h is independent of w0

h′ for h 6= h′, we have that

B = IE
[
N0t
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i ‖

2]IE
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p∑

l,r=1
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[
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0
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2]

+
1

(1− θ)2

p∑
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p∑
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(V0
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(h′)(V

0
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− 1

2

)
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[
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0
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[
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0
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2],

where
(∑k

h=1 V
−1/2
n V0

(h)V
−1/2
n

)
us

is the (u, s)-th element of the matrix
∑k

h=1 V
−1/2
n V0

(h)V
−1/2
n . Using

Lemma 4 of Liu et al. (2013) and relation (5.31), we get

B ≤
1
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p∑
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Mx
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(h)V
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n

)
us
IE
[
N0
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2]IE
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N0

i,s(N
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2]

+
1
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p∑
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p∑
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(V0
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−1/2V0
(h′)(V

0
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)
us
IE
[
N0
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0
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2]IE
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≤
C

θ2
p4(kγ2

1(V
−1/2
n ) sup

h∈{1,··· ,k}

(
γ1(V

0
(h))

)
+

C

(1− θ)2
p4(i− 1− k)γ2

1(V
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n ) sup
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(
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0
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.

Then, by assumption (A1), we obtain that

B ≤ Cp4(i− 1). (5.52)

Similarly, we can prove that inequality (5.52) is also true for i− 1 ≤ k.
In conclusion, combining relations (5.41), (5.51) and (5.52), we get that

IE
[
|IE[(τ0

i )
2|Fi−1]− σ2

i |
2] ≤ Cp(i− 1)2 + Cp4(i− 1) +O(p4).

Then, by Cauchy-Schwarz inequality, we have

∑n
i=1 IE

[
|IE[(τ0

i )
2|Fi−1]− σ2

i |
]

∆2
n

≤

∑n
i=1

(
IE
[
|IE[(τ0

i )
2|Fi−1]− σ2

i |
2
])1/2

∆2
n

≤
Cn(n1/2p2 + p1/2n+O(p2))

C n2p+OIP (p2n)

≤ C
n3/2p2

n2p
.

and hence the relation (5.28) follows.
Step 4. In this step, on the basis of the central limit theorem for martingales, we will complete the proof

of relation (3.4). On the basis of relations (5.27) and (5.28) proved in Step 2 and Step 3, applying the
martingale central limit Theorem of Chow and Teicher (1997) (Theorem 1, page 336), for {ϕ0

n,Fn}n≥1 we
get:

ϕ0
n

∆n

L
−→
n→∞

N (0, 1). (5.53)
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Using notations given in Step 1, we have n
(
nψ0t

n (V0
n)

−1ψ0
n − p

)
= H0

n = ϕ0
n +

∑n
i=1 IE[U0

i ]. In the other

hand, since H0
0 = 0, we have

∑n
i=1 IE[U0

i ] = IE[H0
n] = IE[‖G0

n‖
2] − np. But, taking into account relations

(2.8) and (2.9), we get:
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)
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1
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j
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(
(V0

n)
−1/2V0

n(V
0
n)
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Thus IE[H0
n] = 0. Then, taking into account relation (5.53), we obtain claim (3.4).

(ii) The assertion results from (i) combined with Proposition 3 and Proposition 4. �

Proof of Theorem 2. By elementary calculations, we have under hypothesis H1, with probability one:

ψn(β
0) = ψ

0
n −

1

n(1− θ)

( n∑

j=k+1

XjX
t
j

)
(β0

2 − β
0).

Also, under H1, since IE[z0i ] = 0p, using assumption (A1), we have

ψn(β
0) = −

1

n(1− θ)

( n∑

j=k+1

XjX
t
j

)
(β0

2 − β
0)(1 + oIP (1)).

Then,

nψt
n(β

0)
(
V0
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nψ0t

n

(
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n
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∣∣(β0
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0)t
1

n(1− θ)
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XjX
t
j

∣∣2
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(1 + oIP (1)).

The test statistic becomes

Z(β0) =
nψ0t

n

(
V0

n

)−1
ψ0

n − p

∆n/n
+ n

∣∣(β0
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0)t 1
n(1−θ)

∑n
j=k+1 XjX

t
j

∣∣2

∆n/n
(1 + oIP (1)).

