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Abstract. This paper addresses the issue of building a part-based rep-
resentation of a dataset of images. More precisely, we look for a non-
negative, sparse decomposition of the images on a reduced set of atoms,
in order to unveil a morphological and interpretable structure of the data.
Additionally, we want this decomposition to be computed online for any
new sample that is not part of the initial dataset. Therefore, our solu-
tion relies on a sparse, non-negative auto-encoder where the encoder is
deep (for accuracy) and the decoder shallow (for interpretability). This
method compares favorably to the state-of-the-art online methods on two
datasets (MNIST and Fashion MNIST), according to classical metrics
and to a new one we introduce, based on the invariance of the represen-
tation to morphological dilation.

Keywords: Non-negative sparse coding · Auto-encoders · Mathematical
Morphology · Morphological invariance · Representation Learning.

1 Introduction

Mathematical morphology is strongly related to the problem of data represen-
tation. Applying a morphological filter can be seen as a test on how well the
analyzed element is represented by the set of invariants of the filter. For exam-
ple, applying an opening by a structuring element B tells how well a shape can
be represented by the supremum of translations of B. The morphological skele-
ton [14,17] is a typical example of description of shapes by a family of building
blocks, classically homothetic spheres. It provides a disjunctive decomposition
where components - for example, the spheres - can only contribute positively as
they are combined by supremum. A natural question is the optimality of this
additive decomposition according to a given criterion, for example its sparsity
- the number of components needed to represent an object. Finding a sparse
disjunctive (or part-based) representation has at least two important features:
first, it allows saving resources such as memory and computation time in the
processing of the represented object; secondly, it provides a better understanding
of this object, as it reveals its most elementary components, hence operating
a dimensionality reduction that can alleviate the issue of model over-fitting.
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Such representations are also believed to be the ones at stake in human object
recognition [18].

Similarly, the question of finding a sparse disjunctive representation of a
whole database is also of great interest and will be the main focus of the present
paper. More precisely, we will approximate such a representation by a non-
negative, sparse linear combination of non-negative components, and we will
call additive this representation. Given a large set of images, our concern is then
to find a smaller set of non-negative image components, called dictionary, such
that any image of the database can be expressed as an additive combination of
the dictionary components. As we will review in the next section, this question
lies at the crossroad of two broader topics known as sparse coding and dictionary
learning [13].

Besides a better understanding of the data structure, our approach is also
more specifically linked to mathematical morphology applications. Inspired by
recent work [1,20], we look for image representations that can be used to effi-
ciently calculate approximations to morphological operators. The main goal is to
be able to apply morphological operators to massive sets of images by applying
them only to the reduced set of dictionary images. This is especially relevant
in the analysis of remote sensing hyperspectral images where different kinds
of morphological decomposition, such as morphological profiles [15] are widely
used. For reasons that will be explained later, sparsity and non-negativity are
sound requirements to achieve this goal. What is more, whereas the representa-
tion process can be learned offline on a training dataset, we need to compute the
decomposition of any new sample online. Hence, we take advantage of the recent
advances in deep, sparse and non-negative auto-encoders to design a new frame-
work able to learn part-based representations of an image database, compatible
with morphological processing.

The existing work on non-negative sparse representations of images are re-
viewed in Section 2, that stands as a baseline and motivation of the present
study. Then we present in Section 3 our method before showing results on two
image datasets (MNIST [9] and Fashion MNIST [21]) in Section 4, and show
how it compares to other deep part-based representations. We finally draw con-
clusions and suggest several tracks for future work in Section 5. The code for
reproducing our experiments is available online3.

2 Related work

2.1 Non-negative sparse mathematical morphology

The present work finds its original motivation in [20], where the authors set
the problem of learning a representation of a large image dataset to quickly
compute approximations of morphological operators on the images. They find a

3 For code release, visit https://gitlab.telecom-paristech.fr/images-public/asymae
morpho

https://gitlab.telecom-paristech.fr/images-public/asymae_morpho
https://gitlab.telecom-paristech.fr/images-public/asymae_morpho
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good representation in the sparse variant of Non-negative Matrix Factorization
(sparse NMF) [7], that we present hereafter.

Consider a family of M images (binary or gray-scale) x(1), x(2), ..., x(M) of
N pixels each, aggregated into a M ×N data matrix X = (x(1),x(2), ...,x(M))T

(the ith row of X is the transpose of x(i) seen as a vector). Given a feature
dimension k ∈ N∗ and two numbers sH and sW in [0, 1], a sparse NMF of X
with dimension k, as defined in [7], is any solution of the problem

HW = arg min ||X−HW||22 s.t.

