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i(A)B(x 0 , ...., x a+b ) = b k=0 (-1) ak B(x 0 , ...., x k-1 , A(x k , ...., x k+a ), ....., x a+b ), for x i ∈ E, and the graded Lie bracket is then:

[A, B] = i(B)A + (-1) ab+1 i(A)B.

One can now check the axioms of graded Lie algebras as a tedious but easy exercise. We shall mention incidentally the importance of M * (E) for homological algebra : if µ ∈ M * (E) satisfies [µ, µ] = 0, then µ as a bilinear map on E defines an associative multiplication, and the graded Lie algebra formalism allows to construct Hochschild cohomology and to deal with deformation theory; this story is an extensive one, beginning with the pioneering work of Murray Gerstenhaber in the 60's[?] and developing along deformation quantization problems[?]GR culminating with the famous result of Kontsevich[?] .

Let's mention for the record some graded Lie algebras embedded (as subspaces) in M * (E): if one restricts to symmetric multilinear maps one gets the Lie algebra of formal vector fields on E; considering instead the antisymmetric multilinear maps one gets the Richardson-Nijenhuis graded Lie algebra A * (E), or equivalently the Lie superalgebra of vector fields on E considered as a purely odd superspace. Moreover a bilinear mapping c ∈ A 1 (E) satisfying [c, c] = 0 gives a Lie bracket on E, and one can deduce construction of Chevalley-Eilenberg cohomology and deformation theory of Lie algebras. The cohomological properties of A * (E) have been worked out in [?].

We shall now restrict ourselves to theapparently trivial case when dim(E) = 1. In this case all spaces M a (E) are one dimensional for every a, we shall normalize by fixing a generator of E, so E = k , and define a generator E a of M a (E) by E a ( , ...., ) = if a > -1, and E -1 = k Explicit computation of the graded Lie bracket of M * (E) is now easy, being only a matter of finding the right parity in each case.

The inner product is the following:

i(E a )E b = ( b k=0 (-1) ak )E a+b . If a is even, then (-1) ak = 1 and i(E a )E b = (b + 1)E a+b ; if a is odd, one gets i(E a )E b = b k=0 (-1) ak E a+b = b k=0 (-1) k E a+b = E a+b if b is even, or 0 if b is odd.
We can then summarize the formula for the graded Lie bracket as: 

= E 2b-1 for b ≥ 0, one gets: 1. [e a , e b ] = (b -a)e a+b 2. [e a , f b ] = (b -1 2 )f a+b 3. [f a , f b ] = 0
From now on, we shall set M * (E) = Ge(1), in honor of Murray Gerstenhaber (and 1 because dimE = 1). The e a generate the even sub algebra of Ge(1), denoted Ge(1) 0 ; one easily recognizes the well-known formula for generators of centerless Virasoro algebra in positive degrees, so Ge(1) 0 is isomorphic to the subalgebra of the Lie algebra V ect(1) of formal vector fields in dimension 1 with vanishing constant terms, denoted by L 0 in D.B. Fuchs' book on infinite dimensional Lie algebras [?]. Let's recall the role of that Lie algebra, or rather the corresponding Lie group, in renormalization theory.

The second formula allows identification of the odd part denoted by Ge(1) 1 as a module over Ge(1) 0 = L 0 ; in the family of modules of tensor densities F λ,µ on Virasoro algebra and its subalgebras, one has : Ge(1) 1 = F 0,-1 2 . We are now ready for cohomological computations of Ge(1) with scalar coefficients, the Chevalley-Eilenberg complex being:

C * gr (Ge(1); k ) = Λ * (L 0 ) ⊗ S * (F 0,-1 2 ),
where denotes the dual, Λ * the exterior algebra, S * the symmetric algebra.

One has a 1-dimensional subalgebra of Ge(1) 0 , generated by e 0 , whose action on Ge(1) decomposes into one dimensional eigenspaces,so it can be considered as some kind of a Cartan subalgebra .The same property holds for its action on all kind of tensors on Ge(1), including the space of cochains.

