
HAL Id: hal-02071770
https://hal.science/hal-02071770

Submitted on 12 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Power to Create Chaos
Konrad Hinsen

To cite this version:
Konrad Hinsen. The Power to Create Chaos. Computing in Science and Engineering, 2016, 18 (4),
pp.75-79. �10.1109/MCSE.2016.67�. �hal-02071770�

https://hal.science/hal-02071770
https://hal.archives-ouvertes.fr


The power to create chaos

Konrad Hinsen

Occasionally I receive feedback from readers on the articles I write for the
Scientific Programming department. My recent article on technical debt [1] pro-
voked more feedback than anything else I have written here before, so I suspect
the topic resonated with many readers. Most the e-mails I received were about
personal experiences people had with technical debt that was recognized too late
to be handled gracefully. But a few concentrated on a very specific point: my
claim that computers exhibit chaotic behavior, and that this is a problem when
using them in research. I will take those reactions as a pretext to elaborate a bit
on that point, which is in my opinion not yet sufficiently appreciated.

I call this a pretext because I won’t actually address the objections that were
raised in much detail. They focused on the problems of defining chaos mathemat-
ically for discrete rather than continuous systems. The standard definitions of
chaos refer to infinitesimal changes in the initial conditions, which for computers
and other discrete state systems make no sense, because the smallest possible
change is one bit. Readers interested in this topic can find detailed discussions in
the literature on cellular automata, for which Stephen Wolfram’s “A New Kind
of Science” [2] is a good entry point, in particular chapters 4 and 7. However, in
the context of scientific programming, which is the topic of this department, the
precise mathematical definition of chaotic behavior is much less relevant than its
consequences on software development and testing.

Chaos is a mathematical concept from the theory of dynamical systems. A
dynamical system is defined by a state space and a time evolution rule for the
state. The system starts in some initial state, and then the time evolution rule
is applied to yield subsequent states. Both the state space and the time variable
can be continuous or discrete. A computer is a dynamical system with a discrete
state, which consists of the computer’s memory and its processor’s internal state.
Time is discrete as well, the elementary time step being the execution of one pro-
cessor instruction. The processor’s instruction set provides the details of the time
evolution rule. The initial conditions of a computation are the memory contents
plus processor state when the computation is started. Execution proceeds until
the program reaches its end – if it ever does. The final memory contents contain
the result of the computation. Note that “memory” should be understood in
a wide enough sense to include all data storage available, including hard disks,
network storage, etc. Note also that what I consider here is computation in the

1



narrow sense of mechanically processing information. When you add multiple
processes, communication between them, or external events, everything becomes
more complicated.

The defining aspect of chaos is a strong sensitivity of a dynamical system’s
behavior on initial conditions: small changes in these conditions can cause large
changes in the system’s future behavior for which no useful bounds can be es-
tablished. Chaotic behavior in nature makes the long-term evolution of many
phenomena unpredictable even though they are deterministic. An often cited ex-
ample is the weather, which can be predicted for only a very short time – about
a week – not because of any inherently random processes, nor because a lack
of computational power, but because the initial conditions that enter into the
prediction can be measured only to some finite precision.

Computers are engineered dynamical systems for which such problems do not
exist. We know the initial state of a computation precisely, and we can even store
it for future re-use. But changes in the initial state are of interest as a way to
explore the consequences of errors. Erratic behavior of the computing hardware
itself is rare enough that it can safely be ignored, except for the extremely large
parallel computers. But human errors in the preparation of the initial state – the
program and the input data – are an important cause of wrong results. That’s
why it makes sense to ask the question how the behavior of a computation changes
if the correct initial state is modified in some way.

Saying that a computer behaves chaotically means that the result of a com-
putation depends strongly on the initial state, to the point that a small change
in this initial state can change the result beyond any useful predictable bound.
As I already mentioned, some of the criteria of traditional chaos theory do not
apply: changes cannot be made infinitely small, as the smallest possible change is
a one-bit flip, and deviations cannot become infinite, because the computation’s
state consists of a finite number of bits. The latter restriction applies to every
physical system, of course, but the finiteness of the our planet’s atmosphere has
not prevented scientists from applying chaos theory to weather forecasting.

