
HAL Id: hal-02071362
https://hal.science/hal-02071362

Submitted on 18 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feasibility Study of Probabilistic Timing Analysis
Methods for SDF Applications on Multi-Core Processors

Ralf Stemmer, Hai-Dang Vu, Maher Fakih, Kim Grüttner, Sébastien Le
Nours, Sébastien Pillement

To cite this version:
Ralf Stemmer, Hai-Dang Vu, Maher Fakih, Kim Grüttner, Sébastien Le Nours, et al.. Feasibility Study
of Probabilistic Timing Analysis Methods for SDF Applications on Multi-Core Processors. [Research
Report] IETR; OFFIS. 2019. �hal-02071362�

https://hal.science/hal-02071362
https://hal.archives-ouvertes.fr

Feasibility Study of Probabilistic Timing Analysis
Methods for SDF Applications on Multi-Core

Processors
Ralf Stemmer∗, Hai-Dang Vu†, Maher Fakih‡, Kim Grüttner‡,

Sebastien Le Nours† and Sebastien Pillement†
∗ University of Oldenburg, Germany, Email: ralf.stemmer@uol.de

† University of Nantes, France, Email: {hai-dang.vu, sebastien.le-nours, sebastien.pillement}@univ-nantes.fr
‡ OFFIS e.V., Germany, Email: {maher.fakih, kim.gruettner}@offis.de

Abstract—Early validation of software running on multi-core
platforms is fundamental to guarantee functional correctness
and that real-time constraints are fully met. In the domain of
timing analysis of multi-core systems, existing simulation-based
approaches and formal mathematical methods are hampered
with scalability problems. In this context, probabilistic simulation
techniques represent promising solutions to improve scalability of
analysis approaches. However, creation of probabilistic SystemC
models remains a difficult task and is not well supported
for multi-core systems. In this technical report, we present
a feasibility study of probabilistic simulation techniques con-
sidering different levels of platform complexity. The evaluated
probabilistic simulation techniques demonstrate good potential
to deliver fast yet accurate estimations for multi-core systems.

I. INTRODUCTION

Because of the growing demand in computational efficiency,
more and more embedded systems are designed on multi-
core platforms. Multi-core platforms are a combination of
computation resources (general-purpose processors, special-
ized processors, dedicated hardware accelerators), memory
resources (shared memories, cache memories), and commu-
nication resources (bus, network on chip). Compared to single
processor platforms, the sharing of resources in multi-core
platforms leads to complex interactions among components
that make validation of software and estimation of extra-
functional properties very challenging.

System level design approaches have been proposed to
allow performance estimation of hardware/software architec-
tures early in the design process. In system level design
approaches, workload models are used to capture the influence
of application execution on platform resources. Timing prop-
erties of architectures and related power consumption can then
be assessed under different working scenarios. However, the
efficiency of system level design approaches strongly depends
on the created HW/SW architecture models that should deliver
both reduced analysis time and good accuracy. Especially,

This work has been partially sponsored by the DAAD (PETA-MC project
under grant agreement 57445418) with funds from the Federal Ministry of
Education and Research (BMBF). This work has also been partially sponsored
by CampusFrance (PETA-MC project under grant agreement 42521PK) with
funds from the French ministry of Europe and Foreign Affairs (MEAE) and by
the French ministry for Higher Education, Research and Innovation (MESRI)

captured workload models should correctly abstract low-level
details of system components but still provide good estimates
about the whole system performance. High-level component
models must capture the possible variability in multi-core
platform resources usage caused by cache management, bus
interleaving, and memory contention. Creation of efficient
architecture models represents thus a time-consuming effort
that limits the efficiency of current system level approaches.
Because of the growing complexity of architectures, existing
real-time analysis methods, i.e., simulation-based and formal
mathematical approaches, show limitations to deliver fast
yet accurate estimation of timing properties. Novel analysis
techniques are thus expected to facilitate the evaluation of
multi-core architectures with good accuracy and in reasonable
times.