We can now give explicit formulae for the action of e 0 : let a and φ a be the dual forms of vectors e a and f a respectively, they generate freely (in graded sense) the space of scalar cochains; then the action of e 0 reads: e 0 . a = -a a and e 0 .φ a = ( 1 2 -a)φ a respectively; for polynomial terms one gets e 0 .(φ a ) p = p( 1 2 -a)(φ a ) p . For I = (i 1 , ..., i k ) such that 0 ≤ i 1 < ... < i k , consider the cocycle

I = 1 ∧ ... ∧ k ∈ Λ |I| (L 0 ) for | I |= Σ k j=1 i j , then e 0 . I = -| I | I .
For the even terms one has to consider symmetric tensors as φ J = Π p j=1 φ a j . with J = (a 1 , ...., a p ) such that 0 ≤ a 1 ≤ .. ≤ a p , and | J |= Σ p j=1 a j , and one gets finally

e 0 .φ J = ( p 2 -| J |)φ J .

Now, the action on the generic term in Λ

* (L 0 ) ⊗ S * (F 0,- 1 2 
) is immediately deduced from the previous formulae:

e 0 .( I ⊗ φ J ) = ( p 2 -| J | -| I |) I ⊗ φ J .
In order to find invariants, one must find I and J such that p 2 -| J | -| I |= 0; so there must be enough a i = 0 in J in order that p be big enough. In particular, if one restricts to the case when a 1 > 0 and i 1 > 0, there is no invariant.

Going further into reduction methods, we shall consider the sub superalgebra of Ge(1) generated by e 0 , f 0 ,denoted by H; we must then compute the coadjoint action of f 0 on the dual Ge(1) . From [f 0 , e 0 ] = 1 2 f 0 , one deduces f 0 . a = 0 and f 0 .φ a = -1 2 a .

This action admits a nice geometric interpretation; the space of cochains C * gr (Ge(1); k ) = Λ * (L 0 )⊗S * (F 0,-1 2 ) can be interpreted as the graded ring of differential forms with polynomial coefficients in an infinite number of variables Ω * (x 0 , ....., x i ........) : in terms of the previous generators φ a → x a and a → dx a . One can then deduce from above the general formula for the action of f 0 :

f 0 .m = - 1 2 i ∧ ∂m ∂φ i ,
in terms of the previous identification

f 0 .m = - 1 2 dm
where d is the exterior differential in Ω * (x 0 , ....., x i ........) (Warning: this d must not to be confused with the coboundary δ of the cohomological complex).

We can now use the well-known technique of Hochschild-Serre spectral sequence (cf. [?]) for H ⊂ Ge(1); its first term reads E p,q 1 = H q (H, Λ p (Ge(1)/H); k ), so one has to compute the cohomology of H with coefficients in the representation considered above, after truncation of Ge(1).. by H. We shall consider the various cocycles case by case.

In the sequel δ will denote the differential of the cohomological complex C * gr (Ge(1)); k , and .m will be a generic element of the module of coefficients Λ p (Ge(1)/H; k ); we shall express the cochains in terms of the generators 0 , φ 0 of the dual H ,