 H ∈ RM×k,W ∈ Rk×N

H ≥ 0, W ≥ 0
σ(H:,j) = sH , σ(Wj,:) = sW , 1 ≤ j ≤ k

(1)
where the second constraint means that both H and W have non-negative coef-
ficients, and the third constraint imposes the degree of sparsity of the columns
of H and lines of W respectively, with σ the function defined by

∀v ∈ Rp, σ(v) =
√
p− ||v||1/||v||2√

p− 1 . (2)

Note that σ takes values in [0, 1]. The value σ(v) = 1 characterizes vectors v
having a unique non-zero coefficient, therefore the sparsest ones, and σ(v) = 0
the vectors whose coefficients all have the same absolute value. Hoyer [7] designed
an algorithm to find at least a local minimizer for the problem (1), and it was
shown that under fairly general conditions (and provided the L2 norms of H and
W are fixed) the solution is unique [19].

In the terminology of representation learning, each row h(i) of H contains
the encoding or latent features of the input image x(i), and W holds in its rows a
set of k images called the dictionary. In the following, we will use the term atom
images or atoms to refer to the images wj = Wj,: of the dictionary. As stated
by Equation 1, the atoms are combined to approximate each image x(i) := Xi,:
of the dataset. This combination also writes as follows:

∀i ∈ {1, ...,M}, x(i) ≈ x̂(i) = Hi,:W = h(i)W =
∑k

j=1 hi,jwj . (3)

The assumption behind this decomposition is that the more similar the images
of the set, the smaller the required dimension to accurately approximate it.
Note that only k(N + M) values need to be stored or handled when using the
previous approximation to represent the data, against the NM values composing
the original data.

By choosing the sparse NMF representation, the authors of [20] aimed at
approximating a morphological operator φ on the data X by applying it to the
atom images W only, before projecting back into the input image space. That
is, they want φ(x(i)) ≈ Φ(x(i)), with Φ(x(i)) defined by

Φ(x(i)) :=
k∑

j=1
hi,jφ(wj). (4)
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The operator Φ in Eq. (4) is called a part-based approximation to φ. To
understand why non-negativity and sparsity allow to hope for this approximation
to be a good one, we can point out a few key arguments. First, sparsity favors
the support of the atom images to have little pairwise overlap. Secondly, a sum
of images with disjoint supports is equal to their (pixel-wise) supremum. Finally,
dilations commute with the supremum and, under certain conditions that are
favored by sparsity it also holds for the erosions. To precise this, let us consider a
flat, extensive dilation δB and its adjoint anti-extensive erosion εB , B being a flat
structuring element. Assume furthermore that for any i ∈ [1,M ], (j, l) ∈ [1, k]2
with j 6= l, δB(hi,jwj)

∧
δB(hi,lwl) = 0. Then on the dataset X, δB and εB are

equal to their approximations as defined by Eq. (4), that is to say:

δB(x(i)) = δB

(∑k
j=1 hi,jwj

)
= δB

( ∨
j∈[1,k]

hi,jwj

)
=
∨

[1,k]
δB(hi,jwj)

=
∑k

j=1 δB(hi,jwj) =
∑k

j=1 hi,jδB(wj) := DB(x(i))

and similarly, since δB(x) ∧ δB(y) = 0 ⇒ εB(x ∨ y) = εB(x) ∨ εB(y) for δB

extensive, we also get εB(x(i)) =
∑k

j=1 hi,jεB (wj) := EB(x(i)). It follows that
the same holds for the opening δBεB . The assumption we just made is obviously
too strong and unlikely to be verified, but this example helps realize that the
sparser the non-negative decomposition, the more disjoint the supports of the
atom images and the better the approximation of a flat morphological operator.

As a particular case, in this paper we will focus on part-based approximations
of the dilation by a structuring element B, expressed as:

DB(x(i)) :=
k∑

j=1
hi,jδB(wj), (5)

that we will compare with the actual dilation of our input images to evaluate
our model, as shown in Figure 1.

2.2 Deep auto-encoders approaches

The main drawback of the NMF algorithm is that it is an offline process, the
encoding of any new sample with regards to the previously learned basis W
requires either to solve a computationally extensive constrained optimization
problem, or to release the Non-Negativity constraint by using the pseudo-inverse
W+ of the basis. The various approaches proposed to overcome this shortcoming
rely on Deep Learning, and especially on deep auto-encoders, which are widely
used in the representation learning field, and offers an online representation
process.

