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ABSTRACT

Context. The multiplicity of classical Cepheids (CCs) and RR Lyrae stars (RRLs) is still imperfectly known, particularly for RRLs.
Aims. In order to complement the close-in short orbital period systems presented in Paper I, our aim is to detect the wide, spatially
resolved companions of the targets of our reference samples of Galactic CCs and RRLs.

Methods. Angularly resolved common proper motion pairs were detected using a simple progressive selection algorithm to separate
the most probable candidate companions from the unrelated field stars.

Results. We found 27 resolved, high probability gravitationally bound systems with CCs out of 456 examined stars, and one unbound
star embedded in the circumstellar dusty nebula of the long-period Cepheid RS Pup. We found seven spatially resolved, probably
bound systems with RRL primaries out of 789 investigated stars, and 22 additional candidate pairs. We report in particular new
companions of three bright RRLs: OV And (companion of F4V spectral type), RR Leo (MOV), and SS Oct (K2V). In addition, we
discovered resolved companions of 14 stars that were likely misclassified as RRLs.

Conclusions. The detection of resolved non-variable companions around CCs and RRLs facilitates the validation of their Gaia DR2
parallaxes. The possibility to conduct a detailed analysis of the resolved coeval companions of CCs and old population RRLs will also
be valuable to progress on our understanding of their evolutionary path.
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1. Introduction

Classical Cepheids (CCs) and RR Lyrae stars (RRLs) are essen-
tial standard candles for Galactic (e.g., Drake et al. 2013) and
extragalactic (e.g., Riess et al. 2016) distance determinations.
These pulsating stars are the subject of several studies following
the first (Gaia Collaboration 2017; Iorio et al. 2018) and second
(Clementini et al. 2019; Muraveva et al. 2018; Rimoldini et al.
2018) Gaia data releases. Their multiplicity fraction has a par-
ticular importance, as the presence of companions may bias their
apparent brightness and affect their evolutionary path. The recent
discovery of the binary evolution pulsators (Pietrzynski et al.
2012; Smolec et al. 2013) is an example of the potential impact
of binarity on the properties of oscillating stars. Coeval, grav-
itationally bound companions are also valuable for conducting
comparative evolutionary modeling.

* Tables A.1-C.1 are also available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsarc.
u-strasbg.fr/viz-bin/qcat?J/A+A/623/A117

stars: variables: Cepheids — stars: variables: RR Lyrae — astrometry — proper motions — binaries: general —

In Paper I (Kervella et al. 2019), we searched for compan-
ions of CCs and RRLs from the signature of the presence of a
companion on their proper motion (PM). For this purpose, we
used the positions measured by the Hipparcos and Gaia space-
crafts at two epochs separated by 24.25 yr to determine the PM
of their center of mass. The presence of a companion results in
a “virtual orbit” of the photocenter around the center of mass of
the system (see, e.g., Benedict et al. 1999, 2000; Sahlmann et al.
2013). As the astrometric missions measured the position of the
photocenter, we detected the presence of companions from a
comparison of the two PM vectors (Hipparcos and Gaia DR2,
hereafter GDR2) to the mean PM vector. The difference between
the photocenter’s PM vector and that of the center of mass is
referred to as the proper motion anomaly (PMa) in the following.
The time baseline of more than two decades between Hipparcos
and Gaia provides a sensitivity to orbital periods of up to sev-
eral hundred years, depending on the distance of the target and
the mass ratio of the CC to its companion. However, its sensi-
tivity decreases for longer orbital periods (i.e., millennia), as the
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principle of the determination of the mean PM of the center of
mass (difference of positions) cancels the signature of the orbital
PM of the photocenter if it is very slow.

In the present paper, we search for spatially resolved, com-
mon proper motion or gravitationally bound companions of
our samples of CCs and RRLs. Despite the high contrast that
makes their detection difficult, several spatially resolved CC
companions have already been found using optical interfer-
ometry (Gallenne et al. 2013, 2014a, 2018a), adaptive optics
(Gallenne et al. 2014b) or Hubble Space Telescope (HST) imag-
ing (Evans et al. 2008, 2018a, 2016a). The database of the binary
and multiple Galactic CCs maintained at Konkoly Observatory'
(Szabados 2003) provides a list of the known CCs in multiple
systems. A database of candidate binaries with an RRL com-
ponent is provided by Liska et al. (2016b)>. No RRL resolved
companion is currently known, and only TU UMa has been con-
vincingly demonstrated to be a binary and has accurate orbital
parameters (LiSka et al. 2016a; Paper I). Its companion is likely
a white dwarf orbiting at a small angular separation (~10mas;
Paper I).

In Sect. 3, we present the selection criteria that we adopted
to discriminate the unrelated field stars from the physical com-
panions. The resulting detections are presented in Sect. 5 for
CCs (Sect. 5.1) and RRLs (Sect. 5.2). We also present the can-
didate companions of variable stars that were incorrectly classi-
fied as RRLs in Sect. 5.3. We discuss in Sect. 6 the results we
obtained on selected individual stars, including the detections of
PM anomalies presented in Paper 1.

2. Selected samples

We adopted the list of 455 CCs from Berdnikov et al. (2000) plus
Y Car, together with their listed photometric distances, that are
based on multicolor period-luminosity relations. This catalog is
tied to an LMC distance modulus of uyyc = 18.25, that is too
short compared to recent measurements. We therefore renormal-
ized the listed distances using the distance modulus established
by Pietrzynski et al. (2013). This correction increases the dis-
tances of all Cepheids in the Berdnikov et al. (2000) catalog by
~11%. The distance of Y Car is taken from Evans (1992a). The
RRL sample was extracted from the General Catalogue of Vari-
able Stars (GCVS; Samus et al. 2017) that comprises 8509 stars
listed as RR type. We adopt for the RRLs the GDR2 parallaxes
wg,- The catalog uncertainty of wg, for the RRLs in the magni-
tude range of our sample is typically 30—100 uas. For the targets
with @wg, < 0.5 mas the uncertainty on the GDR2 parallaxes of
the faint candidate companions becomes too large to enable an
efficient selection process. We therefore limited our sample to
the RRLs with a GDR2 parallax @wgpgry > 0.5 mas. This results
in a sample of 789 stars classified as RRLs within 2 kpc.

The GDR?2 parallaxes and PMs were corrected following the
procedure described in Paper I, and we set a uniform uncertainty
of 15% on all the adopted 456 CC (photometric) and 789 RRL
(GDR2) parallaxes. It corresponds to the range of accepted par-
allaxes in the companion selection process (Sect. 3.1).

3. Companion identification criteria

We defined criteria for the selection of wide companion candi-
dates based on (1) the similarity of their parallax, (2) their tan-
gential differential velocity, (3) their projected linear separation.

' http://www.konkoly.hu/CEP/intro.html
2 http://rrlyrbincan.physics.muni.cz
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We also tested them to determine whether they are gravitation-
ally bound.

3.1. Parallax

The GDR?2 parallax is our primary criterion for the selection of
potential companions. The first step in our selection is based on
the compatibility of the GDR2 parallax of the field stars with the
adopted value of the target stars (CCs or RRLs). The candidates
whose GDR2 parallax is outside the range of expected values
(£15% around the adopted parallax of the target) are rejected.
We do not use a variable weight depending on the proximity
in parallax; the candidate companions are uniformly rejected if
they are outside the expected @ uncertainty range. This choice
is intended to reject the statistical outliers, reduce the number
of false positive detections and ensure that we do not bias our
detections toward the prior adopted value of the target parallax.

We also reject the field stars that have a parallax S/N < 3
to reduce the number of inconclusive detections. The improve-
ment of the uncertainties of the Gaia parallaxes in the future data
releases will result in the inclusion of additional companion can-
didates.

3.2. Proper motion

We determined the difference in tangential velocity dvy, (per-
pendicular to the line of sight) between the field stars and the
tested CC and RRL. We excluded the candidates that exhibit a
differential tangential velocity larger than dvign, max = 20km s7L.
This limit corresponds to an increase in projected separation of
~20pc in ten million years. This is much larger than the usu-
ally considered limit for common proper motion pairs (see, e.g.,
Scholz 2016), even if Price-Whelan et al. (2017) report the exis-
tence of comoving pairs up to a separation of 10pc. A field star
is removed from the list of candidate companions if its dvg, is
more than 1o above dvan, max- The candidates that exhibit a low
differential velocity dv,, < Skms™' are flagged as LowV.

We also set as a condition for field star selection that the
position angle of its PM vector is within +15° of that of the
PM vector of the CC or RRL target star, if the candidate is
located within a projected radius of 10kau. This range of per-
mitted angles accounts for a possible orbital motion. For wider
separation candidates, the acceptance range for the PM vector
position angle is reduced to +5° to limit the number of false pos-
itives. When available, we adopted the mean proper motion uyg
computed from the Hipparcos and GDR?2 positions (see Paper 1),
to mitigate the effect of an orbiting close-in companion on the
adopted PM vector. This is particularly important for the stars
showing a strong PMa, for example the short-period Cepheid
V1334 Cyg (Paper I; Gallenne et al. 2013, 2018a).

3.3. Projected proximity

The search radius around the CCs and RRLs is set to 1 pc at
the distance of each target, with a minimum angular radius of
1 arcmin. The probability that candidate companions are bound
to the target star increases as their projected separation with
the target becomes smaller. We therefore allocated a continu-
ous linear weight in the ranking of the candidate companions
to their linear projected distance to the target. The field stars
that are within 50000 au for CCs and 30000 au from RRLs
are flagged as Near. These different maximum radii take into
account the difference in mass between CCs and RRLs, and also
the fact that the young CCs can be found in open clusters (whose
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populations we wish to probe) contrary to old RRLs (except
in the case of chance associations). These radii are comparable
to the widest binary systems (Oh et al. 2017; Duchéne & Kraus
2013; Kervella et al. 2017a), and they also incorporate the bina-
ries possibly formed from adjacent prestellar cores with slow
relative proper motion (Tokovinin 2017).

3.4. Gravitationally bound candidates

We test the possibility that the candidate companions are gravi-
tationally bound to the target CC or RRL by comparing the dif-
ferential tangential velocity dvy,, with the escape velocity ve. at
their projected separation (see, e.g., Kervella et al. 2017a). This
is a first-order approach as the third, radial component of the dif-
ferential velocity is usually unknown for the field stars. It should
be accounted for in a precise comparison of the relative velocity
with the escape velocity. The expression of the escape velocity
Uese for two bodies of total mass m, located at a distance r from
each other is

2Gmyer
Vesc = .
r

We adopt the predicted masses of the CC and RRL targets
as described in Paper I. A limitation of this approach is that the
true total mass my of the systems is often higher than that of the
CC or RRL alone. For instance, the system of ¢ Cep contains at
least one close-in component of a mass of 1 M (Anderson et al.
2015; Gallenne et al. 2016), and a distant component HD 213307
(Benedict et al. 2002; Marengo et al. 2010) that is likely an early-
type, relatively massive binary (Sect. 6.1.9). The determination of
the escape velocity for the different components of this quadruple
system should be based on the total mass of the considered com-
ponents that exceeds the mass of the Cepheid alone. To account
for the mass of the secondary star (and possible additional com-
ponents), we assumed an identical mass for the companion in the
computation of the escape velocity by considering mo; = 2 Mgarger-

The candidate companions are flagged as Bound when they
are already flagged as Near and their tangential differential
velocity duy,, is within 30 of the escape velocity ves. (they are
also normally flagged as LowV). This relatively permissive cri-
terion accounts for the significant uncertainties in the physical
parameters used in the computation.

ey

4. Candidate companion parameters

For CCs, individual color excess estimates E(B—V) are avail-
able in the literature, and we adopted these values for their can-
didate companions. For the candidate companions of RRLs, we
determined E(B—V) from the 3D extinction maps by Green et al.
(2018), Lallement et al. (2018), or Gontcharov (2017), depend-
ing on the sky coverage of each map. For the bright RR Lyrae
stars RR Leo and SS Oct, we adopted the individual estimates
by Feast et al. (2008).