1. δ(. ⊗ m) = 0 ⊗ e 0 .m + φ 0 ⊗ f 0 .m 2. δ( 0 ⊗ m) = φ 0 ∧ 0 ⊗ f 0 .m 3. δ(φ 0 ⊗ m) = φ 0 ∧ 0 2 ⊗ m + φ 0 ∧ 0 ⊗ e 0 .m + (φ 0 ) 2 ⊗ f 0 .m 4. δ(φ 0 ∧ 0 ⊗ m) = (φ 0 ) 2 ∧ 0 ⊗ f 0 .m 5. δ((φ 0 ) p ∧ 0 ⊗ m) = p 2 (φ 0 ) p ⊗ m + (φ 0 ) p ∧ 0 ⊗ e 0 .m + (φ 0 ) p+1 ⊗ f 0 .m 6. δ((φ 0 ) p ∧ 0 ⊗ m) = (φ 0 ) p+1 ∧ 0 ⊗ f 0 .m
For m such that f 0 .m = 0, the formulas above show that 0 ⊗ m , φ 0 ∧ 0 ⊗ m and (φ 0 ) p ∧ 0 ⊗ m are cocycles. Now we shall use the interpretation in terms of differential forms as above: one has dm = 0; but the cohomology of complex of differential forms (Ω * (x 0 , ....., x i ........), d) is trivial in non zero degree, then if m is non constant, there exists m such that m = f 0 . m. Besides, the action of e 0 being diagonal , and never trivial on our truncated complex, there exists m such that e 0 . m = m. From [f 0 , e 0 ] = 1 2 f 0 , one deduces for m

f 0 .e 0 . m -e 0 .f 0 . m = f 0 2 . m,
whence (e 0 + 1 2 ).f 0 m = 0, so f 0 m = 0. One deduces

0 ⊗ m = δ(. ⊗ m)
if m is not a scalar.

An analogous argument works for (φ 0

) p ∧ 0 ⊗ m: one has δ((φ 0 ) p-1 ∧ 0 ⊗ m) = (φ 0 ) p-1 ⊗ ( p-1 2 m + e 0 . m) + (φ 0 ) p ⊗ f 0 . m and from f 0 .m = 0, one can find m such that ( p-1 2 m + e 0 . m = 0 and f 0 . m = m, so δ((φ 0 ) p-1 ∧ 0 ⊗ m) = (φ 0 ) p ∧ 0 ⊗ m
A last family of cocycles is obtained as follows:

δ((φ 0 ) p ⊗ m) = (φ 0 ) p ∧ 0 ⊗ ( p 2 m + e 0 .m) + (φ 0 ) p+1 ⊗ f 0 .m
implies that if f 0 .m = 0 and p 2 m + e 0 .m = 0, then ((φ 0 ) p ⊗ m) is a cocycle.We shall prove that it is a coboundary when m is not a scalar. From

δ((φ 0 ) p-1 ⊗ m) = (φ 0 ) p-1 ∧ 0 ⊗ ( p -1 2 m + e 0 . m) + (φ 0 ) p ⊗ f 0 . m one must solve: 1. p-1 2 m + e 0 . m = 0 2. f 0 . m = m.
Using again the interpretation in terms of differential forms, one finds m satisfying equation 2., unique up to a coboundary. Then one deduces from [f 0 , e 0 ] = 1 2 f 0 f 0 .e 0 . m -e 0 .f 0 . m = f 0 2 . m, but since e 0 .f 0 . m = e 0 .m = p 2 .m, one has f 0 .(e 0 . m + p-1 2 . m) = 0. So, there exists m such that f 0 . m + e 0 . m + p-1 2 . m = 0. As an immediate consequence, one has : δ((φ 0 ) p-1 ⊗ m + (φ 0 ) p-2 ∧ 0 ⊗ m) = (φ 0 ) p ⊗ m So the only survivors are cocycles with scalar coefficients. But since δ( 1 2 (φ 0 ) p ⊗ .) = ((φ 0 ) p ∧ 0 ⊗ .), we just proved that all cocycles are coboundaries, except the 1-cocycle ( 0 ⊗ .)

Theorem:

The cohomologies H * gr (Ge(1); k ) vanish except in degrees 0 or 1. In particular H 1 gr (Ge(1); k ) = k is generated by the class of ( 0 ⊗ .) An equivalent statement is the following: the natural inclusion Gl(1) ⊂ Ge(1) induces an isomorphism in cohomology.

  1. [E a , E b ] = (a -b)E a+b if a and b are both even 2. [E a , E b ] = aE a+b ifa is odd and b even 3. [E a , E b ] = 0 if a and b are both odd A change of basis will make those formulas more familiar looking: setting e a = -E 2a 2 for a ≥ 0 and f b
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