
HAL Id: hal-02071690
https://hal.science/hal-02071690v1

Submitted on 24 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Problem-Specific Analysis of Molecular Dynamics
Trajectories for Biomolecules

Konrad Hinsen

To cite this version:
Konrad Hinsen. Problem-Specific Analysis of Molecular Dynamics Trajectories for Biomolecules.
Justin Kitzes; Daniel Turek; Fatma Deniz. The Practice of Reproducible Research : Case Studies
and Lessons from the Data-Intensive Sciences, University of California Press, pp.277-284, 2017, 978-
0520294752. �10.1525/9780520967779-033�. �hal-02071690�

https://hal.science/hal-02071690v1
https://hal.archives-ouvertes.fr


Problem-Specific Analysis of Molecular Dynamics
Trajectories for Biomolecules

Konrad Hinsen

My name is Konrad Hinsen, and I am a researcher at the Centre de Biophysique
Moléculaire in Orléans, France. My field of research is molecular biophysics, and
in particular the study of the flexibility and dynamics of proteins. All of my work
is based on computational approaches, of which the most important ones are
elastic network models and Molecular Dynamics (MD) simulations. Moreover,
most of my work concerns the development of computational methods rather
than the application of already established methods.

This case study is about the extraction of information from MD simulation
trajectories, a very common type of work in my field. MD simulations themselves
are relatively standard procedures, performed using one of a handful of well-
known software packages. They take a few days to a few weeks on a small parallel
computer with a few tens of processors, and produce a so-called trajectory file
that is one to ten GB in size. Analyzing these trajectories in order to actually
learn something about the system that was simulated is a separate step that
is much less standardized, meaning that there is a lot of problem-specific code
involved. This code is as much a result of the workflow as the plots of the
computed quantities.

For reproducible and publishable workflows, there are three specific challenges
in this situation:

1. The size of the trajectory files, which are difficult to publish in a citeable
way, often being larger than the current upper limits of Zenodo or figshare.

2. There are CPU-intensive tasks that are typically run on a parallel comput-
ing cluster in batch mode, and explorative tasks that are done interactively
or near-interactively (running short scripts that take about a second) on a
desktop machine. Dependency tracking across machines is not supported
by most workflow management systems. It doesn’t help that computing
clusters often have limited network connectivity.

3. The distinction between “software packages” and “workflows” is not useful
when most of the code being executed is problem-specific. A more ap-
propriate code structure is “well-established techniques implemented in
libraries”, “problem-specific scripts” and at the top level “coordination of

1

http://dirac.cnrs-orleans.fr/~hinsen/
http://cbm.cnrs-orleans.fr/?lang=en
http://cbm.cnrs-orleans.fr/?lang=en
http://dirac.cnrs-orleans.fr/plone/Members/hinsen/elastic-network-models-for-proteins
https://en.wikipedia.org/wiki/Molecular_dynamics
http://zenodo.org/
http://figshare.com/


a small number of scripts”. It’s the last two levels that must be captured
for reproducibility.

Workflow

Python
script 1

Python
script 4

parameterMD trajectory

computed
result 1

computed
result 2

Python
script 2

computed
result 3

Python
script 3

plot 2

Python
library

Stage III: Data Analysis

plot 1

A published example of the workflow described below can be consulted in the
form of two code/data packages (package 1, package 2) and the article describing
the study.

The workflow diagram is actually a dataflow graph with attached workflow
information. Compared to most approaches to workflow, which place the tools
(workflow manager, software packages, Web services, . . . ) in the center of

2

https://dx.doi.org/10.6084/m9.figshare.808594
https://dx.doi.org/10.6084/m9.figshare.808595
http://dx.doi.org/10.1063/1.4823996


attention, the approach I describe here focuses on the data and on the way
scientists interact with the data. The workflow below is not about “getting a
job done” but about “developping and fine-tuning a scientific model”.

The dataflow graph shows code in rectangles, and “passive” data in rounded
boxes. Code consists of a small number of Python scripts, of which four are
shown in the diagram. Data flows from top to bottom, as shown by the arrows,
starting with the MD trajectory that is the overall input, and ending in plots
showing computed quantities. The three rounded boxes labelled “computed
results” are intermediate results, computed by Python scripts 1 and 2 and
consumed by Python scripts 3 and 4.