Since β0
2 6= β0, using with Theorem 1, together assumption (A1), we have that

∣∣Z(β0)
∣∣ → ∞, in probability,

as n → ∞. �

5.2 Lemmas

In order to prove Propositions 1, 2, 3, 4 and Theorems 1 and 2, we need the following lemmas.
The first four lemmas establish equivalent results obtained by Guo et al (2013) for a linear model without
change-point.
Let us consider the following p× p matrix Ln ≡ S0

n −V0
n. For 1 ≤ u, v ≤ p let us consider Ln;u,v the (u, v)

element of the matrix Ln. Let also consider the largest absolute element of Ln : max1≤u,v≤p |S
0
n,(u,v) −

V 0
n,(u,v)|, with S0

n,(u,v) and V 0
n,(u,v) denote the (u, v) components of S0

n and V0
n, respectively.
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Lemma 1 Under null hypothesis H0, suppose that assumptions (A3) and (A4) are satisfied. For any ǫ > 0,
there exists a positive constant Cq that depending only on q ≥ 4, such that

IP
[

max
1≤u,v≤p

|S0
n,(u,v) − V 0

n,(u,v)| ≥ ǫ
]
≤ Cq

p2

nq/2ǫq
.

Proof. The matrix Ln can be written

Ln =
1

nθ2

k∑

i=1

XiX
t
i(ε

2
i − σ2) +

1

n(1− θ)2

n∑

j=k+1

XjX
t
j(ε

2
j − σ2).

The (u, v)-th element of the matrix Ln, for 1 ≤ u, v ≤ p, is

Ln,(u,v) =
1

nθ2

k∑

i=1

Xi,uXi,v(ε
2
i − σ2) +

1

n(1− θ)2

n∑

j=k+1

Xj,uXj,v(ε
2
j − σ2) ≡ L

(1)
n,(u,v) + L

(2)
n,(u,v). (5.54)

Since θ = k/n → θ0 ∈ (0, 1) as n → ∞, we can apply Lemma 1 of Guo et al (2013) for L
(1)
n,(u,v) and L

(2)
n,(u,v).

Then, for fixed θ ∈ (0, 1), for all ǫ > 0 there exists two positive constants C
(1)
q and C

(2)
q such that:

IP
[
|L

(1)
n,(u,v)| ≥ ǫ

]
≤ C(1)

q
p2

nq/2ǫq
. (5.55)

and

IP
[
|L

(2)
n,(u,v)| ≥ ǫ

]
≤ C(2)

q
p2

nq/2ǫq
. (5.56)

Then the Lemma follows from relations (5.54), (5.55) and (5.56), considering Cq = max
(
C

(1)
q , C

(2)
q

)
. �

By the next lemma we prove first that all eigenvalues of S0
n converge to those of V0

n uniformly with
the rate Op(p max1≤u,v≤p |S

0
n,(u,v)−V 0

n,(u,v)|) and then that all eigenvalues of S0
n are bounded and strictly

positive for n enough large.

Lemma 2 Under assumptions (A1), (A3), (A4) and (A6), there exists two constants C0, C1 > 0 such that
the inequality γp(S

0
n) > C0 and γ1(S

0
n) < C1 hold with probability tending to one as n → ∞.

Proof. Arguments based on the properties of the trace and of the eigenvalues of symmetric square matrices,
together with Lemma 2 of Guo et al (2013) imply that

max
1≤r≤p

|γr(V
0
n)− γr(S

0
n)| ≤ p max

1≤u,v≤p
|S0

n,(u,v) − V 0
n,(u,v)|. (5.57)

Lemma follows by combining this last relation with Lemma 1 and assumption (A1). �

Let us consider the following random variable T 0
n ≡ max 16i6k

k+16j6n

{
θ−1‖z0i ‖, (1− θ)−1‖z0j‖

}
.

Lemma 3 Under the null hypothesis H0, suppose that assumptions (A3) and (A4) are satisfied. Then, for
q ≥ 4, we have T 0

n = oIP (p1/2n1/q).

Proof. Since θ = k/n → θ0 ∈ (0, 1) as n → ∞, we have with probability 1, for enough large n:
T 0
n ≤ Cmax1≤i≤n ‖z0i ‖, with C > 0. By Lemma 3 of Guo et al (2013), we have that: max1≤i≤n ‖z0i ‖ =

oIP (p
1/2n1/q) and the lemma follows. �

By the following Lemma we give an asymptotic approximation for the L2-norm of the vector ψn(β
0),

given by (2.7), under hypothesis H0.