For the candidates that have JHK; magnitudes from the
2MASS catalog (Cutri et al. 2003; Skrutskie et al. 2006), we
derived their linear radius R and effective temperature 7Tt from
their broadband magnitudes using the visible-infrared surface
brightness—color relations from Kervella et al. (2004) and the
GDR?2 parallax. For completeness, we also cross-identified the
candidate companions in the WISE catalog (Wright et al. 2010;
Cutri et al. 2012).

When JHK; infrared magnitudes were not available, we used
Eq. (1) in Gaia Collaboration (2018) to compute the extinction
in the G, Ggp, and Ggrp bands from the adopted value of the

color excess E(B—V). This provided the dereddened color excess
Cxp = E(Gpp — Grp)o and the absolute dereddened Mg mag-
nitude of the candidates in the G band. We then converted the
dereddened color to an effective temperature using the polyno-
mial expression by Jordi et al. (2010; their Eq. (2)):

log Ter = 3.999 — 0.654 Cxp + 0.709 Cxp — 0.316 Cxp. 2)

For the stars with Cxp > 1.4, this polynomial expression is unre-
liable, and we adopt the following linear correction:

log T — 3.3
10g Teff,corr = ( 08 Lo ) (CXP - 6) + 3.3. (3)

S 15-6

For main sequence candidate companions, we converted
the effective temperature and absolute magnitude into spectral
type using the grid by Pecaut & Mamajek (2013)* (see also
Pecaut et al. 2012). In some cases, when the candidates are
located close to the primary star, the derived (Teg, M) combi-
nation is inconsistent due to the contamination of the Ggp and
Grp magnitudes by the bright CCs or RRLs. The G magnitude
and astrometry can be correct while color photometry is contam-
inated, given the different sizes of the pixel windows: 18 pix-
els along scan for bright stars in the astrometric field (G band)
against 60 pixels (3.5”) for Ggp and Grp. When there was an
inconsistency, we assumed that the candidate is a main sequence
star and based our provisional spectral type determination on the
absolute magnitude M alone.

5. Detected companions
5.1. Cepheid companions

We individually examined the fields of the Bound or Near can-
didates by eye to check the dubious cases. The resulting list of
candidates is presented in Table 1. We present in Figs. A.1-
A.5 the Second Generation Digitized Sky Survey Red (DSS2-
Red) fields around the CCs that show Bound candidate compan-
ions. Their properties and those of their companions are listed
in Tables A.1 and A.2. Selected CCs with Near candidates are
shown in Figs. A.6 and A.7. The full list of detected Near can-
didate companions of CCs is given in Tables A.1 and A.2.

For the more distant CCs of our sample, the probability of
chance associations for the detected candidate companions is
increased compared to the closer CCs and the RRLs (which
are on average located at shorter distances than CCs). Figure 1
shows the histogram of the CCs with detected Near and Bound
candidates. The decrease in the sensitivity of the algorithm with
distance is clearly visible in the right panel. We observe a peak
fraction of ~10% of CCs with Bound candidate companions.
A validation of the candidate companions for the distant CCs
will be possible using the future Gaia data releases, which will
provide more accurate estimates of their relative parallaxes and
tangential velocities. The measurement of radial velocities for
the CCs and their candidate companions will provide their full
3D relative velocity and therefore enable a stringent test of their
gravitational bind.

5.2. RR Lyrae star companions

RR Lyrae stars are old population stars, with a typical age of
10 Ga, that usually belong to the thick disk of the Galaxy. On
average, nearby RRLs have significantly faster proper motions

3 http://www.pas.rochester.edu/~emamajek/EEM_dwarf_
UBVIJHK_colors_Teff.txt
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Table 1. Wide companions of Cepheids for the targets with Near (N) or Bound (B) resolved candidate companions.

Target Wep, Period Total N B Vis. Comment
(mas) (d)
Cepheids with Bound candidates
TV CMa 0.477 4.67 4 1 1 v/ Tight, high probability bound companion
ER Car 0.959 7.72 41 2 1 V' Very wide comoving candidate
CECasB 0.343 4.48 15 1 1 V' Known physical Cepheid companion (CE Cas A)
DF Cas 0.462 3.83 7 1 1 v Slow PM, possible association
V0659 Cen 1.287 5.62 66 1 1 v/ Very wide comoving candidate
delta Cep 3.755 5.37 53 1 1 v/ Known physical companion (§ Cep B)
AX Cir 1.917 5.27 79 2 1 v Wide, probably bound companion
BP Cir 1.700 2.40 101 2 1 v/ Very wide comoving companion, possible group
R Cru 1.170 5.83 49 1 1 v/ Tight, probably bound companion
X Cru 0.678 6.22 36 2 1 v Wide, possibly bound companion
VW Cru 0.710 5.27 22 1 1 v/ Possible comoving group
V0532 Cyg 0.727 4.68 19 1 1 v Wide, probably bound companion
V1046 Cyg 0.372 4.94 6 1 1 v/ Tight, high probability bound companion
CV Mon 0.601 5.38 27 3 2 V' High probability bound candidates
RS Nor 0.487 6.20 36 2 1 V' Tight, probably bound companion
SY Nor 0429  12.65 14 2 1 v/ Tight, probably bound companion
QZ Nor 0.556 5.41 69 3 1 v Wide, possible chance association
AW Per 1.218 6.46 10 1 1 v/ Tight bound companion
U Sgr 1.669 6.75 165 3 2 Very wide, possible comoving cluster
V0350 Sgr 1.141 5.15 57 2 1 V' High probability bound companion
V0950 Sco 1.073 4.82 92 2 1 v' Likely bound candidate
CM Sct 0.518 3.92 21 1 1 v/ Wide comoving association
EV Sct 0.556 4.40 43 1 1 v/ Wide, probably bound candidate, possible group
Polaris (¢ UMi) 7.540 5.67 15 1 1 v Known physical companion (Polaris B)
SX Vel 0.490 9.55 17 1 1 v Tight, high probability bound companion
CS Vel 0.292 5.90 100 1 1 V' Possibly bound candidate and comoving group
DK Vel 0.431 2.48 17 1 1 v Wide, possibly bound candidate
Cepheids with Near candidates
FF Aql 2.048 6.40 60 1 0 -  PMdivergence, unlikely association
V0916 Aqgl 0.325 13.44 3 1 0 V  Tight companion, small parallax
eta Aql 3.755 7.18 33 1 0 - PMdivergence, unlikely association
CK Cam 1.959 3.29 27 1 0 -  PMdivergence, unlikely association
Y Car 0.695 3.64 32 1 0 v  Comoving group, possible cluster
UX Car 0.710 3.68 29 1 0 - Very wide, unlikely association
UZ Car 0.437 5.20 30 1 O Very wide, PM divergence, unlikely association
XY Car 0.366 1243 9 1 0 - Verywide, possible comoving star
EY Car 0.446 2.88 27 1 0 - Tangential velocity difference, possible association
DD Cas 0.322 9.81 31 0 - Tangential velocity difference, unlikely association
VW Cen 0256  15.04 5 1 0 v  Verywide, possibly comoving companion
XX Cen 0.589 10.95 23 1 0 - PM difference, unlikely association
AY Cen 0.639 5.31 45 1 0 v Slight PM divergence, possible association
AV Cir 1.802 3.07 57 1 O — Very wide, unrelated field stars
TCru 1.306 6.73 45 1 0 -  Wide, PM divergence, unlikely association
SUCyg 1.234 3.85 74 1 0 v Probably comoving unbound companion
SZCyg 0.419 15.11 5 1 0 v  Possible comoving companion
V1334 Cyg 1.502 4.75 24 1 0 v  Probable comoving companion
RR Lac 0.515 6.42 12 1 O - Wide, unlikely association
S Nor 1.126 9.75 104 2 0 v Very wide, one possibly bound and one unbound
U Nor 0.699 12.64 35 1 0 - Wide, unlikely association
Y Oph 1.186  17.12 20 1 0 v Very wide, possibly comoving candidate
AQPup 0312  30.10 6 1 0 v  Possible comoving companion
Y Sgr 2.146 5.77 99 2 0 v Wide, possible association
XX Sgr 0.733 6.42 39 1 0 -  Tangential velocity difference, unlikely association
AP Sgr 1.287 5.06 91 2 0 V  Wide, possibly comoving candidate
Y Sct 0.581 10.34 18 1 0 - Wide, unlikely association
RTrA 1.733 3.39 66 1 0 v Wide, uncertain companion, slight PM offset
LR TrA 1.048 3.44 40 1 O - Wide, unlikely association, PM difference

Notes. The “w.,,” column gives their expected parallax from the renormalized period-luminosity distances by Berdnikov et al. (2000). The
“Total” column gives the number of GDR2 field stars with compatible parallaxes that were examined as candidates. The “Vis” column indicates
the result of a visual inspection of the field of the considered targets, with v indicating a likely comoving system and — a dubious association. The
observational properties and field charts of the Cepheids and their associated candidate companions are presented in Appendix A.
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than the surrounding field stars, making their common proper
motion companions easier to identify. We applied our compan-
ion search criteria to 789 RRLs, and this resulted in 7 targets
with candidates flagged as Bound candidates and 22 flagged as
Near. The 7 RRLs with Bound candidates are listed in Table 2,
and their observational properties are given in Table B.1. The
full list of detected Near candidate companions of RRLs is
given in Tables B.2 and B.3. The histogram of the RRLs and
various variable stars with detected candidate companions is pre-
sented in Fig. 2. For the nearby stars, we detect Bound candi-
date companions around ~5—10% of the examined targets. The
fields surrounding the RRLs with Bound candidates are shown
in Figs. B.1 and B.2, and a selection of the RRLs with Near
candidates is shown in Fig. B.2.

5.3. Variables of other classes

Fourteen targets that were incorrectly classified as RRLs have
Bound candidate companions. The results of the visual inspec-
tion of the corresponding fields are given in Table 2 and the
detailed candidate properties are listed in Table C.1. Their
respective field charts are presented in Figs. C.1-C.3.

6. Notes on individual stars

In this section we present a selection of individual stars from our
sample that host highly probable resolved physical companions.
We also discuss the stars for which a significant PMa was iden-
tified in Paper 1.

6.1. Cepheids
6.1.1. UAq|

The quest for masses and luminosities for CCs has benefit-
ted greatly from the availability of the ultraviolet spectrum
using the International Ultraviolet Explorer (IUE) and HST tele-
scopes. Through these studies, the picture of multiplicity has
become increasingly complex. The Cepheid U Aql (P = 7.02d;
HD 183344) is a good case in point. Its substantial orbital motion
was only recognized in 1979 (Slovak et al. 1979). The discus-
sion of Welch et al. (1987) provides an orbit and a summary
of previous velocity information. The spectrum of the hottest
star in the system dominates in the ultraviolet below about
A = 200nm, and IUE observations have been discussed by
Bohm-Vitense & Proffitt (1985) and Evans (1992b). These stud-
ies provide a temperature of 9300 + 100 K and a spectral type of
B9.8V, respectively.

We detect a very strong PMa on U Aqgl. From its combina-
tion with the spectroscopic orbital parameters by Gallenne et al.
(2018b), we determined in Paper I that its companion has a mass
of 1.9+0.3 My and is orbiting on a 5.6 au orbit. This mass is
slightly lower than expected from the effective temperature of
Teg = 9300+ 100K determined from IUE spectroscopy by
Bohm-Vitense & Proffitt (1985) and the spectral type of B9.8V
from Evans (1992b). We do not detect any resolved companion
of U Aql.

