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The Dressing Field Method of
Gauge Symmetry Reduction:
Presentation and Examples.

Jeremy Attard

Abstract. This paper is a presentation of a recent method of gauge sym-
metry reduction, distinct from the well-known gauge fixing, the bundle
reduction theorem or even the Spontaneous Symmetry Breaking Mech-
anism (SSBM). Given a symmetry group G acting on a fiber bundle and
its naturally associated fields (Ehresmann (or Cartan) connection, cur-
vature, etc.) there are situations where it is possible to erase (in whole
or in part) the G−action by just reconfiguring these fields, i.e. by mak-
ing a mere change of field variables in order to get new composite fields
on which G (or a subgroup) does not act anymore. Two examples are
presented in this paper: the re-interpretation of the BEGHHK (Higgs)
mechanism without calling on a SSBM, and the top-down construction
of Tractor and Twistor bundles and connections in the framework of
conformal Cartan geometry.
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1. Introduction

The fundamental interactions are described in the framework of gauge the-
ories, the geometric content of which is a principal fibre bundle P over a
smooth (spacetime) manifold M , with structure Lie group G, together with
associated vector bundles E = P ×ρ V where ρ is a representation of G on
the vector space V. A (classical) matter field is then represented by a section
ξ of E, while the interacting bosons fields are connections ω on P , and act
on matter fields via the associated covariant derivative Dξ = dξ+ρ(ω)ξ. The
curvature associated to a connection ω will be denoted Ω := dω + 1

2 [ω, ω].
These notations will be used throughout the paper.
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The central notion of a gauge theory is that of local symmetry. The latter
is implemented by the local action of G, i.e. by the action of the (infinite
dimensional) gauge group G = {g : M → G}.

Fields ξ and connections ω transform under the action of g ∈ G as
ωg = g−1ωg + g−1dg and ξg = ρ(g)−1ξ. Knowing this, one can then write a
physical theory by choosing a functional integral S[ω, ξ] which has the prop-
erty to be invariant under this action. The theory is said to be gauge invari-
ant. The physical meaning of this feature is that two fields in the same gauge
orbit are physically equivalent, i.e. are indistinguishable by any physical ex-
periment. The gauge symmetry is the translation of an intrinsic mathematical
redundancy of our formalism.

The description of fundamental interactions on which modern physics
is built reduces, then, to the choice of symmetry Lie groups. Electroweak
and strong interactions are ruled by the Lie group U(1) × SU(2) × SU(3).
Regarding the gravitational interaction, the fundamental symmetry group of
General Relativity (GR) is the group of diffeomorphisms of the base manifold.
Let us remark that one can also write GR under the form of a gauge theory1,
in which is added a local symmetry ruled by the local action of the Lorentz
group SO(1,3). This can be done in the framework of Cartan geometry.

Although the symmetry group G is central and unavoidable in the con-
struction of a gauge theory, one often needs to reduce its action, i.e. passing to
a theory with less symmetry. There can be several reasons for that. For exam-
ple, for a quantization purpose: the gauge symmetry group produces infinities
in the path integral over all fields. Also, e.g. in the case of the electroweak
sector of the Standard Model (SM) (G = U(1)× SU(2)), the constraint im-
posed by the symmetry group is such that mass terms are not allowed, a
priori, in the action. Thus, since massive particles are observed, one has to
find a way to re-write the same theory but with a smaller symmetry group.

There exists many well-known ways of reducing a symmetry. The sim-
plest is gauge fixing : since all fields in a given gauge orbit are equivalent, one
just can choose a particular one – which renders the computations easier,
for example; the physical results should be, by definition, independent of the
choice of gauge. Another one, which applies in the case of the electroweak
sector, as one shall see, is the spontaneous symmetry breaking. In this case,
the symmetry reduction is thought as a physical phenomenon, like a phase
transition, induced by the fact that the ground state has less symmetry than
the theory of which it is a solution.

The recent method of symmetry reduction presented in this paper is
called the dressing field method. It is a systematic way of finding, if they
exist, new fields which are invariant under the action of the gauge group
G or one of its subgroup. This method turns out to be a mere change of
field variables. This change is performed with the help of a dressing field u
which does not, in general, belong to the gauge group G. Thus, it is neither
a gauge transformation nor a gauge fixing: the new field variables, called

1In the sense of using a connection on a fibre bundle.
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composite fields, belong in general to representation spaces – for the action
of the remaining gauge (sub)group – different than the original variables.