Lemma 4 Under the null hypothesis H0, if assumption (A1) holds, we have ‖ψ0
n‖ = OIP (p

1/2n−1/2).
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Proof. Let X(1) is the p × k design matrix whose k columns are Xi, for i = 1, . . . , k and X(2) is the
p × (n − k) design matrix whose (n − k) columns are Xj , for j = k + 1, . . . , n. Since (εi) are independent,
we have that

IE
[
ψ

0t
n ψ

0
n

]
=

1

(nθ)2
IE
[ k∑

i,i′=1

z0ti z0i′
]
+
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IE
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]

=
σ2

n
tr
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nθ2
X(1)(X(1))t +

1

n(1− θ)2
X(2)(X(2))t

)
.

Using assumption (A1), we obtain that

IE
[
ψ

0t
n ψ

0
n

]
≤ σ2 p

n

(
γ1

( 1

nθ
X(1)(X(1))t +

1

n(1− θ)
X(2)(X(2))t

))
= O(pn−1).

Then, ‖ψ0
n‖ = OIP (p

1/2n−1/2). �

The following Lemma gives a first approximation for the EL statistic, under hypothesis H0.

Lemma 5 Under the same assumptions as in Proposition 3, if hypothesis H0 is true, we have:

ELnk(β
0) = 2nλt

ψ
0
n − nλtS0

nλ+
2

3

(
1

θ3

k∑

i=1

(z0ti λ)
3 −

1

(1− θ)3

n∑

j=k+1

(z0tj λ)
3

)
+ oIP (1),

with θ = k/n.

Proof. The limited development of the statistic ELnk(β
0) specified by relation (2.4), in the neighbourhood

of λ = 0p, up to order 3 can be written

ELnk(β
0) = λ

t

(
2

θ

k∑

i=1

z0i −
2

1− θ

n∑

j=k+1

z0j

)
− λt

(
1

θ2
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i=1

z0i z
0t
i +

1

(1− θ)2

n∑
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0t
j

)
λ

+
2

3

(
1

θ3

k∑

i=1

(z0ti λ)
3 −

1

(1− θ)3

n∑

j=k+1

(z0tj λ)
3

)
+

1

4!

p∑

u,v,r,s=1

∂4
ELnk(β

0)(λ̃uvrs)

∂λu∂λv∂λr∂λs
(λu)(λv)(λr)(λs)

≡ E1 − E2 + E3 + E4, (5.58)

where for all 1 ≤ u, v, r, s ≤ p, λu is the u-th component of λ and λ̃uvrs = auvrsλ, with auvrs ∈ [0, 1].
We first study E4, which can be written

E4 = −
1

4!

(
12

θ4

k∑

i=1

(z0ti λ)
4

(1 + θ−1λ̃z0i )
4
+

12

(1− θ)4

n∑

j=k+1

(z0tj λ)
4

(1− (1− θ)−1λ̃z0i )
4

)
. (5.59)

By Proposition 1 of Ciuperca and Salloum (2015), we have that, for all ǫ > 0, there exists two positive
absolute constants M1 and M2 such that

IP

[
1

M1θ4

k∑

i=1

(z0ti λ)
4 ≤

k∑

i=1

(z0ti λ)
4

(1 + θ−1λ̃z0i )
4
≤

1

M2θ4

k∑

i=1

(z0ti λ)
4

]
≥ 1− ǫ.

Then, for the first term of the right-hand side of (5.59), applying Cauchy-Schwartz’s inequality, we obtain
that

k∑

i=1

(z0ti λ)
4

(1 + θ−1λ̃z0i )
4
≤

1

M2θ4

k∑

i=1

(z0ti λ)
4 ≤

1

M2θ4

k∑

i=1

‖Xi‖
4ε4i ‖λ‖

4.

Using assumptions (A1) (A2), together with the fact that ‖λ‖ = OIP (p
1/2n−1/2) given by Proposition 1

and p = o(n1/2), we obtain that the first term of (5.59) is oIP (1). In the same way we can demonstrate that
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each term of (5.59) is oIP (1), which implies that E4 = oIP (1).