6.1.2. FF Aql

FF Aql is a known binary system whose spectroscopic orbital
parameters were determined by Evans et al. (1990). The astro-
metric observations by Benedict et al. (2007) using the HST Fine
Guidance Sensor (FGS) revealed the orbital shift of the photo-
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the observed CCs with candidate companions. The error bars represent
the binomial proportion 68% confidence interval.
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panel: fraction of stars with candidate companions. The error bars rep-
resent the binomial proportion 68% confidence interval.

center of the system. In Paper I, we identified a strong PMa on
FF Aql with a S/N from the GDR2 measurement of Ag, = 5.6.
Combining the PM anomalies with the spectroscopic orbital
parameters by Gallenne et al. (2018b), we derived the orbital
parameters of the system and the mass of the secondary compo-
nent (my =~ 0.8 +0.1 My; Paper I), which is lower than the esti-
mate of 1.5 Mg by Evans et al. (1990) from IUE spectroscopy.
Future Gaia data releases will provide an accurate determina-
tion of the parameters of the photocenter astrometric orbit, as
the orbital period of the system (P = 1433 d) is a good match to
the observing lifetime of the satellite.

Gallenne et al. (2014b) searched for resolved companions of
the short-period Cepheid FF Aql using adaptive optics up to a
separation of 1.7”, but did not find any. Gallenne et al. (2018b)
detected a possible close-in companion using near-infrared
interferometry. The visual companion found by Jeffers et al.
(1963) and recovered by Roberts (2011) and Evans et al.
(2016a) is Gaia DR2 4514145288240592512 at a separa-
tion of 6.98” from the CC. We find that its GDR2 par-

allax (@ = 1.971+£0.041 mas) is compatible with that of
FF Aql (w = 1.839+0.107 mas). However, its PM vector
(u = [-8.52+0.07,-19.93+0.07]masa™!) is very different

from the mean Hipparcos-Gaia PM vector of the CC (upg =
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[-0.14 +£0.01,-9.34 +0.01] mas a~'). This corresponds to a pro-
jected relative velocity of ~30km s~!. This in principle excludes
that the stars are gravitationally bound, confirming the conclu-
sion by Evans et al. (1990). However, the coincidence in terms
of position and parallax is quite remarkable from a statistical
point of view. This candidate could still be comoving with the
CC, and may be bound, if it is a close binary and its measured
PM is affected by its orbital motion.

6.1.3. RW Cam

RW Cam exhibits a strong PMa signal-to-noise ratio (Ag, =
9.3) (Paper I). It is a long-period CC (P = 16.41d) that is
a known binary (Madore 1977; Bohm-Vitense & Proffitt 1985;
Evans 1994). As reported in Paper I, we estimate that its orbital
period is probably on the order of a few hundred years, for a
semimajor axis of =200 mas. We do not detect any additional
resolved companion of RW Cam.

6.1.4. Y Car

Bohm-Vitense et al. (1997) found that the spectral type of the
companion of Y Car is B9V, and Evans et al. (2005) showed that
Y Car is actually a triple system. This companion was detected
by Gallenne et al. (2018b) via near-infrared interferometry. We
reported in Paper I a very strong PMa S/N (Ag, = 14.8) that con-
firms the multiplicity of this short-period double-mode Cepheid
(P = 3.64d for the fundamental mode). We did not detect any
Bound candidate companion of Y Car, but we identified several
nearby stars with comparable PM vectors that could constitute a
comoving group (Fig. A.6).

6.1.5. YZ Car

The combination of the spectroscopic orbital elements of
Gallenne et al. (2018b; which are in agreement with those deter-
mined by Anderson et al. 2016) and the PMa vectors results in a
companion mass of my ~ 1.9 0.3 M (Paper I) for the compan-
ion of the long-period pulsator YZ Car (P = 18.2d). The inter-
ferometric companion search by Gallenne et al. (2018b) did not
reveal the faint secondary, but established an upper limit of B3V
on its spectral type, in agreement with the estimate of B§V-AQV
from Evans & Butler (1993) and the mass derived in Paper I,
which corresponds to an A-type dwarf.

We did not detect any Bound candidate companions, but two
nearby stars present comparable proper motions and parallaxes
(Fig. A.6).

6.1.6. CE Cas AB

This visual binary is composed of two CCs, labeled components
A (P =5.14d) and B (P = 4.48d). This is the only such con-
figuration known in the Milky Way. The projected separation of
the two stars is 7.2 kau, corresponding to an orbital period on
the order of 5000 years. CE Cas A and B are members of the
open cluster NGC 7790 (Majaess et al. 2013), together with the
Cepheid CF Cas (P = 4.875d). The two components of CE Cas
are present in the GDR2, but with statistically different paral-
laxes (w4 = 0.317 £0.031 mas; wp = 0.262 + 0.030 mas). From
their PM vectors, we confirm, however, that the two Cepheids are
gravitationally bound (Fig. A.1). The GDR2 parallax of compo-
nent B is likely biased, possibly due to light contamination from
the nearby component A. We did not find any additional resolved
candidate companions of CE Cas.
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6.1.7. SU Cas

The short-period pulsator SU Cas (P = 1.95d) is a member
of a cluster of young stellar objects (Majaess et al. 2012a), and
its distance (d = 414+ 11pc; w = 2.42+0.06 mas) was esti-
mated by Majaess et al. (2012b). This value is compatible with
the GDR2 parallax (@ = 2.15+0.08 mas). SU Cas is located
close to a reflection nebula (Turner & Evans 1984; Magakian
2003). It exhibits a strong PMa with a S/N of Ag, = 5.6 (Paper I).
The combination of the spectroscopic orbital parameters deter-
mined by Groenewegen (2008) and the PM anomalies point to
the presence of a very low mass companion on a tight orbit of
only 1.7 au. This companion is different from the 2.4 M, candi-
date with spectral type B9.5V spectral type listed by Evans et al.
(2013) that orbits the Cepheid at a much larger distance of
~100 au. No detection is reported by Gallenne et al. (2015) from
near-infrared interferometric observations, setting an upper limit
of AO to the spectral type of close-in companions. We did not
detect any Bound resolved stellar companion of SU Cas in the
GDR2.

6.1.8. V0659 Cen

Evans et al. (2013) identified a close companion of the short-
period Cepheid V0659 Cen (P = 5.62d) at a separation of 0.63"”
using HST/WFC3 imaging. We found a marginal PMa at the
Hipparcos epoch (Agj, = 2.7), but it is not significant at the
GDR2 epoch (Agy = 1.6). We note, however, that the error bars
of the GDR2 PM vector are larger than usual, possibly due to the
presence of the close companion at a separation of 0.63" that is
not listed separately in the GDR2 catalog.

We found a resolved common proper motion candidate star
of spectral type M3V at a very wide projected separation of
48kau (Fig. A.1) that does not correspond to the candidates
observed by Evans et al. (2016a; see also Evans et al. 2016b).

6.1.9. 6 Cep

As shown by Majaess et al. (2012c), the prototype Cepheid
6 Cep is a member of a cluster that also includes the K1.5b super-
giant £ Cep. This Cepheid has shown a periodic X-ray variabil-
ity (Engle et al. 2017) and evidence of a significant mass loss
(Matthews et al. 2012). Figure 3 shows the field around ¢ Cep,
with some of the stars in the cluster that show a comparable
proper motion.

The bright visual companion 6Cep B (HD213307)
is associated with its surrounding nebula (Marengo et al.
2010; Matthews et al. 2012) as confirmed by the pres-
ence of a bow shock. The GDR2 parallax of 6Cep B
(@ep = 3.393+£0.049 mas) is noticeably smaller than the
HST FGS determination by Benedict et al. (2002) (wggs =
3.66 +0.15mas), as well as the Hipparcos parallax (wyi, =
3.77+0.16 mas) and the combined cluster distance from
Majaess et al. (2012¢) (@comp = 3.68 +0.08 mas). The GDR2
parallax of 6Cep B is consistent with the distance derived
by Borgniet et al. (2018) using the HR-SPIPS spectral analysis
technique. Rescaling the SPIPS fit of Mérand et al. (2015), this
larger distance corresponds to a spectroscopic projection factor
of p = 1.39 £ 0.03. The spectral type of ¢ Cep B was estimated in
the B7-B8 III-IV range by Benedict et al. (2002), with a probable
FOV companion. This corresponds to a mass of ~5.6 M, for the
pair Ba+Bb. The PMa vector of 6 Cep B exhibits S/N levels of
Amip = 3.8 and Ag, = 2.1, respectively for Hipparcos and GDR2
(Table 3), confirming its binarity. Its differential tangential
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Table 2. RR Lyrae stars and other types of variable stars with Near (N) or Bound (B) resolved candidate companions.

Target wgy,  Period Total N B Vis. Comment
(mas) (d)
RR Lyrae with Bound candidates
OV And 0.938 0.471 9 1 1 v Tight, high probability bound companion
CS Del 0.635 0.366 7 1 1 v Very tight, high probability bound companion
V0893 Her 2.679 0.492 13 1 1 v High probability bound, slight PM difference
RR Leo 1.032  0.452 1 1 1 v Tight, high probability bound system
SS Oct 0.862 0.622/0 31 1 v Very tight bound companion
EY Oph 1.850 NA 36 2 1 v Slight PM divergence, possibly bound companion
V0487 Sco 1.069  0.329 59 1 1 v Fast PM, probably bound companion
RR Lyrae with Near candidates

V0830 Cyg 0.618 0.401/0 27 1 0 - Probable chance association
CZ Lac 0.852 0.432/0 25 1 0 v PMa, probably bound, triple system
V0424 Lyr 1.579 0.580/0 33 1 0 - Rich star field, probable chance association
AG Nor 0.978  0.505 68 3 0 v Close parallax value, possibly comoving
KP Nor 0.520 NA 25 1 0 — PM difference, chance association
IT Oph 6.206 NA 578 1 0 - Dense star field, chance association
MS Oph 0.658 NA 26 1 0 - Probable chance association
V1693 Oph 0.677 0.522 27 1 0 Uncertain association
UY Ori 2.840 NA 18 1 0 - Divergent PM vectors
V1154 Ori 1.087 NA 51 1 O v Probable comoving association
V0701 Sgr 2.000 0.627 127 2 0 - PM difference, chance association
V2481 Sgr 0910 NA 105 1 O - Divergent PM, chance association
V2626 Sgr 1.363  0.462 8 1 0 v Slight PM position angle difference, uncertain
V3531 Sgr 0.765 0.542 26 1 0 Very wide, unlikely association
V4107 Sgr 1.265 NA 224 1 0 - Dense stellar field, association unclear
V4313 Sgr 1.700 NA 279 2 0 v Possible comoving group
V4355 Sgr 2433 NA 361 5 O - Probable chance association
V4591 Sgr 1.837 NA 276 1 0 - PM difference, chance association
1Y Sco 2.530 NA 309 2 0 - Rich star field, chance association
KN Sco 0.959 NA 43 1 0 - Unlikely association
V0828 Sco 0.877 NA 33 1 0 - PM difference, chance association
V0348 Sct 1.249 NA 45 1 0 - Chance association

Other variable types with Bound candidates
HM Agql 1.829  0.345 28 1 1 v Relatively wide companion, likely bound
EN CMi 0.569  0.540 8 1 1 v Wide, high probability bound candidate
NQ Cyg 0.938 0.312 25 1 1 v Eclipsing binary, fast PM, probably bound companion
V1391 Cyg 1232 0.596 17 1 1 v Eclipsing binary, tight companion
V2121 Cyg  25.597  0.800¢ 31 1 v v Dor pulsator, PMa, fast proper motion
UU Dor 0.856 NA 5 1 1 v Eclipsing binary, tight high probability bound companion
IW Lib 3571 1.783% 22 1 1 v W UMa eclipsing, high probability bound companion
AZ Men 1.088 0.318 8§ 1 1 v High probability bound companion
V1171 Oph 1.099 NA 16 2 1 v Uncertain variable class, high probability bound companion
V1330 Sgr 1.229  0.427 193 2 1 - Wide, uncertain companion
V1382 Sgr 1.611 0.493 316 1 1 v Comoving candidate, slight PM difference
V2248 Sgr 1.948 0.315 22 1 1 v W UMa eclipsing, high probability bound companion
V3166 Sgr 6.646 NA 192 3 2 v Uncertain variable class, two high probability bound
HR Sco 7.370 NA 425 2 1 - Uncertain variable class, dense field, likely chance association

Notes. A mention of “/0” after the period indicates a fundamental mode pulsator as identified in the GDR2 catalog (rrlyrae table). The observa-
tional properties and field charts of the RRLs and their associated candidate companions are presented in Appendix B.