An auto-encoder, as represented in Figure 2, is a model composed of two
stacked neural networks, an encoder and a decoder whose parameters are trained
by minimizing a loss function. A common example of loss function is the mean
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Fig. 1: The process for computing the part-based-approximation of dilation.

square error (MSE) between the input images x(i), and their reconstructions by
the decoder x̂(i):

LAE = 1
M

M∑
i=1

L(x(i), x̂(i)) = 1
M

M∑
i=1

1
N
||x̂(i) − x(i)||22. (6)

In this framework, and when the decoder is composed of a single linear layer

Fig. 2: The auto-encoding process and the definition of part-based approximation
to dilation by a structuring element B in this framework.

(eventually followed by a non-linear activation), the model approximates the
input images as:

x̂(i) = f
(
b + h(i)W

)
= f

b +
k∑

j=1
hi,jwj

 (7)

where h(i) is the encoding of the input image by the encoder network, b and W
respectively the bias and weights of the linear layer of the decoder, and f the
(eventually non-linear) activation function, that is applied pixel-wise to the out-
put of the linear layer. The output x̂(i) is called the reconstruction of the input
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image x(i) by the auto-encoder. It can be considered as a linear combination of
atom images, up to the addition of an offset image b and to the application of
the activation function f . The images of our learned dictionary are hence the
columns of the weight matrix W of the decoder. We can extend the definition of
part-based approximation, described in Section 2.1, to our deep-learning archi-
tectures, by applying the morphological operator to these atoms w1, ..., wk, as
pictured by the ”dilated decoder” in Figure 2. Note that a central question lies
in how to fix the size of the latent space k. This question is beyond the scope of
this study and the value of k will be arbitrarily fixed (we take k = 100) in the
following.

The NNSAE architecture, from Lemme et al. [11] proposes a very simple and
shallow architecture for online part-based representation using linear encoder
and decoder with tied weights (the weight matrix of the decoder is the trans-
pose of the weight matrix of the encoder). Both the NCAE architecture, from
Hosseini-Asl et al. ([6]) and the work from Ayinde et al. [2] (2018) that aims at
extending it, drop this transpose relationship between the weights of the encoder
and of the decoder, increasing the capacity of the model. Those three networks
enforce the non-negativity of the elements of the representation, as well as the
sparsity of the image encodings using various techniques.

Enforcing sparsity of the encoding The most prevalent idea to enforce
sparsity of the encoding in a neural network can be traced back to the work of
H. Lee et al. [10]. This variant penalizes, through the loss function, a deviation
S of the expected activation of each hidden unit (i.e. the encoder’s output units)
from a low fixed level p. Intuitively, this should ensure that each of the units of
the encoding is activated only for a limited number of images. The resulting loss
function of the sparse auto-encoder is then:

LAE = 1
M

M∑
i=1

L(x(i), x̂(i)) + β

k∑
j=1

S(p,
M∑

i=1
h

(i)
j ), (8)

where the parameter p sets the expected activation objective of each of the
hidden neurons, and the parameter β controls the strength of the regularization.
The function S can be of various forms, which were empirically surveyed in [22].
The approach adopted by the NCAE [6] and its extension [2] relies on a penalty
function based on the KL-divergence between two Bernoulli distributions, whose
parameters are the expected activation and p respectively, as used in [6]:

S(p, tj) = KL(p, tj) = p log p

tj
+ (1− p) log 1− p

1− tj
with tj =

M∑
i=1

h
(i)
j (9)

The NNSAE architecture [11] introduces a slightly different way of enforcing the
sparsity of the encoding, based on a parametric logistic activation function at
the output of the encoder, whose parameters are trained along with the other
parameters of the network.
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Enforcing non-negativity of the decoder weights For the NMF (Sec-
tion 2.1) and for the decoder, non-negativity results in a part-based represen-
tation of the input images. In the case of neural networks, enforcing the non-
negativity of the weights of a layer eliminates cancellations of input signals. In
all the aforementioned works, the encoding is non-negative since the activation
function at the output of the encoder is a sigmoid. In the literature, various
approaches have been designed to enforce weight positivity. A popular approach
is to use an asymmetric weight decay, added to the loss function of the network,
to enact more decay on the negative weights that on the positive ones. However
this approach, used in both the NNSAE [11] and NCAE [6] architectures, does
not ensure that all weights will be non-negative. This issue motivated the variant
of the NCAE architecture [2,11], which uses either the L1 rather than the L2
norm, or a smoothed version of the decay using both the L1 and the L2 norms.
The source code of that method being unavailable, we did not use this more
recent version as a baseline for our study.