From the point of view of workflow management and reproducibility, the most
important distinction among the data items is “human input” (solid outline)
vs. “computed data” (dotted outline). It’s the human input that represents
the scientific model, and thus the main output of this workflow. It consists
of code (Python scripts 1 to 4) and numerical parameters (a single one in the
diagram), though that distinction is rather arbitrary: every parameter could be
turned into a line in a script. Computed data includes the plots that go into the
journal article, but also intermediate results. In a fully reproducible workflow,
the computed data need not be stored, because it can be recomputed at any
time. Nevertheless, it is often preferable to store it explicitly, in particular if
recomputation takes a long time. Stored computed data is also more readily
available for exploration by scientists who want to gain a better understanding
of the method.

The workflow consists of the iterative refinement of the models and methods.
The two key tools in processing the workflow are:

• a version control system such as git for keeping track of the changes
• the ActivePapers dependency manager for coordinating the computations

Correspondingly, the state of the project consists of

• a repository under version control, which tracks the changes to the “human
input” items as the project advances

• an ActivePaper file, which stores the current state of all data items and
the dependency graph

There are two variants of a refinement step: adding a new script or parameter,
and modifying existing scripts and parameters. The first kind, which extends
the data flow graph, consists of the following user actions:

1. Write the new script.
2. Commit it to version control.
3. Check in the script to the ActivePaper.
4. Run the script via the ActivePapers dependency manager.

The second kind, which preserves the data flow graph, differs only slightly:

1. Edit scripts and parameters.

3

https://git-scm.com/
http://www.activepapers.org/


2. Commit the changes to version control.
3. Check in the modified versions to the ActivePaper.
4. Update the ActivePaper.

The fourth step recomputes all data that is affected by the changes made in step
1. The recomputation is steered by the dependency graph, which is obtained from
the data flow graph by redirecting arrows that point into a script to point instead
to the outputs of the script. The ActivePapers dependency manager computes
the dependency graph automatically during the execution of the scripts. Users
do not have to deal with (or even know about) either graph explicitly. They
write and run scripts as they did before reproducibility became an issue. Similar
approaches are used in Sumatra and noWorkflow, but most workflow managers
adopt the opposite strategy of letting the user construct a workflow explicitly
and then execute it.

A project can be transferred from one computer to another by copying the
ActivePaper file and the version control repository. For the common situation
in molecular simulations that lengthy computations are off-loaded to a cluster,
step 4 in the above procedure is slightly modified: The ActivePaper is sent
to the cluster, the “run new script” or “update” operation is performed on
the cluster, and the modified ActivePaper file is transferred back to the user’s
desktop machine. All the tools have a command-line interface, making it easy to
use them over an ssh connection.

Method-development projects tend to be small, involving a handful of people.
The pitfalls of coordinating modifications to files can easily be avoided by having
a single person perform each refinement step, or even all of the refinement steps.
Other participants can of course contribute ideas, and inspect the current state
of the project for analysis.

At the end of the project, the ActivePaper file(s) can be published, making all of
the code and data available to other researchers. The ActivePaper file contains
the complete final state of the project (though not its history), meaning that
anyone can continue from that state. An ActivePaper file for a new project can
re-use items from already published ActivePaper files through a DOI (Digital
Object Identifier), allowing other researchers to build on published computational
work. The DOI can also be used for citations in journal articles.

Pain points
The main practical difficulty is that most of today’s computational scientists
grew up with tools and practices that are not compatible with reproducibility.
This is particularly true for the field of molecular simulations, where reproducibly
published studies are still rare. Working reproducibly requires adopting new tools
and habits, and modifying existing software for integration with reprooducble
workflows. There is a permanent temptation to give up reproducibility for faster
scientific progress.

4

http://neuralensemble.org/sumatra/
https://github.com/gems-uff/noworkflow


The immaturity of current workflow tools for reproducible research adds another
layer of cognitive overhead. In the workflow described above, this is mainly the
use of separate tools for tracking history and dependencies. Today’s version
control systems, designed for software development rather than computational
science, cannot easily be extended by the kind of dependency management
required for research. On the other hand, writing new version control software
integrated with depenency management represents an effort that is hard to
justify at this time.

A major constraint imposed by the ActivePapers system is that all code must
be written in Python and all data must be stored in HDF5 datasets. While
Python is popular enough for molecular simulation to make the first constraint
very acceptable, HDF5 is still a rare choice for data storage, although this is
changing thanks to initiatives such as H5MD.