Using notations given by (3.2) and (3.3), we obtain that E1 = 2nλtψ0
n and E2 = nλtS0

nλ. Then, relation
(5.58) becomes ELnk(β

0) = 2nλtψ0
n − nλtS0

nλ+ E3 + oIP (1) and the lemma follows. �

The following Lemma gives, under hypothesis H0, an approximation for the Lagrange multiplier λ and
the asymptotic behaviour of sup1≤i≤n |λtz0i | = oIP (1).

Lemma 6 Under the null hypothesis H0, suppose that assumptions (A1), (A3)-(A6) are satisfied. Then for
q ≥ 4 and fixed θ ∈ (0, 1), we have sup1≤i≤n |λtz0i | = oIP (1) and

λ = (S0
n)

−1(ψ0
n + oIP (n(1−q)/qp3/2)). (5.60)

Proof. By Proposition 1, we have that ‖λ‖ = OIP (n
−1/2p1/2). Note that, by Cauchy-Schwartz’s inequality

and by Lemma 3, we have

θ−1 sup
1≤i≤k

|λtz0i | ≤ ‖λ‖T 0
n = OIP (n

−1/2p1/2)oIP (n
1/qp1/2) = oIP (n(−q+2)/2qp)

and
(1− θ)−1 sup

k+1≤j≤n
|λtz0j | ≤ ‖λ‖T 0

n = OIP (n
−1/2p1/2) oIP (n

1/qp1/2) = oIP (n(−q+2)/2qp),

with θ = k/n. These two relations together assumption (A5) involve sup1≤i≤n |λtz0i | = oIP (1).
We prove now relation (5.60). The limited development of (2.5), in the neighbourhood of λ = 0p, up to
order 3 can be written

0p =
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θ
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)
−

( 1
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n∑
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z0j (z
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2
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k∑
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4

n∑
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z0j (z
0t
j λ)

3
)
,

(5.61)

where λ̃ = uλ, with u ∈ (0, 1).
Using Proposition 1 of Ciuperca and Salloum (2015), similarly as for the term E4 of Proposition 3, we can
demonstrate easily that the last term of the right hand side of relation (5.61) is oIP (1). We recall that

R0
n ≡

1

nθ3

k∑

i=1

z0i (λ
tz0i )

2 −
1

n(1− θ)3

n∑

j=k+1

z0j (λ
tz0j )

2. (5.62)

Then, using notations given by (3.2), (3.3) and (5.62) we obtain that relation (5.61) becomes ψ0
n − S0

nλ+
R0

n = 0p. Thus
λ = (S0

n)
−1(R0

n + ψ0
n)(1 + oIP (1)). (5.63)

We recall that T 0
n ≡ max 16i6k

k+16j6n

{
θ−1‖z0i ‖, (1− θ)−1‖z0j‖

}
. Then, we have for R0

n:

∥∥R0
n

∥∥ ≤ T 0
nλ

t

(
1

nθ2

k∑

i=1

z0i z
0t
i +

1

n(1− θ)2

n∑

j=k+1

z0jz
0t
j

)
λ ≤ T 0

nλ
tS0

nλ.

Using Lemma 4 of Liu et al. (2013) and Lemma 2 we obtain that
∥∥R0

n

∥∥ ≤ T 0
n‖λ‖

2γ1(S
0
n) = OIP (T

0
n‖λ‖

2).

On the other hand, by Proposition 1 we have that ‖λ‖ = OIP (n
−1/2p1/2) and by Lemma 3 that T 0

n =
oIP (n

1/qp1/2). Then for ‖R0
n‖, we obtain that

‖R0
n‖ = oIP (n(1−q)/qp3/2). (5.64)
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Relation (5.60) follows from (5.63) and (5.64). �

The following result gives an asymptotic approximation for
[
(S0

n)
−1 − (V0

n)
−1

]
ψ0

n and
[
(S0

n)
−1 −

(V0
n)

−1
]
R0

n.

Lemma 7 Under the null hypothesis (H0), if assumptions (A3), (A4) and (A6) hold, we have
(i)

(
(S0

n)
−1 − (V0

n)
−1

)
ψ0

n =
(
(V0

n)
−1ψ0

n

)
oIP (1).

(ii)
(
(S0

n)
−1 − (V0

n)
−1

)
R0

n =
(
(V0

n)
−1R0

n

)
oIP (1).

Proof. (i) By Lemma 1 we have that, under assumptions (A3) and (A4), for all ǫ > 0 there exist Cq > 0,
for q ≥ 4, such that

IP
[
p max

1≤u,v≤p
|S0

n,(u,v) − V 0
n,(u,v)| ≥ ǫ

]
≤ Cq

p2+q

nq/2ǫq
.