The aim of the present paper is first to present in a nutshell the formal-
ism of the method and then to give two examples of application. The first
one is the reinterpretation of the spontaneous symmetry breaking in the elec-
troweak sector of the SM as being a dressing field symmetry reduction. This
gives a new physical interpretation to the BEGHHK (Higgs) mechanism. The
second one is the reconstruction of Twistors (and Tractors), in the field of
conformal geometry, starting from the conformal Cartan geometry and ap-
plying the dressing field to erase a part of the conformal group to end up
with the transformations found in the usual constructions. This offers a new
insight into the geometric nature of these objects. These are examples among
many others. The interested reader will find a more complete and detailed
presentation of the dressing field method and its applications in [4].

2. The dressing field method in a nutshell

The elements of the gauge group G can also be seen as G−valued fields
defined on P . Such an element g is then transformed under the action of
another element h as gh = h−1gh. Let K be a subgroup of G, possibly G
itself. A dressing field is a locally defined G−valued field u on P , which
transforms under a gauge transformation k ∈ K as uk = k−1u. Thus, u /∈ G.

The existence of such a field ensures that the following composite fields:

• ωu := u−1ωu+ u−1du,
• Ωu := u−1Ωu,
• ξu := ρ(u)−1u,

are then K−gauge invariant as it can be checked by a straightforward compu-
tation. The fact that these fields are now K−invariant is interpreted saying
that actually, the subgroup K does not act anymore on the fields.

Thus, if one re-writes the theory (i.e. the gauge invariant action S[ω, ξ])
in the new variables, one gets a theory for which the K−symmetry has been
erased. It is a mere reconfiguration of the fields which redistributes the degrees
of freedom of the theory. The latter are computed as follows: let #TOT, #Φ,
#G and #(Θ = 0) be respectively the total number of degrees of freedom, the
degrees of freedom related to the fields (ω and ξ) of the theory, the dimension
of the symmetry group G, and the number of constraint equations. Then:

#TOT=#Φ–#G–#(Θ = 0).

For example, if the operation of dressing leaves invariant the constraint
equations, in the new variables the theory will have less symmetry and then
necessarily ”less fields”, i.e. less degrees of freedom coming from the fields.

Let us present now the two examples announced in the introduction.
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3. The Higgs mechanism of the SM as a dressing field
reduction.

In the Standard Model, the electroweak sector is governed by the symmetry
group G = U(1) × SU(2). The SU(2)-symmetry prevents the action from
having mass terms for the weak bosons. Thus, one has to find a way to erase
the SU(2)−symmetry. Let us present first the usual version, as developed by
many authors in the 60’s. Then, one presents another interpretation, devel-
oped in [1], based on the dressing field method.

3.1. Usual Viewpoint

The idea is to suppose the existence of a complex scalar field Φ : M → C2

embedded in the potential V (Φ) = −µ2Φ†Φ − λ(Φ†Φ)2, with λ > 0, which
spontaneously gets the value Φmin which minimises the potential V (Φ). This
value depends on the form of the potential, i.e. of the sign of µ2. For µ2 > 0,
Φmin = 0 and the choice Φ = 0 is unique, and viewed as a point in C2, it is
still SU(2)−invariant. However, for µ2 < 0, Φmin 6= 0, and Φ has to ”make
a choice” (hence the term spontaneous) between a subset of correponding
points in C2. It turns out that a particular point is no more SU(2)−invariant,
and this phenomenon breaks the symmetry. The scalar field then reads Φ =
Φmin+H, and the fluctuation H is interpreted as a particle, the Higgs particle
which has been discovered in the LHC in 2012. The constant part Φmin
couples with other fields, giving them mass.

Thus, the generation of masses in the usual viewpoint is deeply related
to the SU(2)−symmetry breaking. One shall see now that it is actually pos-
sible to reinterpret the Higgs mecanism without calling on a spontaneous
symmetry breaking, but merely by viewing it as a dressing.

3.2. SU(2)−erasing without symmetry breaking

Let us take the same initial data as in the usual viewpoint. We are going to
show that SU(2) is actually always erasable by a dressing, u, built out of the
scalar field Φ.