The mechanism that causes chaotic behavior in computation is the amplifi-
cation of small changes by subsequent steps. The impact of a one-bit flip can
be small, for example if the bit happens to represent the least significant digit of
an input number. At the other extreme, a one-bit flip in a processor instruction
can crash the program, leading to no useful result at all. In between these two
extremes, a one-bit flip can lead to results that differ from the correct result in
arbitrary ways. The worst case is not a program crash, nor a huge difference in
the final result, but a wrong result that looks credible. Such a mistake has a good
chance of going unnoticed.

I found a nice simple illustration for error amplification in computation in a
lecture by Gérard Berry [3]. Suppose you live in a city with a grid-like street
layout (see Figure 1). You want to explain to a friend at the other end of the
city how to reach you by car. You provide a list of driving directions that tell

2



your friend at every corner what to do: turn left (L), turn right (R), or continue
straight on (S). Your driving instructions are thus a string made of the letters L,
R, and S, which is not very different from a program written as a list of processor
instructions. By following these instructions, your friend will move along the blue
path from the bottom of the grid to the top.

But now suppose that some mistake happens in transmitting the driving direc-
tions, or that your friend takes a wrong turn while driving. The smallest possible
mistake would be the replacement of a single letter. Two such minimally modi-
fied instruction sequences are shown in Fig 1, in red and violet, together with the
resulting paths. It is clear that the places one reaches by following these modified
instructions are not at all close to the real destination, nor close to each other.
In fact, minimal mistakes can take you anywhere on the grid.

In this simple example, the mechanism of error amplification is easy to un-
derstand. Each minimal one-letter change rotates the remaining part of the path
by 90 degrees compared to the correct one. The more steps remain to be done
after the mutated instruction, the farther the arrival point will be from the in-
tended one. That is also the general mechanism that makes the outcome of a
computation in the presence of mistakes so hard to predict.

An error that grows linearly with the number of computational steps isn’t
really that bad. It doesn’t yet deserve the label “chaotic behavior”. After all, our
“driving directions” programming language provides several useful guarantees.
No matter what mistake you make, a “program” consisting of N instructions is
guaranteed to terminate after exactly N steps and yield a valid position on the
grid (assuming the grid is big enough), which moreover is at most 2N grid steps
away from the intended destination. There is no possibility of non-termination
(driving around the grid endlessly) or a crash (hitting an invalid position). We
don’t get such guarantees for the programs we use in computational science. The
reason why we do get them for our driving directions is that the language is
very limited. It can be processed by what is known as a “finite state machine”
in automata theory, whereas standard programming languages require a more
powerful automaton – in fact, the most powerful type of automaton that is known
today – called a “Turing machine”. As in other aspects of life, more power
also means more responsibility, as mistakes can have more serious consequences.
Turing machines give you so much power that you can easily create chaos (see e.g.
[4]). If we added features such as loops or tests based on the current position to
our driving directions language, we would need a Turing machine for processing
it. That would give us the power to condemn our friends, intentionally or by
mistake, to spend the rest of their lives driving around the city.

In writing scientific software using Turing-complete languages, we have ex-
actly that power and we should be constantly watching out for unexpected con-
sequences of mistakes. However, that is not how computational scientists behave
in practice. The dominant attitude is to trust computational results if they “look
right”, i.e. if they are not in disagreement with expectations and prior knowl-

3



edge of the problem under study. I have even heard people say that they “trust
their intuition” to spot potential mistakes in the results. That is not in itself an
absurd idea. Experienced experimentalists do recognize suspect results coming
from instruments they know well. It is certainly possible to develop an intuition
for the credibility of data.

The crucial difference is that experimental equipment is carefully designed
not to exhibit chaotic behavior, such that minor damage or production defects
do not lead to unexpected results. If you put a mite under a microscope, a defect
in the instrument may lead to a blurred image, but not to an image showing
an extra pair of legs. If the image is sharp enough to let you count the legs
of the mite, then you know you can trust that observation. But this approach
doesn’t carry over to software. There is no typical symptom of a programming
mistake – anything is possible. Even the most experienced software developers
can’t judge if a program is correct by inspecting the source code, or by running
it on a few sample inputs, except if the program is trivially small. Moreover, in
many applications of computational science, correctness of a program isn’t even
something one could aim for. We can only decide if a program is correct if we
have some other means of specifying what the correct result is. This is often
not the case in a research setting, where much code is written for computing
quantities that nobody has ever computed before.