References. “Cuypers et al. (2009); ®’Pojmanski (2002).

velocity with respect to A is dvg, = 1.18 £0.03 kms™! (Table 3).
This is comparable to the escape velocity at a separation of
12kau, ie., vee ~ 0.90kms™' for a total system mass of
11 M, (for the four components of the system, see below). Mea-
suring the radial velocity of 6 Cep B is unfortunately a diffi-
cult task as it is a fast rotating star (v;or Sini = 140km s71;
Bernacca & Perinotto 1970). Moreover, the presence of the FOV
companion 6 Cep Bb with an estimated orbital period of 390d
and an induced orbital velocity amplitude of K; ~ 15kms™!
(Benedict et al. 2002) also complicates the measurement of the

y-velocity of Ba+Bb (i.e., its center-of-mass radial velocity). So
at the moment, we cannot firmly conclude that 6 Cep B is grav-
itationally bound to A. However, the low differential tangential
velocity of the two objects, their proximity in space, and their
high masses are statistically strong indications that they are grav-
itationally bound.

A variation in the vy-velocity of §Cep A reported by
Andersonetal. (2015) revealed the presence of the close-in
orbiting companion é Cep Ab. ¢ Cep exhibits a strong PMa in the
Hipparcos and GDR2 catalogs, at S/N levels of Ag;, = 7.0 and
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Fig. 3. Field around ¢ Cep (left panel: wide field; right panel: narrow field), with its companion 6 Cep B (yellow star) and other comoving stars.

The background image is from the DSS2-Red.

Table 3. Absolute and relative motion of §Cep A and 6Cep B
(HD213307).

6Cep A 0CepB
a 9 a o

Hug +14.06904009 +2.7030'01(, +14.1340‘009 +3.5480'0|5
dvgn +0.089¢.013 +1.181¢001
Hy +15.350,22 +3-520.18 +16.190459 +4.280'50
AIIH +1.28023 +0.82()_19 +2.060_59 +0.73¢.5
Ay 7.0 3.8

Hao +17.64¢; +3.98073 +]4.090_()9 +3.790_09
AHGZ +3.570'32 +1 .270'72 —0.040‘11 +0.240A12
Agy 4.7 2.1

Notes. The absolute and linear proper motions (u and Au) are expressed
in masa™' and the differential tangential velocity of B relative to A
(dvgy) in kms™!. The angular proper motion was converted to velocity
using the GDR2 parallax of component B (wg,p = 3.393 +0.049 mas).

Agp = 4.7 (see Table 3 and Paper 1), respectively. Adopting the
GDR2 parallax of 6 Cep B as that of the system, they correspond
to tangential velocity anomalies of Avgpip = 2.1 £ 0.4km s~
and Avgnge = 5.3+1.5km s~L. These velocities are too large
to be induced by the orbital motion of the distant companion
6 Cep B. In Paper I, the mass of the close-in companion ¢ Cep Ab
was estimated to my, = 0.72+0.11 My, assuming a mass of
my = 4.80%0.72 M, for the CC. This corresponds to a red dwarf
between the spectral types K3V and MOV (Pecaut & Mamajek
2013). This late spectral type explains why this companion
could not be detected by Gallenneetal. (2016) using optical
interferometry.

Based on the observed PMa, we confirm that ¢ Cep is prob-
ably a quadruple system, pending the confirmation that compo-
nent B is gravitationally bound to A.

6.1.10. CP Cep

Madore (1977) argued that the long-period pulsator CP Cep
is a binary with a B3 spectral type companion. From Paper I,
CP Cep (P = 17.86d) exhibits a significant PMa with a S/N
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of Agijp = 3.2. We therefore confirm the binarity of this CC
with a close-in orbiting companion. We do not detect additional
resolved companions in the GDR2 catalog.

6.1.11. AX Cir

We reported in Paper I the presence of a strong PMa on AX Cir
induced by its close-in orbiting companion (Jaschek & Jaschek
1960; Petterson et al. 2004) of spectral type B6V (Evans 1994).
This companion was resolved using optical interferometry
by Gallenne et al. (2014a). The combination of the GDR2
astrometric PM vectors and the spectroscopic orbit enabled us
in Paper I to determine that the close-in companion of AX Cir
has a mass of 5.2 M,,, larger than that of the Cepheid. This
value, compared with the mass from a STIS spectrum (in prep.)
of 3.5 My (B9V), suggests that the companion is itself a binary.

We also identified a very faint Bound candidate (Fig. A.1)
at a large projected separation of 42 kau, whose spectral type is
M3.5V (Table A.1).

6.1.12. BP Cir

The short-period BP Cir (P = 2.398d) is a known binary star
through its changing y-velocity (Petterson et al. 2004), although
its orbital elements are still uncertain. In Paper I, we did not
detect any significant PMa, possibly due to the very long orbital
period. Gallenne et al. (2018b) detected a close-in companion of
BP Cir from near-infrared interferometry, at a separation corre-
sponding to an orbital period of ~14680d.

We identified a very low mass common proper motion can-
didate companion of spectral type M2V at a large projected sep-
aration of 39 kau, with a parallax of wg, = 1.53 +0.19 mas). We
note that the GDR?2 parallax of BP Cir (wg, = 1.02 +0.04 mas)
is significantly different from the value derived from the Leavitt
law (wpL = 1.70 mas).

6.1.13. RCru

R Cru is a suspected binary from its vy-velocity drift
(Lloyd Evans 1982). We detected a tight, Bound comoving com-
panion of R Cru (Fig. A.2) of spectral type G8V at a projected
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separation of 7.70” (6.6 kau) from the CC (Table A.1). This com-
panion was also identified by Evans et al. (2016a) from HST
imaging at a separation of 7.64”. The slight change in separation
between their observing epoch (2014.0) and the GDR2 epoch
(2015.5) is indicative of a possible orbital motion. The spectral
type that we determine for R Cru B is compatible with this star
being the source of the X-ray emission detected by Evans et al.
(2016b) using XMM imaging.

In addition, we found a marginal PMa (Ag, = 2.2; visible in
Fig. A.2) that indicates the possible presence of another close-in
companion.

6.1.14. X Cru

The resolved companion of X Cru (Fig. A.2) is a main sequence
solar-type dwarf (T = 6000+200K, R = 1.0+0.1 Ry) of
likely spectral type G1V (Table A.1). It is located at a large pro-
jected separation of 40 kau from the CC.

6.1.15. SU Cru

SU Cru is a known spectroscopic binary (Szabados 1996) that
shows a high PMa (Ag, = 7.4; Paper I). However, this signal
is possibly biased by a significant error in the Hipparcos PM or
position values, as the PM vector in the GDR2 catalog is much
lower. We did not detect a resolved companion.

6.1.16. VW Cru

VW Cru (P = 5.265d) is not a known binary CC (Szabados
2003). Its resolved candidate Bound companion is located at a
projected separation of 29kau (Fig. A.2). It is a hot dwarf of
spectral type A2V (Table A.1).

6.1.17. SU Cyg

SU Cyg is a 3.845d period CC that exhibits a very strong PMa
of Agp = 15.9. It is a member of the open cluster Turner
9 (Anderson et al. 2013), and a known binary, whose orbital
parameters were determined by Evans (1988). The close-in main
sequence companion is a HgMn star (Wahlgren & Evans 1998)
for which we derived a provisional mass of m, = 4.7 +0.7 M, in
Paper L.

Turner et al. (1997) suggested that the close A2V nearby
field star (#1 in their Table 1) may be physically associated
with the CC. This source (Gaia DR2 2031776202584173952)
is located at a separation of 24.8”, west of the CC (Fig. A.6).
Its GDR?2 parallax (wgy = 1.157 £0.034 mas) is within 1o of
the GDR2 parallax of SU Cyg (wgy = 1.198 +£0.052 mas). The
difference in GDR2 tangential velocity between the two stars
reaches dvg, = 4.5+0.9kms™!, which indicates that this field
star is not gravitationally bound to the CC (the escape velocity
is vee ~ 1kms™! at the projected separation). The difference
is even larger if we consider the difference between the proper
motion uyg of the CC (mean PM between the Hipparcos and
GDR2 epochs) and the GDR2 PM vector of the A2V field star.
However, as argued by Turner et al. (1997), the GDR2 parallax
confirms its small physical separation from the CC, which makes
it a good fiducial to estimate the color excess E(B—V) of the CC.

6.1.18. V0532 Cyg

The short-period Cepheid V0532 Cyg is a suspected binary star
(Gorynya et al. 1996a) with a possible period of around 400 d.

We did not detect any significant PMa, but a common proper
motion companion of spectral type FOV (Table A.1) is present at
a projected separation of 29 kau (Fig. A.2).

6.1.19. V1046 Cyg

We identified a close resolved common proper motion compan-
ion of V1046 Cyg at a projected separation of 6.7 kau (Fig. A.2).
It is a hot dwarf of spectral type B8V, with a probable mass
around 3.5 M, (Table A.1).

6.1.20. V1334 Cyg

This short-period, first overtone CC is a known spectroscopic
(Evans 1995, 2000) and interferometric (Gallenne et al. 2013,
2018a) binary star, that exhibits the strongest PMa of our sample
(Agz = 31.0). A detailed discussion of the PMa of V1334 Cyg,
and its use to determine the physical parameters of the system,
is presented in Paper 1.

A common proper motion companion (Gaia DR2
1964855939153629312) is present at a separation of 66”
(44 kau, Fig. A.7). Its parallax of wg, = 1.409 +0.318 mas is
in good agreement with the value wgig = 1.388 £0.015 mas
determined by Gallenne et al. (2018a). Adopting the same color
excess E(B—V) = 0.025+0.009 as the CC (Kovtyukh et al.
2008), the G band magnitude of the candidate companion
(mg = 19.7) is Mg = 10.4. This star is thus likely a low
mass red dwarf of early M spectral type. This hypothesis is
compatible with its relatively large G — Grp = 1.1 color index.

6.1.21. £ Gem

The association of the nearby visual companion HD 268518
(WDS J07041+2034 B) with the 10d period CC ¢Gem
(HD 52973) is disproved by its very different GDR2 parallax
(wg, = 28.65 +£0.06 mas) and proper motion. It was found to be
a spectroscopic binary with an F4V spectral type, and proposed
to be a physical companion of the CC by Majaess et al. (2012d).
We did not detect any other resolved candidate companions to
¢ Gem. However, { Gem displays a marginal PMa at a level of
Agy = 2.3 (Paper 1), which indicates the possible presence of a
close-in orbiting companion, although it shows no sign of orbital
motion (Evans et al. 2015).