Probabilistic models represent a possible solution to capture
variability caused by shared resources on parallel software
execution [1]. Quantitative analysis of probabilistic models
can then be used to quantify the probability that a given
time property is satisfied. Numerical approaches exist that
compute the exact measure of the probability at the expense of
time-consuming analysis effort. Another approach to evaluate
probabilistic models is to simulate the model for many runs
and monitor simulations to approximate the probability that
time properties are met. This approach, which is also called
Statistical Model Checking (SMC), is far less memory and
time intensive than probabilistic numerical methods and it has
been successfully adopted in different application domains
[2]. In the field of embedded system design, executable
specifications built with the use of the SystemC language
are now widely adopted [3]. SystemC models used for the
purpose of timing analysis typically capture workload mod-
els of the application mapped on shared computation and
communication resources of the considered platform. Timing
annotations are commonly expressed as average values or
intervals with estimated best case and worst case execution
times. The adoption of SMC techniques to analyze SystemC
models of multi-core systems is promising because it could
deliver a good compromise between accuracy and analysis
time, yet it requires a more sophisticated timing model based

on probability density functions, inferred from measurements
on a real prototype. Thus, the creation of trustful probabilistic
SystemC models is challenging. Since SMC methods have
rarely been considered to analyze timing properties of applica-
tions mapped on multi-core processors with complex hierarchy
of shared resources, exploring their application on trustful
probabilistic SystemC models remains a significant research
topic.

In this technical report, we present a feasibility study of
SMC methods for multi-core systems. The novelty of the
established framework is twofold. The first contribution deals
with the modeling process, including a measurement-based
approach, to appropriately prepare timing annotations and cal-
ibrate SystemC models. The second contribution is about the
evaluation of SMC methods efficiency with respect to accuracy
and analysis time. Evaluation is done by comparing a real
multi-core implementation with related estimation results. To
restrict the scope of our study, we have considered applications
modeled as Synchronous Data Flow Graphs (SDFGs). We
have evaluated our framework on a Sobel filter case study.
Two configurations of the multi-core processor with different
levels of complexity are considered to analyze the relevance
and effectiveness of SMC methods.

This technical report is organized as follows. In Section
II we provide an overview and discussion of relevant related
work. In Section III we provide background information on our
chosen SDF model, considered multi-core timing effects and
the applied SMC methods. Section IV presents the established
modeling and analysis approach. The experimental results are
described in Section V. Section VI discuss the benefits and
limitations of the presented approach.

II. RELATED WORK

A. Timing analysis approaches

Timing analysis approaches are commonly classified as (1)
simulation-based approaches, which partially test system prop-
erties based on a limited set of stimuli, (2) formal approaches,
which statically check system properties in an exhaustive way,
and (3) hybrid approaches, which combine simulation-based
and formal approaches.

Simulation-based approaches: Different simulation-
based approaches have been proposed to evaluate multi-core
architecture performance early in the design process. In the
proposed approaches, models of hardware-software architec-
tures are formed by combining an application model and a
platform model. In the early design phase, full description
of application functionalities is not mandatory and workload
models of the application are used. A workload model ex-
presses the computation and communication loads (e.g., time,
power consumption, memory cost) that an application causes
when executed on platform resources. Captured performance
models are then generated as executable descriptions and
simulated. The execution time of each load primitive is ap-
proximated as a delay, which are typically estimated from
measurements on real prototypes or analysis of low level
simulations. SystemCoDesigner [4], Daedalus [5], SCE [6],

and Koski [7] are good examples of academic approaches; they
are compared in [8]. Other existing academic approaches are
presented by Kreku et al. in [9] and by Arpinen et al. in [10].
An overview and classification of the considered related work
can be found in Table I. Moreover, some industrial frameworks
such as Intel CoFluent Studio [11], Timing Architect [12],
ChronSIM [13], TraceAnalyzer [14] Space Codesign [15] and
Visualsim from Mirabilis Design [16] have emerged also.

Simulation-based approaches require extensive architecture
analysis under various possible working scenarios but created
architecture models can hardly be exhaustively simulated.
Due to insufficient corner case coverage, simulation-based
approaches are thus limited to determine guaranteed limits
about system properties. One other important issue concerns
the accuracy of created models. As architecture components
are modeled as abstractions of low level details, there is no
guarantee that the created architecture model reflects with
good accuracy the whole system performance. Finally, with
the rising complexity of many-core platforms, execution of
simulation models requires more simulation time.

Formal approaches: Due to insufficient corner case cov-
erage, simulation-based approaches are limited to determine
guaranteed limits about system properties. Different formal
approaches have thus been proposed to analyze multi-core
systems and provide hard real-time and performance bounds.
These formal approaches are commonly classified as state-
based approaches and analytical approaches.