A common attitude that we should probably start to question in this context
is the one of considering computation as mechanized mathematics. The focus
of mathematics is on precise statements that can be proven right or wrong. In
research, we often use computation for exploring imprecise statements – scientific
hypotheses – whose domains of validity are not known yet. A useful complemen-
tary notion to mathematical correctness is the robustness of the computational
tools we use. This is well explained in an essay by Gerald Sussman that draws on
his background in electrical engineering [5]. A robust computer program produces
reasonable output for reasonable input, even if the latter is different from what
the program was initially designed to handle. We have similar concepts in com-
putational science, for example the notion of numerical stability of algorithms.
But robustness criteria do not play a major role in the design and implementation
of scientific software today.

In order to link these abstract considerations of potential chaotic behavior
to the practice of computational science, I tried to apply them to my own work
in molecular simulations. Most of my work is about extracting information from
simulation trajectories, which are datasets about 1 GB in size – too big for inspec-
tion by eye, but small enough to be processed on my laptop. I spend much of my
day writing, modifying, and running Python scripts that perform various geomet-
rical and statistical analyses on these trajectories. These scripts are rather short,
but rely on a collection of libraries, ranging from general and widely used ones
such as NumPy (http://www.numpy.org/) or h5py (http://www.h5py.org/)) to

4



domain-specific ones such as MOSAIC (http://github.com/mosaic-data-model/mosaic-
python).

The computation that is performed when I run one of my scripts is defined
by the script, the file containing the trajectory, the Python language, and all the
libraries used by the script. But that’s just the immediately visible part. The
libraries I have cited depend on other libraries, and the Python interpreter is
written in C. A different way to present this complex assembly of software is as a
set of consecutive layers that transform a general-purpose computer into a tool for
performing a very specific analysis of a simulation trajectory. Each of these layers
can be described in terms of (1) the notation in which the additional information
being added is expressed, and (2) the tool that processes this information:

1. The processor instruction set, executed by the computer.

2. The C language, translated into processor instructions by a C compiler.

3. The Python language, executed by an interpreter written in C.

4. The Python language augmented by the NumPy library, written in C and
plain Python.

5. ... more libraries ...

6. The file format for the data files, interpreted by an analysis script written
in Python augmented by various libraries.

All the layers listed above define both a part of the computation and the
notation in which some other part of the computation is expressed. For example,
the Python language defines the data representation and memory management
aspects of the computation, in addition to defining what is and is not a legal
Python program. My analysis script defines all the algorithms, but also the
input file format for the trajectories.

For historical and practical reasons, we use different labels to refer to these
notations: the first three are called “programming languages”, whereas the last
one is a “file format”. The intermediate ones that simply add libraries are rarely
recognized as distinct notations at all. To see that they really are, consider the
small Python script

import numpy

print(numpy.arange(5))

This is not a valid program in the Python language, but it is a valid program
in the Python-plus-NumPy language, which shows that these two languages are
distinct. Libraries should thus be treated as language extensions.

All the layers but the last one are general-purpose Turing-complete program-
ming languages. There are of course significant differences between them, which is

5



why these different layers exist. The processor instruction level is not very conve-
nient for human programmers, being difficult to read and understand. Moreover,
processor instructions are a high-risk notation: any sequence of bytes can be ex-
ecuted as instructions, but most byte sequences will not produce anything useful
and may even cause damage to data stored in the computer. The C language is
much more convenient, and also provides a better level of verification, because
many possible mistakes are caught by the compiler. The Python language is
even more convenient, and helps to avoid mistakes by expressing a computation
in much fewer lines of code. Similarly, each library layer adds more convenience
for computations made up of the kind of operations that these libraries imple-
ment, and at the same time prevents mistakes by allowing the programmer to
write less code for a specific computation.

However, none of these layers adds useful guarantees about the behavior of the
computation. The potential of generating chaos remains present until the very
last layer, which is defined by my trajectory analysis script. From the point of
view of robustness, it would be preferable to have as much of the computation as
possible expressed using notations that limit the impact of mistakes. Instead of
libraries that add optional shorthand notation for some operations to a general-
purpose language, we should have successive layers of languages that enforce the
use of a more specialized and less dangerous notation.