6.1.22. T Mon

T Mon is a rare long-period CC (P = 27.02d). It exhibits a
moderate PMa (Ag, = 2.6), from which we derived a high
companion mass of 8.4 My (Paper 1), comparable to the mass
of the CC. This is in line with the conclusions by Evans et al.
(1999) who proposed that component B is a chemically pecu-
liar star of the magnetic Ap @ CVn type, and likely to be a
binary itself, as chemically peculiar stars often are. However,
no detection was reported from near-infrared interferometry by
Gallenne et al. (2018b). We did not identify resolved common
proper motion candidates.

6.1.23. CV Mon

CV Mon is a member of the open cluster van den Bergh
1 (Chenetal. 2015), with a color excess E(B-V) =
0.75+0.02 mag (Turner et al. 1998). This value is consistent
with that of Groenewegen (2013), E(B-V) = 0.722, which we
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adopt here (Table A.1). It shows a PMa at a level of Ag;, = 2.7,
but of only Agy = 2.0 (Paper I).

As shown in Fig. A.3, we identified two nearby
stars, Gaia DR2 3127142224816361600 and Gaia DR2
3127142327895572352, that are potentially gravitationally
bound to the CC. The position angle of the PM vector of the
latter differs by 15.7° from that of the CC. This is slightly
more than our acceptable limit for Bound companions (15° at
this separation); nevertheless, we have included it in our Bound
list in Table A.1. These two stars were already identified by
Evans & Udalski (1994) as probable companions; they were
measured at slightly larger angular separations from the CC,
which may be due to their orbital motion. Their tangential veloc-
ities relative to the target are below 1 kms™!, therefore compati-
ble with being gravitationally bound to the CC at their respective
projected linear separations of 18 and 24 kau. The spectral type
of both companions is around B8V, corresponding to a mass of
~3.5 M (Pecaut & Mamajek 2013).

6.1.24. S Mus

S Mus (P = 9.66d) is a known spectroscopic binary (Evans
1990; Bohm-Vitense et al. 1990), and a member of the open
cluster ASCC 69 (Andersonetal. 2013; Evansetal. 2014,
Chen et al. 2017). We detected a moderate PMa (Paper 1),
which we used in combination with the spectroscopic orbit
of Gallenne et al. (2018b) to determine a mass of m, =
2.2+0.3 M, for the secondary star. This is significantly lower
than expected from the B3.5V spectral type estimated by
Evans et al. (1994) from IUE observations, but it should be
noted that the short orbital period of S Mus (P, = 505d)
results in a strong smearing of the PMa, particularly for the
Hipparcos epoch. The low mass we determined could therefore
be significantly biased and should be considered preliminary.
Gallenne et al. (2018b) detected the companion of S Mus from
near-infrared interferometry, and established the orbital elements
of the system. Epoch astrometry from future Gaia data releases
will provide a very accurate astrometric orbit of the photocenter
of the system.

The resolved candidate companion reported by Evans et al.
(2016b, and in prep.) is not present in the GDR2, possibly due
to its angular proximity to the bright CC. Evans et al. concluded
that it is not a young companion, but that X-rays are probably
produced by the spectroscopic binary companion. We did not
detect other Bound candidate companions.

6.1.25. S Nor

S Nor (P = 9.75d) is known to host a resolved companion
at a separation of 0.90” (equivalent to ~800 au) discovered by
Evans et al. (2013). We did not detect this companion in the
GDR?2 catalog as it is located too close to the CC. We did not find
other, more distant Bound candidate companions, and we do not
confirm the companion proposed by Evans & Udalski (1994).
However, S Nor is a member of the open cluster NGC 6087
(Anderson et al. 2013), and is therefore located in a rich stellar
field where many Near candidates are present with comparable
PM vectors (Fig. A.7).

We observed a significant PMa in the Hipparcos (Ag;p, = 3.8)
and moderate in the GDR2 (Ag, = 2.2) that confirm the pres-
ence of a close-in orbiting component. Combining them with
the spectroscopic orbital parameters by Groenewegen (2008)
(who assumed a circular orbit), we derived a companion mass of
1.5+ 0.2 M (Paper I). The PMa is an important confirmation of
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a close orbit, which has been difficult to identify. There are three
well-covered seasons of CORAVEL data from Mermilliod et al.
(1987) and Bersier et al. (1994) showing little evidence of orbital
motion. No signature of a close-in companion was found by
Gallenne et al. (2018b) in radial velocity at a level of +1kms~".

6.1.26. RS Nor

RS Nor (P = 6.20d) does not show a significant PMa (Paper I)
and is not a known binary. We detected a relatively massive
Bound candidate companion of spectral type A1V (Table A.1)
at a projected separation of 15 kau (Fig. A.3).

6.1.27. SY Nor

SY Nor (P = 12.64 d) is a known binary system (Szabados 2003)
with a close-in B4.5V companion identified from IUE observa-
tions by Evans (1994). We detected a strong PMa induced by this
companion (Ag, = 8.0).

We also detected two resolved, gravitationally bound
candidates (Fig. A.3). The resolved companions have
respective projected separations of 5.7kau and 42kau. The
closer resolved candidate (separation 5.7kau), Gaia DR2
5884729035245399424 (SY Nor B), was identified by
Proust et al. (1981) and is discussed in Appendix A of Evans
(1994) as potentially bound to the CC. Its B2V spectral type
corresponds to a mass of =7 Mg, which is comparable to the
expected CC mass (6.2 M,,). This high mass may indicate that
B is itself a binary. The AB pair is present in the WDS catalog
(WDS J15548-5434; Mason et al. 2001), and we list in Table 4
the relative position of component B. We confirm that SY Nor
B is gravitationally bound to the CC, and although its orbital
period is likely on the order of 100ka, its astrometric orbital
displacement may be detectable in the future Gaia data releases
or, for example, by using the astrometric dual field mode of the
GRAVITY instrument (Gravity Collaboration 2017).

The wider candidate companion (42kau), of approximate
spectral type F6V, marginally satisfies the gravitational bound
condition on the tangential velocity. However, considering that
the inner system is already composed of at least three massive
stars with a total mass on the order of 20 M, we classify this
star as a Bound candidate. SY Nor is therefore likely a hierarchi-
cal quadruple system, possibly quintuple if B is a binary.

6.1.28. QZ Nor

The short-period, first overtone (Klagyivik & Szabados 2009)
Cepheid QZ Nor (P = 3.786d) is not known to be a binary
system (Szabados 2003). It probably belongs to the open clus-
ter NGC 6067 (Eggen 1983; Anderson et al. 2013), together
with the Cepheid V0340 Nor. We identified a low mass (spec-
tral type K1V, Table A.1), common proper motion compan-
ion at a large projected separation of 30kau (Fig. A.3). Its
GDR2 parallax is compatible with that of the CC within their
uncertainties.

6.1.29. Y Oph

Y Oph is a long-period CC (P = 17.12d) with peculiar
sinusoidal photometric and radial velocity curves. It shows
phase jumps in its O—C diagram (Szabados 1989), and exhibits
a strong reddening, that may be partly of circumstellar ori-
gin. Abt & Levy (1978) and Pel (1978) proposed that Y Oph
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Table 4. Relative positions of SY Nor B with respect to SY Nor A.

Epoch  PA (°) Separation (")
1934 315 2.1

1967 315 2.2

2015.5 314.7862+0.0015 2.46341 +0.00007

is a spectroscopic binary star, which was not confirmed by
Evans & Lyons (1986). IUE observations by Evans (1992b)
excluded the possibility of a close-in companion hotter than
spectral type AO, but Szabados (1989) determined a possible
binary orbital period of 1223 d. We did not detect any signifi-
cant PMa in Y Oph (Ag, = 0.7; Paper I), and we thus do not
confirm its binarity.

The GDR2 parallax of Y Oph (wgy = 1.39 +0.08 mas) is
different from the measurements obtained using the classical
Baade-Wesselink technique (e.g., @ = 1.79+0.09 mas from
Groenewegen 2013, @ = 1.81+0.13mas from Fouqué et al.
2007) or its interferometric version (w = 2.04+0.07 mas;
Meérand et al. 2007). Considering this uncertainty on the GDR2
parallax, we considered a broad parallax range from @ = 1.2 to
2.5 mas as prior for the wide companion search. No Bound com-
panion was detected assuming this prior condition on the paral-
lax. The only field star showing a proper motion comparable to
that of Y Oph is Gaia DR2 4175017934690530688, a faint red
dwarf. With a parallax of wg, = 1.726 +£0.395 mas, it is com-
patible with our adopted range of acceptable parallaxes. Future
Gaia data releases will provide more accurate parallax values
of both this star and Y Oph and confirm if they are comoving
companions. We note that Gallenne et al. (2014b) did not find
any companion of Y Oph from adaptive optics imaging up to a
projected separation of 1.7"”.

6.1.30. AW Per

AW Per is a fundamental mode CC with a pulsation period
of Ppys = 6.46d. It is a known spectroscopic binary system
(Welch & Evans 1989). Evans et al. (2000) determined accurate
orbital parameters of the inner AW Per Aab system and in partic-
ular an orbital period of Py, = 40 yr. They determined a minimum
dynamical mass of 6.6 M, for the CC’s spectroscopic companion
Ab, which is significantly higher than the mass inferred from its
spectral type (4.0 My). They therefore proposed that the Ab com-
ponent is itself a binary system. Massa & Evans (2008) measured
the position angle and separation of the companion from the CC
at epoch November 2001 (MJD 52235): 6 = 13.74 +0.26 mas,
PA = 184 +2°. Gallenne et al. (2015) detected the companion of
AW Per using near-infrared interferometry. We detected a very
strong PMa (Ag, = 21.4; Paper 1), that we attribute to the photo-
center displacement of the inner Aab system. The combination of
the spectroscopic orbital parameters from Griffin (2016) with the
PM anomalies (Paper I) confirm the high mass of the companion
(8.8 +1.3 M), and consequently its binarity.

We detected an additional high probability Bound candidate
companion at a projected linear separation of 8.4 kau (Fig. A.3).
This is alow mass star whose spectral type is likely around K3.5V.
AW Per is therefore likely a hierarchical quadruple system.

6.1.31. RS Pup

The long-period Cepheid RS Pup (P ~ 41.5d) is one of the
most luminous Galactic CCs. It is remarkable as it is embedded

in a large dusty nebula that scatters the light from the pul-
sating star creating light echoes. This phenomenon was dis-
covered by Westerlund (1961) and first studied by Havlen
(1972). Kervellaet al. (2014) determined the distance to the
CC (dechoes = 1910 £80pc) using polarimetric imaging of the
light echoes with the HST ACS camera. The presence of light
echoes implies that the nebula is associated with the CC, but
it is too massive to have been created by mass loss from the
star itself (Kervella et al. 2012). The extension of the nebula
(=1pc) is negligible with respect to the distance to the CC
(=2kpc). Kervella et al. (2017b) determined the spectroscopic
projection factor of RS Pup p = 1.25 +0.06 and its color excess
E(B-V) = 0.496 + 0.006.

The star Gaia DR2 5546476755539995008 (hereafter
S1) appears to be embedded within the nebula surrounding
RS Pup because it is interacting with the dust cloud (Fig. 4).
The differential proper motion with respect to RSPup is
u[S1 — RSPup] = (-0.15,+3.26) masa~'. This corresponds to
a tangential velocity difference of ~30kms™', and S1 is there-
fore not gravitationally bound to the CC. Its GDR2 parallax
is w[S1] = 0.532 + 0.048 mas, and its spectral type is FOV
(Table A.1). The presence of this star in the nebula makes it
an interesting proxy for the GDR2 parallax of RS Pup, with-
out the possible bias due to the large amplitude photometric
and color variability of the CC. We note that the parallax of S1
is compatible within the error bars with that of the CC deter-
mined from polarimetric imaging of the light echoes @echoes =
0.524 +0.022 mas (Kervella et al. 2014).