Most of the available static real-time methods are of analyti-
cal nature (c.f. [17] for an overview). Since analytical methods
depend on solving closed-form equations (characterizing the
system temporal behavior), they have the advantage of being
scalable to analyze large-scale systems. MPA-RTC [18] and
SymTA/S [19] are two representatives of compositional ana-
lytical methods for multi-core systems.

Despite their advantages of being scalable, analytical meth-
ods abstract from state-based modus operandi of the system
under analysis (such as complex state-based arbitration pro-
tocols or inter-processor communication task dependencies)
which leads to pessimistic over-approximated results com-
pared to state-based methods [17]. Many recent approaches
for the software timing analysis on many- and multi-core
architectures are built on state-based analysis techniques. The
two main considered application classes are streaming appli-
cations (modeled as synchronous data flow graphs) [20]–[26]
and generic real-time task-based applications [27]–[34]. State-
based real-time methods are based on the fact of representing
the System Under Analysis (SUA) as a transition system
(states and transitions). Since the real operation states of the
architecture behaviour are reflected, tighter results can be ob-
tained compared to analytical methods. However, state-based
approaches allow exhaustive analysis of system properties at
the expense of time-consuming modelling and analysis effort.

In [35], the adoption of model-checking for real-time
analysis of SDFGs running on multi-processor with shared
communication resources is presented. Especially, it is high-
lighted in [35] that state-based approaches can hardly address

systems made of high number of heterogeneous components.
This approach utilizes timed automata to represent tasks and
arbitration protocols for buses and memories. It uses Best-
(BCET) and Worst-Case Execution Time (WCET) intervals
as lower and upper bounds of the estimated execution time
of a specific platform. In our work, we use a timing model
based on probability density functions, which allows a more
flexible analysis especially in the case of platforms with
complex interaction between resources (e.g., cache effect,
external shared memory). The approach we investigate uses a
combination of probabilistic models and analysis techniques.
It is a hybrid analysis approach that can be seen as a trade-off
between simulation and state-based verification approaches.

B. Timing analysis approaches based on probabilistic methods

Probabilistic models are frequently adopted to model sys-
tems where uncertainty and variability need to be considered.
In the context of embedded systems, probabilistic models
represent a means of capturing system variability coming
from system sensitivity to environment and low level effects
of hardware platforms. Probabilistic models (e.g., discrete
time Markov chains, Markov automata) can be used to ap-
propriately capture this variability. Probabilistic models are
extensions of labeled transition system and allow variations
about execution times and state transitions to be considered.
Quantitative analysis of probabilistic models can be used to
quantify that a given time property is satisfied. Numerical
approaches exist that compute the exact measure of the prob-
ability at the expense of time-consuming analysis effort. As
an illustration, the adoption of probabilistic model checking
for evaluation of dynamic data-flow behaviors is presented in
[20]. Markov automata is used as the fundamental probabilistic
model to capture and analyze architectures. Characteristics
as application buffer occupancy, timing performance, and
platform energy consumption are estimated. However, this
approach is restricted to fully predictable platforms, with low
influence of platform resources on timing variations.

Another approach to analyze probabilistic models is to
simulate the model for many runs and monitor simulations
to approximate the probability that time properties are met.
Statistical Model Checking (SMC) has been proposed as an
alternative to numerical approaches to avoid an exhaustive
exploration of the state-space model. SMC refers to a series
of techniques that are used to explore a sub-part of the state-
space and provides an estimation about the probability that a
given property is satisfied. SMC designates a set of statistical
techniques that present the following advantages:
• As classical model checking approach, SMC is based on

a formal semantic of systems that allows to reason on
behavioral properties. SMC is used to answer qualitative
questions (Is the probability for a model to satisfy a given
property greater or equal to a certain threshold?) and
quantitative questions (What is the probability for a model
to satisfy a given property?).

• It simply requires an executable model of the system
that can be simulated and checked against state-based

properties expressed in temporal logics. The observed
executions are processed to decide with some confidence
whether the system satisfies a given property.

• As a simulation-based approach, it is less memory and
time intensive than exhaustive approaches.

Various probabilistic model-checkers support statistical model-
checking, as for example UPPAAL-SMC [36], Prism [37],
and Plasma-Lab [38]. This approach has been considered in
various application domains [39].