This idea is sometimes advocated as the “principle of least power” [6]: every
aspect of a computation should be described in a language with just as much
expressive power as strictly required for the task. The additional guarantees
that a limited language can make also offer more opportunities for analyzing and
optimizing a program. Many Domain-Specific Languages (DSLs) are based on
this idea. I have written about DSLs before in this department [7]. In contrast
to a library, a DSL is both more and less than a general-purpose language. The
“less” part often includes giving up Turing-completeness. A data file format is
then nothing but an extreme case of a DSL, in which only constant data is allowed
and no algorithm can be expressed at all.

The main obstacle to such an approach is probably psychological. We asso-
ciate the term “language” in the context of programming with something complex
that takes many years to master. Most computational scientists would be happy
to get away with learning only one programming language in their life. But as
I explained above, a language can be a small variation on another one. Just
as today’s libraries are extensions to general-purpose languages, we could have
library-like pieces of code that remove or restrict features of languages. As an
example, removing while-loops and recursive function calls would turn Python
into a language in which every program is guaranteed to terminate. A quick
inspection of the trajectory analysis scripts that I wrote over the last few months
showed that they could all be written in such a restricted Python dialect. In fact,
they already are. I rarely need all the power that Python gives me. But I cannot
ask Python to verify that I didn’t use that power by mistake.

6



These observations apply with minor variations in languages, libraries, and
file formats to most computations done today in science and engineering. In the
short history of computing, we can observe a general tendency towards providing
more expressive power wherever some aspect of a computation is defined. In the
early days, we had Fortran programs reading simply structured input files. But as
soon as computers could handle larger programs, embedded scripting languages –
usually Turing-complete – became a desirable feature for customizing application
software. From there it was a small step to writing application software in a
scripting language augmented by domain-specific libraries, as illustrated by my
above example. There are even cases of languages that became accidentally
Turing-complete as features were added, the best-known example being C++
templates. It is in fact possible to do arbitrary computations, including chaotic
ones, as part of the compilation of a C++ program. The downsides of too much
freedom in program structure have been known for a while, and have lead to the
widespread adoption of structured programming in the 1980s and to the growing
popularity of functional programming in recent years [8]. But advocates of these
approaches to safer programming were always keen to point out that no expressive
power is lost in adopting them. Perhaps it is time to re-evaluate the importance
of computational omnipotence.

Konrad Hinsen is a researcher at the Centre de Biophysique Moléculaire in
Orléans (France) and at the Synchrotron Soleil in Saint Aubin (France). His re-
search interests include protein structure and dynamics and scientific computing.
He has a PhD in theoretical physics from RWTH Aachen University (Germany).
Contact him at konrad.hinsen@cnrs.fr.

References

[1] Konrad Hinsen
”Technical Debt in Computational Science”
Computing in Science and Engineering 17(6), 103–106 (2015)

[2] Stephen Wolfram
”A new kind of science”
Wolfram Media, Champaign, IL, 2002, http://www.wolframscience.com/

[3] Gérard Berry
”Pourquoi et comment le monde devient numérique”
Leçon inaugurale 2007-2008, Collège de France
http://www.college-de-france.fr/site/gerard-berry/

inaugural-lecture-2008-01-17-18h00.htm

7



[4] Nabarun Mondal, Partha P. Ghosh
”Universal Computation is ‘Almost Surely’ Chaotic”
SOP Transactions on Applied Mathematics , in press (2015)
http://www.scipublish.com/journals/AM/papers/1506

[5] Gerald Jay Sussman
”Building Robust Systems”
http://groups.csail.mit.edu/mac/users/gjs/6.945/readings/

robust-systems.pdf

[6] Tim Berners-Lee
”Principles of Design”
http://www.w3.org/DesignIssues/Principles.html

[7] Konrad Hinsen
”A glimpse of the future of scientific programming”
Computing in Science and Engineering 15(1), 84-88 (2013)

[8] Konrad Hinsen
”The promises of functional programming”
Computing in Science and Engineering 11(4), 86-90 (2009)

8



SRLLSRSSLRRSLRSLS

SRLLSRSRLRRSLRSLS

SRLLSRSSLSRSLRSLS

Figure 1: The consequences of minimal mistakes in driving directions.

9