RS Pup shows a moderate PMa Ag, = 1.8 (Paper I),
which indicates the possible presence of a close-in orbit-
ing companion. However, the presence of the bright light
echoes close to the CC may perturb the Gaia astrometric
measurements.

6.1.32. S Sge

We detected a very strong PMa of Ag, = 20.0 (Paper I) on S Sge
(P = 8.38d). Combined with the spectroscopic orbital param-
eters from Groenewegen (2008), we derived an inclination of
the orbital plane of i = 75+ 10 deg, and a companion mass of
3.0+£0.5 M. This mass is still higher than that from the IUE
spectrum (1.7-1.5 Mg; Evans et al. 1993), making it likely that
the companion is itself a binary; however, the short orbital period
of 676d results in a temporal smearing of the HipparRcos PMa
vector, and this mass should be considered provisional. We did
not detect any resolved Bound candidate companions.

6.1.33. U Sgr

U Sgr (P = 6.75d) does not display a significant PMa. It is a
member of the open cluster Messier 25 (IC4725; Irwin 1955;
Anderson et al. 2013). We identified a number of field comoving
stars of the cluster that are visible in Fig. A.3, two of which are
Bound candidates. These are early A-type dwarf or subgiant stars
(Table A.1).

6.1.34. V0350 Sgr

We detected a very strong PMa in V0350 Sgr (Ag; = 8.7;
Paper I) induced by its known close-in companion (Evans et al.
2015, 2018c). The combination of the astrometric PM anoma-
lies and the spectroscopic orbit by Gallenne et al. (2018b) results
in a mass of my = 3.8+0.6 M for the secondary. This mass
is compatible with the B9.5V spectral type determined by
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Fig. 4. Star S1 (yellow arrow) associated with the dusty nebula
surrounding the long-period Cepheid RS Pup (the bright star at
the right edge of the image). Color rendition: NASA, ESA, Z.
Levay, and the Hubble Heritage Team STScl/AURA-Hubble/Europe
Collaboration.

Evans et al. (2013) from IUE observations, within the error
bars. A possible interferometric detection of the companion was
reported by (Gallenne et al. 2018b). We also found a Bound can-
didate at a projected separation of 26 kau (Fig. A.4) that has a
spectral type of A2V (Table A.1). V350 Sgr is therefore proba-
bly a triple system.

6.1.35. W Sgr

WSgr is a P = 7.6d CC that is a member of a triple
system, with one wide (AOV spectral type; Morgan et al.
1978; Bohm-Vitense & Proffitt 1985; Evans 1991) and one
spectroscopic companion (discovered by Babel et al. 1989).
Gallenne et al. (2018b) determined the spectroscopic orbital
parameters of the inner system. Combined with the moderate
PMa of the star, the spectroscopic companion mass was esti-
mated to mp = 1.1+0.2 My (Paper I). The known wide com-
ponent of W Sgr is too close to the CC for Gaia (<0.2”), and we
did not detect other Bound candidate companions.

6.1.36. RV Sco

The very strong PMa that we detected (Agy = 9.7; Paper I) con-
firms that this star is a close binary. Szabados (1989) proposed an
orbital period of #8000 d from the residuals of the O—C diagram.
Evans (1992b) established an upper limit of A3 for possible main
sequence companions of RV Sco. We note that the Hipparcos and
GDR2 PM anomalies are significantly different (time separation
of 8850d), and the future Gaia data releases will provide the
necessary astrometry to improve the determination of the com-
panion properties. We did not identify any resolved Bound can-
didates from the GDR2 catalog.

6.1.37. V0636 Sco

From its strong PMa (Ag, = 11.9; Paper I) and the spectroscopic
orbital parameters from Gallenne et al. (2018b), we determined
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that the close-in companion of this P = 6.80d pulsator has a
mass of my = 2.3+0.3 My. This estimate is in good agree-
ment with the determination by Bohm-Vitense et al. (1998) who
found a spectral type of B9.5V (m, =~ 2.5 M) for V0636 Sco
B using UV spectroscopy from the HST. A possible interfero-
metric detection of this companion is reported by Gallenne et al.
(2018b). We did not identify any resolved Bound candidate from
the GDR2 catalog.

6.1.38. V0950 Sco

We did not find a PMa (Ag, = 1.8; Paper I) on V0950
Sco. We isolated one resolved Bound candidate, Gaia DR2
5960623340819000192 (Fig. A.4) located at a projected separa-
tion of 15 kau from the CC and of spectral type G1V (Table A.1).

6.1.39. CM Sct

CM Sct is a short-period CC (P = 3.92 d) that is not classified as
a known spectroscopic binary, in line with our non detection of
any significant PMa (Paper I).

We detected a resolved Bound candidate companion of spec-
tral type A1V (Table A.1), Gaia DR2 4253603428053877504
(Fig. A4), located at a projected separation of 49 kau (26.8").
The GDR2 parallax of this companion (@ = 0.547 + 0.050 mas)
is slightly larger than that of the CC (w = 0.405 + 0.065 mas).
Considering that the expected parallax from the Leavitt law is
@ = 0.518 mas, this difference may be due to an offset in the
GDR2 parallax of the CC.

6.1.40. EV Sct

EV Sct is a member of the open cluster NGC 6664 (Turner 1976;
Mermilliod et al. 1987; Hoyle et al. 2003; Anderson et al. 2013),
and the GDR2 parallax value (@ = 0.526 +0.054 mas) con-
firms this association. As a consequence, the stellar density is
high in the field around EV Sct, and we detected a number of
LowV sources with a similar proper motion as the CC (Fig. A.4).
We identified one candidate Bound companion of spectral type
B9V (Table A.1), Gaia DR2 4156513016572003840, that is
located at a projected separation of 44 kau (22.6”) from the
primary.

Kovtyukh & Andrievsky (1999) proposed that EV Sct is a
binary comprising two CCs, the companion being itself a very
short-period CC (P = 1.2d). We detected only a Ag, = 1.1
PMa on EV Sct, and we therefore cannot confirm the presence
of a close-in orbiting companion. Future Gaia data releases will
provide a stringent test of the presence of this companion.

6.1.41. SZ Tau

SZ Tau is a suspected spectroscopic binary star of low radial
velocity amplitude (Gorynya et al. 1996a,b). It is also a mem-
ber of the open cluster NGC 1647 (Efremov 1964; Turner 1992;
Anderson et al. 2013). Evans (1992b) placed an upper limit of
Al on the spectral type of a main sequence companion, and
Evans et al. (2016b) found little evidence of orbital motion (to
about +1kms™!). The moderate PMa that we observed (Ag, =
1.9; Paper 1) is not conclusive.

6.1.42. Polaris (@ UMi)

Polaris Aa (o UMi, HD 8890, HIP 11767) is the nearest CC,
but with a surprising uncertainty in its distance. Its parallax
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has been measured by Hipparcos, and was found to be @y, =
7.54 £0.11 mas (van Leeuwen 2007a,b). Unfortunately, Polaris
A is too bright for Gaia, but the parallax of its physical compan-
ion Polaris B has been measured at wg, = 7.321 +0.028 mas
(value corrected for the 29 uas ZP offset). This value is larger
by 4.40 than the parallax @wpgs = 6.26 + 0.24mas for the
same star measured by Bond et al. (2018) using the HST FGS.
With the agreement between the Hipparcos and Gaia results,
the FGS parallax is an outlier, but the reasons for this are
unclear. A discussion of the parallaxes of Polaris A and B is pre-
sented in Appendix B of Groenewegen (2018) and in Engle et al.
(2018). Polaris B is a fast rotating main sequence F3V star
(Usenko & Klochkova 2008). Polaris is part of a tight binary
system with the secondary component Polaris Ab (Evans et al.
2002, 2008, 2018a). Using the Gaia distance, Evans et al.
(2018a) found a preliminary mass of 3.45 +0.75 M. Using the
FGS parallax, the likely mass is 6.5-7 M, and the Cepheid is
pulsating in the first overtone and crossing the instability strip
for the first time (Anderson 2018; Engle et al. 2018).

For the present companion search, we adopt the Hippar-
cos parallax @y = 7.54mas as our prior estimate, with
a 15% relative uncertainty (+1.1mas). This parallax range
is compatible with the GDR2 parallax of Polaris B, whose
properties are listed in Table A.l. This choice of prior par-
allax has a low influence on the efficiency of the search
algorithm. This is particularly true as Polaris is located far
from the plane of the Milky Way, and therefore in a low star
density field. We also adopt the Hipparcos proper motion vec-
tor ppip = [+44.48 +£0.11, -11.85 £ 0.13] mas a~! (van Leeuwen
2007a). The field around Polaris is presented in Fig. 5. The
differential tangential velocity of Polaris B with respect to
A is dvgn = 1.96+0.32kms™'. The radial velocities deter-
mined by Kamper (1996) of Polaris A (y-velocity of the inner
binary system vng = -16.42+0.03kms™!) and Polaris B
(0ad = —147+1.2kms™") correspond to a differential radial
velocity dvgyg = 1.7 % 1.2kms™!. This results in a space veloc-
ity of Polaris B with respect to A of dv = 2.6+12kms™!.
The escape velocity at the projected separation of 2.3kau is
Vese ~ 3.2kms™!, assuming a total mass of 6.7 M for the
three components. We thus conclude that the Polaris B is
likely gravitationally bound to A, thus forming a triple stellar
system.

6.1.43. SX Vel

SX Vel (P = 9.554d) is not classifed as a known binary, but it
shows a PMa at a level of Ag;p = 2.9. Itis however not present in
the GDR2 (Ag, = 1.0). It was tested for being a member of the
open cluster SAI 94 by Anderson et al. (2013), but the associa-
tion has not been confirmed. We detected a resolved Bound can-
didate companion of SX Vel at a projected separation of 32 kau,
which is probably a solar-like star of spectral type G1V.

6.1.44. CS Vel

CS Vel is not classified as a spectroscopic binary Cepheid. It is
possibly a member of the open cluster Ruprecht 79 (Turner 2010),
but this association is considered inconclusive by Anderson et al.
(2013). It is also discussed in Chen et al. (2015), who reach the
same conclusion, but based on an incorrect PM vector. The GDR2
PM vector of CS Velisu = [-4.56 £ 0.06, +3.10 + 0.06] mas a~l,
which is actually consistent within the mean proper motion of
the cluster u = [-5.66 +4.67, +4.04 + 4.93] mas a~!. The GDR2
parallax of CS Vel (w = 0.194 +£0.030 mas) is however too
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Fig. 5. Field around Polaris from the DSS2-Red showing its companion
Polaris B (yellow star).

small compared to the estimated distance of Ruprecht 79 (=2 kpc;
Kharchenko et al. 2016).

We detected a Bound candidate companion of CS Vel
(Fig. A.4) located at a projected separation of 36 kau (8.9””), and
of spectral type AOV (Table A.1).

6.1.45. DK Vel

This short-period CC (P = 2.48 d) is not a known spectroscopic
binary, and we detected a marginal PMa (Ag, = 2.1; Paper I).
We identified a low mass Bound candidate companion of DK
Vel of spectral type KOV (Table A.1) located at a large projected
separation of 50 kau (Fig. A.5).

6.1.46. U Vul

Known since the 19th century (Pickering & Wendell 1899), U
Vul is an intermediate period CC (P = 7.99d). It is classi-
fied as a spectroscopic binary (Szabados 1991; Imbert 1996).
From its strong PMa and the spectroscopic orbital parameters by
Groenewegen (2008), we determined in Paper I an inclination of
the orbital plane of i = 163 =7 deg. Our estimate of the mass of
the companion of 2.4 + 0.4 M, is consistent with the upper limit
of 2.1 My by Evans et al. (2015) (see also Evans 1992b). We did
not detect a resolved common proper motion companion of U
Vul in the GDR?2 catalog.