The usage of UPPAAL-SMC to optimize task allocation and
scheduling on multi-processor platform is presented in [40].
Application tasks and processing elements are captured in a
Network of Price Timed Automata (NPTA). It is considered
that each task execution time follows a Gaussian distribution.
In the scope of our work, we especially focus on the prepara-
tion process of probabilistic models of execution time. Besides,
we consider different platform configurations with different
levels of predictability to evaluate the accuracy and analysis
time of SMC methods.

Authors in [41], [42] propose a measurement-based ap-
proach in combination with hardware and/or software ran-
domization techniques to conduct a probabilistic worst-case
execution time (pWCET) through the application of Extreme
Value Theory (EVT). In difference to their approach, we apply
a Statistical Model Checking (SMC) based analysis capturing
the system modus operandi. This enables the obtainement of
tighter values compared to the EVT approach. Yet our method
could benefit from their measurement methodology.

An iterative probabilistic approach has been presented by
Kumar [43] to model the resource contention together with
stochastic task execution times to provide estimates for the
throughput of SDF applications on multiprocessor systems.
Unlike their approach, we apply an SMC based analysis
which enables a probabilistic symbolic simulation and the
estimation of probabilistic worst-case timing bounds of the
target application with estimated confidence values.

In [44] integration of SMC methods in a system-level ver-
ification approach is presented. It corresponds to a stochastic
extension of the BIP formalism and associated toolset [45]. An
SMC engine is presented to sample and control simulation
execution in order to decide if the system model satisfies a
given property. The preparation process of time annotations in
system model is presented in [1] where a statistical inference
process is proposed to capture low-level platform effects on
application execution. A many-core platform running an image
recognition application is considered and stochastic extension
of BIP is then used to evaluate the application execution time.

A solution is presented in [46] to apply SMC analysis
methods for systems modeled in SystemC. The execution
traces of the analyzed model are monitored and a statistical
model checker is used to verify temporal properties. The
monitor is automatically generated based on a given set of
variables to be observed. The statistical model-checker is
implemented as a plugin of the Plasma-Lab. In the scope of
our work, we adopt the approach presented in [46] to analyze
time properties of multi-core systems modeled with SystemC.

The adoption of SMC methods to timing analysis of multi-
core systems is promising because it could deliver good
compromise between accuracy and analysis time. However,
creation of trustful probabilistic models remains a difficult task
and is not well supported for multi-core systems. Especially, to
the best of our knowledge, no work attempted to systematically
evaluate the benefits of using SMC to analyze the timing
properties of applications based on Synchronous Data Flow
(SDF) model of computation on multi-cores, targeting more
tightness of estimated bounds and faster analysis times.

C. Summary of existing analysis approaches

In [47], the authors gave a classification of multi-core
architectures w.r.t predictability considerations in their design:
• Fully timing compositional: architectures do not exhibit

any timing anomalies1 and the usable hardware platform
is constraint to be fully compositional. In this case a
local worst-case path can be analyzed safely without
considering other paths,

• Compositional with bounded effects: architectures exhibit
timing anomalies but no domino effects2,

• Non-compositional: architectures which exhibit both
domino effects and timing anomalies. The complexity of
timing analysis of such architectures is very high since
all paths must be examined due to the fact that a local
effect may influence the future execution arbitrarily.

The main discussed approaches are classified in Table I
according to the above identified three categories of platforms.
We have estimated the efficiency of the approaches for each
kind of platforms (well supported , partially supported , not
well supported).

Table I also indicates the position of expected results
of our targeted approach. The approach should demonstrate
the efficiency of probabilistic methods to analyse multi-core
systems. Especially, a significant achievement would be the
analysis of non-compositional architectures.

All of the above mentioned analysis approaches rely on
the estimation of execution times. For the simulation-based
and some probabilistic approaches, the estimation can be per-
formed through a detailed simulation model at instruction- or
even cycle-accurate level. This involves very time consuming
simulations and belongs to the class of measurement-based
execution time analysis techniques, that have to deal with
the rare-event problem3. Another technique is timing back-
annotation to functional or analytical system models, applying
timing measurement or static timing analysis approaches.
For most real-time systems, the Worst-Case Execution Time
(WCET), which is a safe upper bound of all observable
execution times, is the most relevant metric. Sometimes also

1Timing anomaly is referred to “the situation where a local worst-case
doesn’t contribute to the global worst-case” in [47] e.g. shorter execution
time of an actor can lead to a larger response time of the application.