The first step is to write the polar decomposition of Φ as an element

of C2: there exists u ∈ SU(2) such that Φ = uη, with η =

(
0
||Φ||

)
, with

||Φ||2 := Φ†Φ ∈ R+. Due to the gauge transformation of Φ under SU(2)
(as a scalar doublet), the new variable η is invariant under SU(2), and u
transforms as: u→ β−1u, with β ∈ SU(2). Thus, u is a dressing field. From
this point, we already know that it is possible to erase the SU(2)−symmetry
by dressing, whatever the value of µ2 is. η = u−1Φ is the SU(2)−invariant
composite field which takes the place of the original scalar field.

Now, one can generate masses for the weak fields by making η fluctuating
around its value which minimises V (η). For µ2 > 0, ηmin = 0 and mass terms
are identically zero. For µ2 < 0, ηmin 6= 0, and moreover, there is no more
actual ”choice”: η being a positive real number, V (η) is now a mere one-
variable real valued function. Thus, the term ”spontaneously” is no more
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relevant. Writing η = ηmin +H leads to the same conclusions as in the usual
viewpoint.

The only difference is in the physical interpretation: here, one has seen
that the generation of masses is totally decorelated from the symmetry break-
ing. The latter is not seen as a physical phenomenon which historically oc-
cured. Rather, the original SU(2)−symmetry appears to be an artefact due
to field variables in which the theory is originally written, and can be struc-
turally erased by using new field variables. The dressing field method is a
systematic way of finding such new field variables which simplify the theory.

Let us now present another example for which the dressing field method
applies: the top-down construction of Twistor (and Tractor) bundles and
connections.

4. Twistors as composite fields from conformal Cartan
geometry

The whole construction being technical, one only sketches it. The inter-
ested reader is highly recommended to take a look at [2] (Tractors) and
[3] (Twistors).

4.1. The usual bottom-up construction

Twistors are for conformal geometry what spinors are for Lorenztian geom-
etry. These objects are usually obtained following a ”bottom-up construc-
tion” over a conformal manifold (M, [g]), where [g] = {λg, λ ∈ C∞(M,R+∗)},
for a Lorentzian metric g. As in Penrose’s work, for example ([5], [6]), one
takes a C2−valued field ωB which satisfies the Twistor equation: ∇AA′ωB −
1
2δ
B
A∇CA′ωC = 0, and then constructs a closed system by introducing another

C2−valued field πA′ := i
2∇CA′ωC :

• ∇AA′ωB + i 12δ
B
AπA′ = 0,

• ∇AA′πB′ − iPAA′BB′ωB = 0,

with PAA′BB′ corresponding to the Schouten tensor Pab = − 1
2 (Rab− 1

6Rgab).
One then encompasses the whole construction in the new definitions:

• Zα := (ωB , πA′) ∈ C4,

• ∇TAA′Zα = 0 with ∇TAA′ := ∇AA′I4 +

(
0 iδBA

−iPAA′BB′ 0

)
,

where ∇TAA′ is the Twistor connection and Zα is a C4−valued Twistor.
By construction, these equations are conformally invariant (i.e. well-defined
on (M, [g])). Yet, the objects like∇TAA′ and Zα are conformally covariant, and
one can compute the corresponding transformation laws under a conformal
rescaling of the metric. One can then consider a general Twistor Zα, i.e. an
object such that ∇TAA′Zα does not necessarily vanish, and which transforms
with the same laws, which are:

Ẑα =

(
I2 0

iΥAA′ I2

)
Zα and ∇̂TAA′Zα =

(
I2 0

iΥAA′ I2

)
∇TAA′Zα
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under gµν → z2gµν , with ΥAA′ corresponding to Υa = ∂aln(z).

Twistors are thus sections of a vector bundle with fibre C4, transforming
under the action of a certain group represented by elements of the form(

I2 0
iΥAA′ I2

)
. One now presents another construction which is based on the

dressing field method.

4.2. A top-down construction via dressing field method

A Cartan geometry over a manifold M is a way of implementing local external
symmetries (like Lorentz, projective, ...) in the form of usual internal ones.
It is used to write gravitation theories (i.e. theories in which the geometry of
the base manifold is dynamic) in the form of usual gauge theories. From a
mathematical point of view, a Cartan geometry expresses a given geometric
structure over M into the form a principal bundle endowed with a so-called
Cartan connection, slightly different from the usual notion of Ehresmann
connection.