6.2. RR Lyrae stars
6.2.1. AT And

AT And is an RRab pulsator (P = 0.6169d) that shows the
strongest PMa of all the tested RRLs (Ag, = 16.7, Paper I). This
PMa corresponds to a maximum orbital period of around 6 years
(Table A.7 in Paper I) and a maximum angular semimajor axis on
the order of 7 mas. This angular separation is in principle within
the capabilities of the CHARA Array (ten Brummelaar et al.
2005). However, this a relatively faint star (my = 10.60,
mg = 9.08) for the sensitivity of optical interferometers, and
the companion may be a very faint compact object that would
be difficult to detect. The most promising way to determine
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the orbital parameters would be to follow the evolution of its
v-velocity over =6 yr using spectroscopy. AT And exhibits the
Blazhko effect (Greeretal. 2017), as well as period change
(Olah & Szeidl 1978). Fernley & Barnes (1997) proposed that
this star is an anomalous Cepheid, but this was not confirmed by
Pefia & Peniche (2004). We did not detect any additional resolved
companion of AT And from the GDR2 catalog.

6.2.2. OV And

OV And is an RRab star (P = 0.4706d) that does not show
the Blazhko effect (Skarka 2014a). This star is absent from the
Hipparcos catalog, so we could not test for the presence of a PMa
as described in Paper 1. The PM vector of the first Gaia data
release g1 = [—5.3208s, —8.22047] mas a~! (Gaia Collaboration
2016) is however slightly different from the PM vector of the
GDR?2 ugy = [-4.8680.057, —7.672¢ 023] mas a~! (uncorrected for
frame rotation). A more sensitive search for the presence of a
PMa will be possible using the future Gaia data releases.

The resolved companion of OV And (Fig. B.1) is a relatively
bright and hot star of spectral type F4V (Table B.1), with a prob-
able mass around 1.4 M. The presence of such a massive com-
panion orbiting an old population RRL, at a linear projected sep-
aration of 3.7 kau, raises interesting questions on the evolution-
ary scenario that led to the current state of the system.

6.2.3. V0363 Cas

V0363 Cas is classified as an RR(B) pulsator in the GCVS, but
it is listed as an RRc in Wils et al. (2006), and as a DCEPS(B) in
the VSX database (Watson et al. 2006). A light curve of V0363
Cas was obtained by Hajdu et al. (2009) from the Optical Moni-
toring Camera on board the INTEGRAL satellite*. They showed
that this star is pulsating in two radial modes with a 0.802 period
ratio of the first to second overtone periods: P; = 0.546556 d and
P, = 0.438243d. This indicates that V0363 Cas is probably a
very short-period CC, hence its variable type in the VSX database,
rather than an RRL. We detected a strong PMa (Ag, = 4.7,
Paper I) on V0363 Cas, which indicates that it is a close binary
system.

6.2.4. XZ Cyg

The RRab pulsator XZ Cyg has a period of P = 0.4667d and
shows the Blazhko effect (Smith 2006). This is a particularly
remarkable RRL due to its extremely fast rising from minimum
(my = 10.5) to maximum (my = 8.8) brightness in only 53 min
(Huziak 2006). Its light curve presented in LaCluyzé et al. (2004)
shows that its Blazhko period (=57.4 d) is changing with time.

We detected a strong PMa (Ag, = 6.8; Paper I), which
reveals the presence of a close-in binary companion. Depending
on their orbital separation, the presence of this secondary mas-
sive body may play a role in the observed change of the Blazhko
period of the RRL.

6.2.5. CS Del

CS Del is classified as an RRc pulsator (Kemper 1982) with
a period P = 0.366d; however, the light curve reported by
Bramich et al. (2014) is not conclusive. The resolved compan-
ion of CS Del that we identified is located at a projected distance
of 5kau (Fig. B.1) and has a spectral type of G7V (Table B.1).

4 Lightcurve available fromhttp://sdc.cab.inta-csic.es/omc/
var/4014000075.html
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6.2.6. V0893 Her

The classification of V0893 Her as an RR: pulsator (P =
0.4918 d; Maintz 2005) appears uncertain, but its absolute mag-
nitude is compatible with this possibility. Its GDR2 parallax of
w@w = 2.68 + 0.03mas places it among the nearest RRLs. Its
resolved companion (Fig. B.1) is a very low mass red dwarf
(spectral type M1.5V), located at a projected separation of only
1.9 kau (Table B.1).

6.2.7. CZ Lac

CZ Lac is listed in the GDR2 as a fundamental mode RRL
with a period of P = 0.432d. It was shown by Sédor et al.
(2011) to exhibit an original multiperiodic Blazhko effect (see
also Gillet 2013). CZ Lac shows a strong PMa of Agy = 3.9,
which indicates the probable presence of a close-in orbiting
companion. Its K1V resolved Near companion (Fig. B.3), Gaia
DR2 2000976545410515584 is located at an angular separation
of 19.4”, which corresponds to nearly 25kau (Table B.1). Its
GDR2 parallax wgy = 0.773 + 0.050 mas is slightly smaller than
that of the RRL @wg, = 0.852 +0.029 mas, but the latter may
be affected by the detected PMa. Considering its wide separa-
tion, the resolved companion is unlikely to be the cause of the
observed PMa, and CZ Lac is therefore possibly a triple system.

6.2.8. RR Leo

RR Leo is listed in the Skarka (2014b) catalog, which gives
a mass estimate of m = 0.55+0.02 M. It has been observed
by the HST (Freedman 2013: Prog ID: 13472, PI: Freedman),
but unfortunately the field of view is too small to include the
companion that we identified as a Bound candidate, Gaia DR2
630421931138065280 (Fig. B.1). The proper motion of the
two stars is faster than 18 masa~!, which excludes a chance
association. The companion is located at a separation of 9.9”
from the RRL (9.3 kau) and is extremely faint in the visible, with
a contrast of Amg = 7.1 (Table B.1). The contrast in the infrared
is reduced to Amg = 5.5, indicating that the companion is a red
dwarf of MOV spectral type. RR Leo does not show a significant
PMa and it is therefore likely a system of only two components.

6.2.9. V0764 Mon

The PMa that we detected on V0764 Mon is the second largest
in our sample, at Agy = 7.1 (Paper I) and Ag;, = 3.8. It is clas-
sified as an RRc pulsator of period P = 0.290d (Maintz 2005).
Considering the very strong signature on the PMa detected both
at Hipparcos and GDR2 epochs, V0764 Mon is a certain binary
star. A spectroscopic monitoring of its y-velocity should easily
reveal its orbital motion.

6.2.10. SS Oct

SS Oct (HIP 108057) is a P = 0.622 d RRL showing the Blazhko
effect with a period Pgynke = 144.930d (Skarka 2013). It is
classified in the GDR2 as a fundamental mode pulsator. SS Oct
is also listed in the Skarka (2014b) catalog, which gives a mass
estimate of m = 0.58 + 0.03 M,,. Its close companion (Fig. B.1),
Gaia DR2 6345324695303800192, is a red dwarf of spectral
type K2V (Table B.1), 5.4 magnitudes fainter than the RRL in
the visible (mg = 17.19). Their common proper motion is very
fast at more than 32 mas a~!, making a chance association impos-
sible, and the projected physical separation between the two stars
is 2.4 kau. SS Oct also presents a marginal PMa at Ag, = 2.2, and
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the future Gaia data releases will confirm whether it has a close
companion in addition to the resolved one.

6.2.11. EY Oph

EY Oph is a poorly studied variable, classified as an RR: type
star. Its absolute magnitude is faint for an RRL, but may be com-
patible with this classification if, for example, the adopted color
excess E(B-V) is biased. The candidate Bound companion of
EY Oph, Gaia DR2 6029835295648727168, is located at a pro-
jected separation of 6.6 kau and has a remarkably low absolute G
band magnitude of ~ + 10. This absolute magnitude corresponds
to a very low mass M3V star on the main sequence, but its blue
Ggp—Grp color indicates that it is located significantly below the
main sequence. This star could therefore be a white dwarf, but
in absence of infrared magnitudes, its identification is uncertain.

6.2.12. V0487 Sco

V0487 Sco is a c-type RRL with a pulsation period of P =
0.329d (Maintz 2005) and a metallicity of [Fe/H] = —1.89
(Morgan et al. 2007). We detected a resolved companion (Gaia
DR2 4053551410541112192) located at a wide projected sepa-
ration of 28 kau. It is only 0.6 mag fainter than the RRL in the
K band, but its G band magnitude is fainter than the RRL by
4.7 mag. It could be a dusty red giant star with a strong circum-
stellar absorption differing from that of the RRL.

6.2.13. AR Ser

AR Ser is a fundamental mode (Szczygiet et al. 2009) RRab type
pulsator (P = 0.5752d) showing the Blazhko effect (Skarka
2013; Bonnardeau & Hambsch 2015; Skarka et al. 2016); how-
ever, it is not listed as a Blazhko star in the SuperWASP catalog
(Greer et al. 2017). We detected a strong PMa of Agy = 5.2,
indicative of the presence of an orbiting companion. The modu-
lation period P,, = 1325 + 60 d proposed by Skarka et al. (2016)
may correspond to the orbital period of the companion. We did
not detect a resolved common proper motion candidate in the
GDR2 catalog.

6.2.14. TU UMa

TU UMa is the only RRL member of a binary system whose
spectroscopic orbit is available (Szeidl et al. 1986; Kiss et al.
1995; Wade et al. 1999; Liska et al. 2016a). The results of the
combined fit of its PMa and spectroscopic orbit are presented in
Table 3 and Sect. 3.5 of Paper I. We determined that its compan-
ion is likely a massive white dwarf (m, =~ 2 M), orbiting with
a semimajor axis of ~11au. We did not detect any additional
resolved companion of TU UMa.

6.3. Other variables

We briefly discuss here the results of our companion search on a
selection of stars classified as CCs or RRLs, but that actually do
not belong to these classes.

6.3.1. HM Aqgl

HM Agql is a poorly studied variable classified as an RRL
(Kurochkin 1958; Wils et al. 2006; Gavrilchenko et al. 2014),
but whose period is unknown. Its absolute magnitude Mg =
+2.62 appears to be too faint for an RRL (Table C.1). The
resolved Bound candidate companion of HM Aql (Fig. C.1) is

a low mass dwarf of spectral type K7V located at a large pro-
jected separation of 14.7 kau.

6.3.2. EN CMi

The absolute magnitude of EN CMi in the G band (Mg = 5.34)
is too faint for an RRL, although the light curve presented in
Vivas et al. (2004) is similar in shape to that of a P = 0.540d
RRab type pulsator. It is located in a region of low extinction.
Assuming that the GDR2 parallax of EN CMi is correct, its
resolved companion is of comparable brightness and spectral
type K1.5V.

6.3.3. NQ Cyg

NQ Cyg is classified as an eclipsing binary by Coughlin et al.
(2014). Little information is present in the literature on this vari-
able, but its absolute magnitude is too faint to be an RRL. Taichi
Kato® proposed from its ASAS-SN light curve (Shappee et al.
2014; Kochanek et al. 2017) that it is an R-type object (close
eclipsing binary with strong reflection lighting effects) with a
period P = 0.311592d.

We identified a low mass Bound candidate companion
(Fig. C.1) of spectral type K9V located at a projected separation
of 19.4kau (Table C.1). Due to their fast proper motion (u >
12masa™!) and almost perfect PM vector alignment (within
0.35°), the probability of a chance association is negligible.