2Domino effect occurs when the execution time difference is arbitrary high
(cannot be bounded to a constant) between two states (s, t) of the same
program (starting in s, t respectively) on the same hardware [47].

3Rare events are events that occur with low frequency but which have
potentially widespread impact, e.g. on the execution time.

Probabilistic
Model-CheckerSystemC Model

ActorA();
sc_core::wait(GetDelay(A));

ActorB();
sc_core::wait(GetDelay(B));B

A
Tile

Random value from fileMeasurement
φ = G

≤T
 (((delay(A) ≤ d

1
) & (delay(B) ≤ d

2
)) (t⇒

latency
 ≤ d))

Stored samples

Traces

1

1

1

1

Plasma Lab

Real System

Fig. 1: Example of applying statistical model checking on a two-
actor SDF application executed on a single tile. The measured timing
characteristic used in a SystemC model can be seen in the left plots.
These measured execution time samples were randomly selected by
the GetDelay function. The blue histogram is the result of the end-
to-end latency analysis with Plasma Lab.

the Best-Case Execution Time (BCET) is considered in combi-
nation with WCET in a [BCET,WCET] interval. Static timing
analysis [56] is the state-of-the-art technique to determine the
WCET and BCET respectively. With the adoption of todays
multi-core systems, limitations of static timing analysis are
becoming apparent [47].

For modern multi-core architectures, measurement-based
approaches can overcome many problems of static timing
analysis. But this comes at a price, since measurement-based
timing analysis is facing the rare-event problem, its analysis
results are either largely over-approximated (using a large
safety margin) or untrustworthy (due to a missing probability
analysis). To overcome these challenges for measurement-
based timing analysis for modern processors and multi-core
systems, the work in the context of the projects PROARTIS4

[57] and PROXIMA5 [58] propose a new way for timing
analysis. Instead of applying improved static analysis, a mea-
surement based approach in combination with hardware and/or
software randomization techniques to conduct a probabilistic
worst-case execution time (pWCET) through the application of
extreme value theory (EVT) has been proposed. Both projects
have successfully assessed that measurement based execution
time analysis with the combination of EVT can be used to
construct a worst-case probability distribution. In difference to
these approaches, we apply an SMC-based analysis approach
to consider a full system modus operandi. Furthermore, we are
applying the analysis on a set of restricted and well analyzable
Models of Computation (MoCs)

The established approach combining probabilistic execution
times and probabilistic analysis methods is presented in the
next section.

Classes of estimation
approaches Related work

Fully timing
compositional

Compositional with
bounded effects

Non-compositional

Simulation-based
approaches

SystemCoDesigner [8]
Daedalus [8]
SCE [8]
Koski [7]
Kreku et al. [9]
Arpinen et al. [10]

Compositional
approaches

MPA-RTC [18]
SymTA/S [19]

Holistic approaches
Tendell et al. [48]
Yen et al. [49]
Pop et al. [50]
Anderson et al. [51]

State-based approaches
SDFGs

Skelin et al. [21]
Zhu et al. [22]
Thakur et al. [23]
Ahmad et al. [24]
Malik et. al. [25]
Yang et al. [26]
Fakih et. al. [52]
Stemmer et. al. [53]

State-based approaches
Generic tasks

Norstrom et al. [27]
Hendrik et al. [28]
Lv et al. [29]
Gustavsson et al. [30]
Giannopoulou et al. [31]
Brekling et al. [32]
Zhang et al. [33]
Büker et al. [34]

Probabilistic approaches
BIP-SMC [54]
Katoen et al. [20]
Nouri et al. [1]
Stemmer et.al. [55]
Expected results from this work

TABLE I: Classification of related work and main references.

III. PRELIMINARIES

A. SDFGs

A synchronous data-flow graph (SDFG) [59] is a directed
graph (see example in Fig.1, Sobel filter in Fig.3a) which
consists mainly of nodes (called actors) modeling atomic
functions/computations and arcs modeling the data flow (called
channels). SDFGs consume/produce a static number of data
samples (tokens) each time an actor executes (fires). An actor
can only be executed, when there are enough tokens available
on its ingoing channels.