For example, the data of a Lorentzian metric on a manifold M is equiva-
lent to the data of a torsionfree Cartan connection over aH−principal bundle,
H being the Lorentz group. Following the same idea, a conformal manifold
(M, [g]) can be seen as a normal conformal Cartan connection $ over a
H−principal bundle P , with H defined as follows. Let G := SO(2, 4)/(±I)
be the conformal group, and M0 := S1 × S3/Z2 the conformal compactifi-
cation of Minkowski spacetime, which is homogeneous with respect to the
action of G. The corresponding Lie group H is then the stabilizer of a point
of M0. One takes then the complex C4−representation of these groups. A
Twistor should be a section of the associated vector bundle P ×H C4, where

H is the complex representation of H. It turns out that as it stands, the
structure does not reproduce the Twistor space and connection, for it does
not imply the same transformation law.

To recover it, one has to apply the dressing field method, with dressing
fields built out of the conformal Cartan connection. In doing so, one can erase
some parts of the original structure group H, and end up with composite
fields which transform under a modified transformation law corresponding to
the residual action of H. Twistors as previously defined then appear from
this construction, with a slight modification: the residual symmetry group
does not act (on the composite fields) through a representation of the Weyl
group R∗+, but via something more complicated called a 1 − α−cocyle, see
[3], sections 4.2.2.

The fact is that in our procedure, no arbitrary choice is made: one
just takes the ”rigid” normal conformal Cartan geometry and applies to it
the dressing field method. Everything is ”already there”. One is just playing
with objects which naturally belong to the geometry. On the contrary, in
the usual construction, some ansatz are taken to simplify the transformation
laws, rendering the construction more arbitrary, even if it remains, of course,
totally coherent.
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Finally, let us remark that the same thing has been done also for Trac-
tors, which appear to be merely the real version of Twistors ([2]).

5. Conclusion

In this presentation of the dressing field method, it has been shown that
it can apply in a quite wide range of different cases. Once one works on a
principal bundle equiped with a connection (of Erhesmann or Cartan type),
one can try to investigate if it is possible to build a dressing field out of the
fields to erase the action of the symmetry group or one of its subgroups. A
first hint can be given by counting how are initially distributed the degrees of
freedom, and how/if they could be distributed differently. Then, if the answer
is positive, one can start to search for a field transforming on the right way
to be a dressing field.

More than just giving a way of simplifying the writing of physical the-
ories, it often offers a new insight into some already known constructions. In
the case of the SM, it gives a natural and new interpretation of the generation
of masses. In the case of Twistors (or even Tractors), it offers a new view of
the geometric nature of these objects and of their underlying structure.

Acknowledgments

This paper stems from a joint work of the author and his colleague Jor-
dan François and his supervisors Serge Lazzarini and Thierry Masson. Many
thanks go to Jordan François and Serge Lazzarini for having read this paper
and suggested useful corrections.

References

[1] T. Masson and J.-C. Wallet, A remark on the spontaneous symmetry breaking
in the standard model arXiv:1001.1176 (2010).

[2] J.Attard and J. François, Tractors and Twistors from conformal Cartan geom-
etry: a gauge theoretic approach. I. Tractors. arXiv:1609.07307, (2017).

[3] J.Attard and J. François, Tractors and Twistors from conformal Cartan geom-
etry: a gauge theoretic approach. II. Twistors. Classical and Quantum Gravity,
(2017).

[4] J.Attard, J. François, T.Masson and S.Lazzarini The dressing field method of
gauge symmetry reduction: a review with examples Journal of Geometric Method
in Modern Physics, (2017).

[5] R.Penrose Twistor algebra J. Math. Phys., 8:345 (1967).

[6] R.Penrose Twistor quantization and curved space-time Int. J. Theor. Phys.,
1:6199 (1968).

[7] J. François, S.Lazzarini and T.Masson Residual Weyl symmetry out of conformal
geometry and its BRS structure JHEP09 (2015) 195.

[8] J.Attard, J. François and S.Lazzarini Weyl Gravity and Cartan Geometry Phys-
ical Review D, (2015).



8 Jeremy Attard

Jeremy Attard
Centre de Physique Théorique
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