6.3.4. V1391 Cyg

V1391 Cyg is classified as an eclipsing binary in the catalog by
Coughlin et al. (2014). We detected a resolved Bound candidate
companion at a projected separation of 19 kau (Fig. C.1), with a
probable spectral type of M 1.5V (Table C.1) based on its G-band
absolute magnitude. We note, however, that the Gaia colors Ggp
and Grp are not mutually consistent with the G magnitude and
are possibly biased.

6.3.5. V2121 Cyg

V2121 Cyg (43 Cyg, HD 195069) was identified as a possible
RRL from Hipparcos photometry (Perryman et al. 1997). How-
ever, Henry et al. (2005) established that V2121 Cyg is one of
the brightest y Dor non-radial pulsators (mg = 5.63). Fekel et al.
(2003) proposed that it may be a spectroscopic binary star. It was
recently studied in detail by Zwintz et al. (2017) using photo-
metric time series from the BRITE-Constellation nano-satellites.
This is a main sequence F-type star with an effective temper-
ature of around 7000 K. We detected a gravitationally bound
companion to V2121 Cyg, Gaia DR2 2084032103278208640
(Fig. C.1), approximately 6.6 magnitudes fainter than the pri-
mary at visible wavelengths (mg = 12.27). The large paral-
lax (@ =~ 25.6mas) and very fast proper motion of the two
stars (4 ~ 90 masa') excludes a chance association. The com-
panion has an effective temperature 7. = 3700+ 100K and
a radius R = 0.50+0.02R;, which correspond to a M2V
spectral type (Table C.1). It exhibits a significant X-ray emis-
sion (source 1RXS J202704.9+492216; Haakonsen & Rutledge
2009, see also Boller et al. 2016).

> http://ooruri.kusastro.kyoto-u.ac.jp/mailarchive/
vsnet-chat/8021
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6.3.6. UU Dor

UU Dor is identified as an LMC detached eclipsing binary in
the OGLE-III catalog (Graczyk et al. 2011). However, its GDR2
parallax implies that it is a Galactic variable, of combined spec-
tral type FOV. Its resolved Bound candidate companion (Fig. C.1)
is a low mass dwarf of spectral type K3V (Table C.1).

6.3.7. IW Lib

IW Lib is listed in the McDonald et al. (2012) catalog, where it
does not show infrared excess. Itis classified by Pojmanski (2002)
as an eclipsing contact binary with an orbital period of 1.78d. It
has been automatically classified as a y Dor non-radial pulsator
by Dubath et al. (2011) and more probably as a W UMa eclipsing
binary (with a probability of 0.29) by Richards et al. (2012), who
mostly exclude the possibility of an RRL. The spectral type of the
wide companionis K3V (Table C.1), with an effective temperature
Ter = 4800+ 200 Kand aradius R = 0.71 + 0.03 R,. Itis 5.3 mag
fainter than the primary in the G band.

6.3.8. AZ Men

AZ Men is classified as an RRc pulsator with a period of 0.318 d
(Otero 2008); however, its absolute magnitude Mg = +3.7 is
inconsistent with this class. Its resolved companion (Fig. C.2)
has an effective temperature T.r = 4900+ 200K and a radius
R = 0.63 +0.04 Ry. These parameters were derived using the sur-
face brightness—color relations from Kervella et al. (2004) and the
GDR2 parallax, and match those of a K3V dwarf (Table C.1).

6.3.9. V1171 Oph

This star is likely a contact eclipsing binary, of combined spec-
tral type F8V with a mean effective temperature of Teg =
6200 K. Its resolved companion (Fig. C.2) is a red dwarf of spec-
tral type K1V.

6.3.10. V1330 Sgr

Although its absolute G magnitude is inconsistent with a classi-
fication as an RRL (Mg = +6.9), V1330 Sgr is listed as an RRab
pulsator with P = 0.597d by Soszynski et al. (2011), showing
the Blazhko effect. It is located in the direction of the Galactic
Bulge, close to Baade’s field (Plaut 1973), but its GDR2 parallax
(wg, = 1.23 +£0.22 mas) places it at a significantly shorter dis-
tance. Assuming the GDR2 parallax is correct, its resolved com-
panion (Fig. C.2) is an MOV red dwarf, located at a projected
physical separation of 24.7 kau.

6.3.11. V1382 Sgr

Soszyniski et al. (2014) classified V1382 Sgr as an RRab type
pulsator with a period of P = 0.493d with Blazhko effect
(Collinge et al. 2006), located in the direction of the Bulge.
However, this is in principle excluded by its very faint abso-
lute magnitude Mz = +7.3, unless the GDR2 parallax is
incorrect. Assuming the GDR2 parallax is correct, its resolved
common proper motion companion is an M2V red dwarf
(Fig. C.2), approximately 2 mag fainter than the primary in the G
band, and located at a projected physical separation of 11.6 kau
(Table C.1). It should be noted that the crowding in this region
is high and could have caused a bias in the GDR2 parallax
estimate.
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6.3.12. V2248 Sgr

V2248 Sgr is classified as a W UMa eclipsing binary by
Antipin et al. (2005), but it is classified as a DSCT/EC/ESD in
the ASAS-3 database (Pojmanski 2002) and an RR Lyrae pul-
sator in the GCVS (Samus et al. 2009). Its period is P = 0.315d
in the GCVS and 0.158d (half of the former) in the ASAS-3
database. The wide companion (Fig. C.2) has an effective tem-
perature Ty = 4700 +200K and a radius R = 0.73 £ 0.03 R,.
These properties correspond to a K3.5V spectral type.

6.3.13. V3166 Sgr

The field around V3166 Sgr shows two candidate bound com-
panions, making it a visual triple star. The classification as a
RRL of this variable star in the GCVS is unlikely to be cor-
rect considering its absolute G-band magnitude (Table C.1). The
close companion (at a separation of 1.66"”), considering its abso-
lute magnitude and assuming it is on the main sequence, is most
probably a late K-type dwarf. The more distant companion has
Teg = 3500+ 100 K and R = 0.79 + 0.03 R, which possibly cor-
responds to an unusual post-main sequence, “inflated” M1 spec-
tral type dwarf. It could result from the evolution of a =0.6 M
star, of mid-K spectral type on the main sequence, at an age of
~10 Ga (Bressan et al. 2012).

6.3.14. HR Sco

With an absolute G band magnitude of Mz = +10.2, HR Sco
is likely a very low mass main sequence star of spectral type
M3V. The candidate resolved companion of HR Sco (Fig. C.3)
is located at a projected separation of 20 kau, for a spectral type
of M5V (Table C.1).

6.3.15. EN TrA

EN TrA is a binary RV Tauri type variable (Van Winckel et al.
1999). We detected a strong PMa (Ag, = 11.7; Paper I) that con-
firms the presence of an orbiting companion. We did not detect
any resolved common proper motion candidate in the GDR2.

7. Conclusion

We detected a number of new candidate companions of Cepheids
and RR Lyrae stars, either from their signature on the proper
motion of the targets (Paper I) or the similarity of their parallax
and proper motion to those of the targets (present Paper II).
Classical Cepheids have long been known to have a high bina-
rity fraction, and our survey of the PM anomalies of bright and
nearby CCs indicates that their binarity fraction is likely higher
than 80% (Paper I), with a significant fraction of triple (e.g., SY
Nor, AW Per, W Sgr, V0350 Sgr) or quadruple systems (e.g.,
0 Cep, SY Nor). The resolved systems that we discovered or con-
firmed in the present paper (Paper II) provide interesting fiducial
references for the modeling of the evolutionary state of the cor-
responding CC primaries. They also enable the validation of the
GDR2 parallaxes of their CC companions that may be affected by a
specific uncertainty due to their photometric and color variability.
The gravitationally bound candidates of RRLs that we
present in Table B.1 are all new discoveries, and provide impor-
tant constraints on the evolutionary state of their pulsating com-
panions. In Paper I we find that a small but significant fraction
(=7%) of the nearby RRLs shows indications of binarity. The
relatively large number of stars in our sample that were
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misclassified as RRLs is a call for a thorough revision of the
RRL catalogs using the Gaia data, and in particular the parallax,
to reclassify the other types of variables.
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A.2. Field charts

The fields surrounding the CCs with detected Bound candidate
companions, and a selection of CCs with Near candidate com-
panions are presented in Figs. A.1-A.8. ¢ Cep and Polaris are dis-
cussed separately in Sects. 6.1.9 and 6.1.42. The target position is
shown with a magenta + symbol, and the tested field stars (with
a parallax within +15% of that of the target) are represented with
cyan X symbols. The identified Near candidates are represented
in orange, the LowV candidates are shown in red, and the Bound
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candidates are indicated with a yellow star symbol. Their proper
motion vectors, and that of the target, are shown. The GDR2 proper
motion vector fpg, is shown in magenta for each target star. When
available, the mean proper motion vector of the target uy; esti-
mated from the Hipparcos and GDR2 positions (see Paper I) is
also displayed in light green. The expected parallax of the target is
indicated in the upper left corner of each panel, together with the
GDR?2 value. For CCs, this is the renormalized Leavitt law paral-
lax from the catalog by Berdnikov et al. (2000; see Sect. 3.1). The
background images are taken from the DSS2-Red.
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Fig. A.1. Field charts for Cepheids with Bound candidate companions: TV CMa, ER Car, CE Cas, DF Cas, V0659 Cen and AX Cir.
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Fig. A.2. Same as Fig. A.1 for BP Cir, R Cru, X Cru, VW Cru, V0532 Cyg and V1046 Cyg.
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Fig. A.3. Same as Fig. A.2 for CV Mon, RS Nor, SY Nor, QZ Nor, AW Per and U Sgr.
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Fig. A.4. Same as Fig. A.3 for V0350 Sgr, V0950 Sco, CM Sct, EV Sct, SX Vel and CS Vel.
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Fig. A.5. Same as Fig. A.4 for DK Vel.
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Fig. A.6. Field charts for Cepheids with Near candidate companions: V0916 Aql, Y Car, EY Car, YZ Car, VW Cen and AY Cen.
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Fig. A.7. Same as Fig. A.6 for SU Cyg, SZ Cyg, V1334 Cyg, S Nor, Y Oph and AQ Pup.
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Fig. A.8. Same as Fig. A.7 for Y Sgr, AP Sgr and R TrA.
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B.2. Field charts

panions are presented in Figs. B.1-B.3. The adopted symbols are

described in Sect. A.2.

The fields surrounding the RRLs with detected Bound candidate
companions, and a selection of RRLs with Near candidate com-
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Fig. B.1. Field charts for RR Lyrae stars with Bound candidate companions: OV And, CS Del, V0893 Her, RR Leo, SS Oct and EY Oph.
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Fig. B.2. Same as Fig. B.1 for V0487 Sco.
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Fig. B.3. Field charts for selected RR Lyrae stars with Near candidate companions: CZ Lac, AG Nor, V1154 Ori, V2626 Sgr and V4313 Sgr.
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C.2. Field charts

A&A 623, A117 (2019)

in Figs.
Sect. A.2.

The fields surrounding the variable stars of various classes
with detected Bound candidate companions are presented
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Fig. C.1. Field charts for various variable stars with Bound candidates: HM Aql, EN CMi, NQ Cyg, V1391 Cyg, V2121 Cyg and UU Dor.
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P. Kervella et al.: Multiplicity of Galactic Cepheids and RR Lyrae stars from Gaia DR2. II.
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Fig. C.2. Same as Fig. C.1 for IW Lib, AZ Men, V1171 Oph, V1330 Sgr, V1382 Sgr and V2248 Sgr.
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Fig. C.3. Same as Fig. C.2 for V3166 Sgr and HR Sco.
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