3 Proposed model

We propose an online part-based representation learning model, using an asym-
metric auto-encoder with sparsity and non-negativity constraints. As pictured

Fig. 3: Our proposed auto-encoder architecture.

in Figure 3, our architecture is composed of two networks: a deep encoder and
a shallow decoder (hence the asymmetry and the name of AsymAE we chose
for our architecture). The encoder network is based on the discriminator of the
infoGAN architecture introduced in [4], which was chosen for its average depth,
its use of widely adopted deep learning components such as batch-normalization
[8], 2D-convolutional layers [5] and leaky-RELU activation function [12]. It has
been designed specifically to perform interpretable representation learning on
datasets such as MNIST and Fashion-MNIST. The network can be adapted to
fit to larger images. The decoder network is similar to the one presented in
Figure 2. A Leaky-ReLU activation has been chosen after the linear layer. Its
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behaviour is the same as the identity for positive entries, while it multiplies the
negative ones by a fixed coefficient αlReLU = 0.1. This activation function has
shown better performances in similar architectures [12]. The sparsity of the en-
coding is achieved using the same approach as [6] and [2] that consists in the
addition to the previous loss function of the regularization term described in 2
(Equation 8 and Equation 9).

We only enforced the non-negativity of the weights of the decoder, as they
define the dictionary of images of our learned representation and as enforcing the
non-negativity of the encoder weights would bring nothing but more constraints
to the network and lower its capacity. We enforced this non-negativity constraint
explicitly by projecting our weights on the nearest points of the positive orthant
after each update of the optimization algorithm (such as the stochastic gradient
descent). The main asset of this other method that does not use any additional
penalty functions, and which is quite similar to the way the NMF enforces non-
negativity, is that it ensures positivity of all weights without the cumbersome
search for good values of the parameters the various regularization terms in the
loss function.

4 Experiments

To demonstrate the goodness and drawbacks of our method, we have conducted
experiments on two well-known datasets MNIST [9] and Fashion MNIST [21].
Those two datasets share common features, such as the size of the images
(28 × 28), the number o classes represented in the dataset (10), and the num-
ber of images (70000), that we split between a training set of 60000 images and
a test set of 10000 images. We compared our method to three baselines: the
sparse-NMF [7], the NNSAE [11], the NCAE [6]. The three deep-learning mod-
els (AsymAE (ours), NNSAE and NCAE) were trained until convergence on the
training set, and evaluated on the test set. The sparse-NMF algorithm was ran
and evaluated on the test set. Note that all models but the NCAE may produce
reconstructions that do not fully belong to the interval [0, 1]. In order to compare
the reconstructions and the part-based approximation produced by the various
algorithms, their outputs will be clipped between 0 and 1. There is no need to
apply this operation to the output of NCAE as a sigmoid activation enforces the
output of its decoder to belong to [0, 1]. We used three measures to conduct this
comparison:

– the reconstruction error, that is the pixel-wise mean squared error between
the input images x(i) of the test dataset and their reconstruction/approximation
x̂(i): 1

MN

∑M
i=1
∑N

j=1(x(i)
j − x̂(i)

j )2;
– the sparsity of the encoding, measured using the mean on all test images of

the sparsity measure σ (Equation 2): 1
M

∑M
i=1 σ(h(i));

– the approximation error to dilation by a disk of radius 1, obtained by com-
puting the pixel-wise mean squared error between the dilation δB by a disk
of radius 1 of the original image and the part-based approximation DB to the
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same dilation, using the learned representation: 1
MN

∑M
i=1
∑N

j=1(DB(x(i))j−
δB(x(i))j)2.