Furthermore, under assumption (A6) we have

max
1≤u,v≤p

|S0
n,(u,v) − V 0

n,(u,v)| = oIP (1). (5.65)

We recall that, for a matrixA, ‖A‖1 is the subordinate norm to the vector norm ‖.‖1. Using Lemma 1(iii) of
Ciuperca and Salloum (2015), Lemma 2, relations (5.57), (5.65) and the identityV0

n((S
0
n)

−1−(V0
n)

−1)ψ0
n =

(V0
n(S

0
n)

−1 − Ip)ψ
0
n, we have

∥∥V0
n

(
(S0

n)
−1 − (V0

n)
−1)

ψ
0
n

∥∥ =
∥∥(V0

n − S0
n

)
(S0

n)
−1
ψ

0
n

∥∥ ≤
∥∥V0

n − S0
n

∥∥
1

∥∥(S0
n)

−1
∥∥
1

∥∥ψ0
n

∥∥

≤ max
1≤r≤p

|γr(V
0
n − S0

n)| · |γ1(S
0
n)

−1| ·
∥∥ψ0

n

∥∥ ≤ Cp max
1≤u,v≤p

|S0
n,(u,v) − V 0

n,(u,v)| · ‖ψ
0
n‖

=
∥∥ψ0

n

∥∥oIP (1),

which implies that
(
(S0

n)
−1 − (V0

n)
−1

)
ψ0

n = (V0
n)

−1ψ0
noIP (1).

(ii) The proof of (ii) is similar to (i). �

The following lemma is needed for proving Proposition 4. We recall thatK0
n = Ip−(V0

n)
−1/2S0

n(V
0
n)

−1/2.

Lemma 8 Under null hypothesis H0, if assumption (A7) holds, then

tr(K0
n)

2 = OIP (p
2n−1).

Proof. We show that IE[tr(K0
n)

2] = O(p2n−1). For this, we write the matrix K0
n as

K0
n = Ip −

1

nθ2

k∑

i=1

w0
iw

0t
i

1

n(1− θ)2

n∑

j=k+1

w0
jw

0t
j .

Then

IE[tr(K0
n)

2] = n−2 ∑p
r,s=1 IE

[(
θ−2 ∑k

i=1w
0
i,rw

0
i,s +

1
(1−θ)2

∑n
j=k+1 w

0
j,rw

0
j,s

)2]

−2n−1 ∑p
r=1

(
θ−2 ∑k

i=1 IE[w0
i,rw

0
i,r] + (1− θ)−2 ∑n

j=k+1 IE[w0
j,rw

0
j,r]

)
+ p.

(5.66)

For the first term of the right-hand side of (5.66), using the independence of w0
i for all i = 1, · · · , n, we

have that

1

n2

p∑

r,s=1

IE
[( 1

θ2

k∑

i=1

w0
i,rw

0
is +

1

(1− θ)2

n∑

j=k+1

w0
j,rw

0
j,s

)2]

=
1

n2

p∑

r,s=1

( 1

θ4

k∑

i=1

IE[w0
i,rw

0
i,rw

0
i,sw

0
i,s] +

1

(1− θ)4

n∑

j=k+1

IE[w0
j,rw

0
j,rw

0
j,sw

0
j,s]

)

+
1

n2

p∑

r,s=1

( 1

θ2

k∑

i=1

IE[w0
i,rw

0
i,s] +

1

(1− θ)2

n∑

j=k+1

IE[w0
j,rw

0
j,s]

)2
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=
1

n

p∑

r,s=1

αrrss +

p∑

r,s=1

(αrs)2 = O(p2n−1). (5.67)

The last equation is due to assumption (A7) and to the fact that αrs = 0, for r 6= s.
For the second term of the right-hand side of (5.66), by the fact that αrr = 1, we have that

1

n

p∑

r=1

(
1

θ2

k∑

i=1

IE[w0
i,rw

0
i,r] +

1

(1− θ)2

n∑

j=k+1

IE[w0
j,rw

0
j,r]

)
=

p∑

r=1

αrr = p. (5.68)

Then, using relations (5.66), (5.67) and (5.68), we obtain that

IE[tr(K2
n)] = O(p2n−1).

By Markov’s inequality, Lemma yields. �
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