The use of specific tools is rarely sufficient to ensure reproducibility. Tools
can only take care of replicability, i.e. the technical aspect of tracking all com-
putational dependencies such that a computation can be re-run identically.
Reproducibility at the scientific level requires that all steps can easily be under-
stood and verified by fellow scientists. Best practices for reaching this goal remain
to be developed. One observation from the applications of the above workflow
is the importance of access to intermediate results for human inspection. This
suggests an overall structure of many small scripts that each do a well-defined
job and communicate via explicitly stored datasets.

Key benefits
The traditional workflow of changing scripts and running the interactively in
a shell is extremely prone to mistakes. The most frequent one is forgetting to
re-run a script after its input data has changed because of an update to another
script. Before I adopted reproducibility support tools, I regularly found myself
looking at a data file and wondering which exact sequence of script executions
had produced it. The question typically comes up when writing a paper. Even for
today’s minimal “materials & methods” sections, it is typically necessary to look
up parameters and other choices in the scripts when writing the documentation,
and that’s often the moment when one discovers what a mess they are. This is no
longer an issue when the complete final project state is available for inspection,
and guaranteed to be complete and coherent by software tools.

Key tools
The key tool in my workflow is the ActivePapers toolset, which was in fact
designed specifically for supporting reproducibility in the context of atomistic
and molecular simulations. It supports in particular

• computations on large datasets by storing them efficiently in HDF5 files

5

http://nongnu.org/h5md/
http://www.activepapers.org/
https://www.hdfgroup.org/HDF5/


with the dependency information stored as HDF5 metadata

• dependency tracking across machines by storing all datasets and their
dependency graph in a single HDF5 file that can be copied easily from one
machine to another

The only other reproducibility-enabling tool in the workflow is a version control
system.

Questions
What does “reproducibility” mean to you?
Given that my work is 100% computational, my long-term goal is full repro-
ducibility, starting from a specification of the simulation and ending with the
plots that go into a journal article. This goal is unrealistic at the moment because
the simulation software packages do not support reproducibility. One problem
is the accumulation of numerical roundoff errors, which are insufficiently stan-
dardized across processors and compilers to be reproducible. Another problem
is the widespread use of random number generators without user control over
the random seed.

For this reason, I have been setting myself a more modest goal for this case
study: reproducibility of the trajectory analysis step, using the MD simulation
trajectories as input as if they were experimental data outside of my control.
This is a useful compromise because the development of trajectory analysis
techniques is the central scientific topic of this work.

Why do you think that reproducibility in your domain is
important?
Most MD simulation studies are so complex that in the absence of reproducibility,
it is impossible to be sure what was really computed. Most mistakes do not lead
to a recognizably wrong result, but to a somewhat different one that could well
be correct.

How or where did you learn about reproducibility?
I developed them myself, having found nothing suitable for the specific needs of
molecular simulations after a careful survey of existing technology and practices.

What do you see as the major challenges to doing repro-
ducible research in your domain, and do you have any
suggestions?
The main challenges are human and social. Most of my colleagues have experi-
enced the problems that non-reproducibility creates, but few are willing to invest

6



the extra effort to do a better job, and many remain unaware of the tools and
practices for reproducibility that already exist. Journals in my field generally
don’t require the publication of software or data, and do not in any way encour-
age reproducibility. Technical challenges exist in that the most popular software
packages do not support reproducibility, but the technical challenges could be
met with little effort if there were sufficient motivation in the community.

What do you view as the major incentives for doing repro-
ducible research?

• Feeling more confident about the correctness of my results.

• Being able to build safely on earlier work (by myself or others)

Are there any best practices that you’d recommend for
researchers in your field?
I’d already be happy if publishing software and data became the norm in my
field. It’s hard to recommend any more elaborate practices before the basics
become standard.

7


	Workflow
	Pain points
	Key benefits
	Key tools
	Questions
	What does “reproducibility” mean to you?
	Why do you think that reproducibility in your domain is important?
	How or where did you learn about reproducibility?
	What do you see as the major challenges to doing reproducible research in your domain, and do you have any suggestions?
	What do you view as the major incentives for doing reproducible research?
	Are there any best practices that you’d recommend for researchers in your field?