The parameter settings used for NCAE and the NNSAE algorithms are the
ones provided in [6,11]. For the sparse-NMF, a sparsity constraint of Sh = 0.6
was applied to the encodings and no sparsity constraint was applied on the
atoms of the representation. For our AsymAE algorithm, p = 0.05 was fixed
for the sparsity objective of the regularizer of Equation 9 and the weight of the
sparsity regularizer in the loss function (Equation 8 was set to β = 0.001 for
MNIST and β = 0.0005 for Fashion-MNIST. Various other values have been
tried for each algorithm, but the improvement of one of the evaluation measures
usually came at the expense of the two others. Quantitative results are sum-
marized in Table 1. Reconstructions by the various approaches of some sample
images from both datasets are shown in Figure 4. Both the quantitative results

Model Reconstruction Sparsity Part-based approximation
error of code error to dilation

MNIST
Sparse-NMF 0.011 0.66 0.012

NNSAE 0.015 0.31 0.028
NCAE 0.010 0.35 0.18

AsymAE 0.007 0.54 0.069
Fashion MNIST

Sparse-NMF 0.011 0.65 0.022
NNSAE 0.029 0.22 0.058
NCAE 0.017 0.60 0.030

AsymAE 0.010 0.52 0.066
Table 1: Comparison of the reconstruction error, sparsity of encoding and part-
based approximation error to dilation produced by the sparse-NMF, the NNSAE,
the NCAE and the AsymAE, for both MNIST and Fashion-MNIST datasets.

and the reconstruction images attest from the capacity of our model to reach
a better trade-off between the accuracy of the reconstruction and the sparsity
of the encoding (that usually comes at the expense of the former criteria), than
the other neural architectures. Indeed, in all conducted experiments, varying the
parameters of the NCAE and the NNSAE as an attempt to increase the sparsity
of the encoding came with a dramatic increase of the reconstruction error of
the model. We failed however to reach a trade-off as good as the sparse-NMF
algorithm that manages to match a high sparsity of the encoding with a low
reconstruction error, especially on the Fashion-MNIST dataset.
The major difference between the algorithms can be seen in Figure 5 that pictures
16 of the 100 atoms of each of the 4 learned representations. While sparse-NMF
manages, for both datasets, to build highly interpretable and clean part-based
representations, the two deep baselines build representations that picture either
too local shapes, in the case of the NNSAE, or too global ones, in the case of the
NCAE. Our method suffers from quite the same issues as the NCAE, as almost



10 B. Ponchon et al.

full shapes are recognizable in the atoms. We noticed through experiments that
increasing the sparsity of the encoding leads to less and less local features in the
atoms.
It has to be noted that the L2 Asymmetric Weight Decay regularization used
by the NCAE and NNSAE models allows for a certain proportion of negative
weights. As an example, up to 32.2% of the pixels of the atoms of the NCAE
model trained on the Fashion-MNIST dataset are non-negative, although their
amplitude is lower than the average amplitude of the positive weights. The
amount of negative weights can be reduced by increasing the corresponding
regularization, which comes at the price of an increased reconstruction error and
less sparse encodings.
Finally Figure 6 pictures the part-based approximation to dilation by a structur-
ing element of size 1, computed using the four different approaches on 10 images
from the test set. Although the quantitative results state otherwise, we can note
that our approach yields a quite interesting part-based approximation, thanks
to a good balance between a low overlapping of atoms (and dilated atoms) and
a good reconstruction capability.

Fig. 4: Reconstruction of the Fashion-MNIST dataset (first row) by the sparse-
NMF, the NNSAE, the NCAE and the AsymAE.

5 Conclusions and future works

We have presented an online method to learn a part-based dictionary represen-
tation of an image dataset, designed for accurate and efficient approximations of
morphological operators. This method relies on auto-encoder networks, with a
deep encoder for a higher reconstruction capability and a shallow linear decoder
for a better interpretation of the representation. Among the online part-based
methods using auto-encoders, it achieves the state-of-the-art trade-off between
the accuracy of reconstructions and the sparsity of image encodings. Moreover,
it ensures a strict (that is, non approximated) non-negativity of the learned rep-
resentation. We especially evaluated the learned representation on an additional
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(a) Sparse-NMF (b) NNSAE (c) NCAE (d) AsymAE

Fig. 5: 16 of the 100 atom images of the four compared representations of Fashion-
MNIST dataset.

Fig. 6: Part-based approximation of the dilation by a structuring element of size
1 (first row), computed using the sparse-NMF, the NNSAE, the NCAE and the
AsymAE.

criterion, that is the commutation of the representation with a morphological
dilation, and noted that all online methods perform worse than the offline sparse-
NMF algorithm. A possible improvement would be to impose a major sparsity to
the dictionary images an appropriate regularization. Additionally, using a mor-
phological layer [16,3] as a decoder may be more consistent with our definition of
part-based approximation, since a representation in the (max, +) algebra would
commute with the morphological dilation by essence.

Acknowledgments: This work was partially funded by a grant from Institut
Mines-Telecom and MINES ParisTech.
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