Definition 1: (SDFG) A synchronous dataflow graph is
defined as SDFG = (A, C), which consist of a finite set
A of actors A and a finite set C of channels C.

1) a finite set A of actors A.
2) a finite set C of channels C. A channel is a tuple C =

(Ri, Ro, B) with

a) The input rate Ri defining the number of tokens that
can be written into the channel during the write phase
of an actor.

4Probabilistically Analysable Real-Time Systems (http://www.
proartis-project.eu)

5Probabilistic real-time control of mixed-criticality multicore and manycore
systems (http://www.proxima-project.eu)

b) The output rate Ro defining the number of tokens that
will be read from the channel during the read phase of
an actor.

c) The buffer size B in number of tokens.
In the context of SDFGs, an iteration of an SDFG (refer

to [35] for more formal definitions) is completed when the
initial tokens’ distribution on all its channels is restored. The
end-to-end latency is the time starting from activating the first
instance of the source actor, executing the SDFG application
till the last instance of the sink actor is finished.

B. Multi-Core Timing Effects

Variations of the execution time can be caused by two main
sources:

1) Software induced: Data dependencies in the algorithm,
leading to different execution paths of the software (dif-
ferent branches or number of loop iterations, which are
taken).

2) Hardware induced: Depending on the processor and
memory architecture, different timing variations can oc-
cur, these can be further grouped into
a) local effects: only dependent on the properties and the

state of the processor architecture where the software
is executed on. This includes data dependent execu-
tion times of instructions, branch prediction, and local
cache misses.

b) global effects: dependent on the usage and properties
of shared resources used by multiple processors. This
includes access to a shared bus, shared memory and
shared caches (2nd level cache).

The software induced timing effects can be handled though
appropriate algorithm design (i.e. by avoiding data dependent
loops) and a static path analysis. Hardware induced local
effects can be handled (if known and well documented) by
static Worst-Case Execution Time (WCET) analysis. For the
global effects, static analysis is extremely difficult or even
impossible for specific multi-core platforms. For this reason,
measurement based timing analysis approaches are currently
being employed to cope with these difficult timing interfer-
ences. In this paper we are considering timing effects of all
of the described classes.

C. Statistical Model-Checking Methods

Consider a probabilistic system S and a property ϕ. Statis-
tical Model Checking (SMC) refers to a series of simulation-
based techniques that can be used to answer two types of
question [60]: (i) What is the probability that S satisfies ϕ
(quantitative analysis), written Pr(S |= ϕ)? And (ii) Is the
probability that S satisfies ϕ greater or equal to a threshold θ
(qualitative analysis), written Pr≥θ(S |= ϕ) ? The core idea
of SMC is to monitor a finite set of simulation traces which
are randomly generated by executing the probabilistic system
S. Then, statistical algorithms can be used to estimate the
probability that the system satisfies a property. In the scope
of this paper, we consider two algorithms: Monte Carlo with
Chernoff-Hoeffding bound to answer the quantitative question
and Sequential Probability Ratio Test (SPRT) for qualitative
question. Although SMC only provides an estimation, the
algorithms presented below offer strict guarantees on the
precision and the confidence of the test.

Let p = Pr(S |= ϕ) be the probability that the system
satisfies a certain property ϕ. The methods which can quantify
p are based on the techniques of Monte Carlo with Chernoff-
Hoeffding bound [61]–[63]. Given a precision δ, an estimation
procedure consists on computing an approximation p′ such
that |p′ − p| ≤ δ with confidence α, i.e., Pr(|p′ − p| ≤ δ) ≥
1 − α. Given B1, ..., Bn as n discrete random variables with
a Bernoulli distribution of p associated with n simulations of
the system. We denote bi as the outcome of each Bi, which
is 1 if the simulation satisfies ϕ and 0 otherwise. Based on
Chernoff-Hoeffding bound [64], p′ can be approximated as
p′ = (

∑n
i=1 bi)/n and the minimum number of observations

that guarantees Pr(|p′− p| ≤ δ) ≥ 1−α can be computed as
n ≥ 4

δ2 log(
2
α).

The statistical methods to answer the qualitative question
are based on hypothesis testing (see details in [46], [1]).
The principle of these methods is to determine whether the
probability that the system satisfies a property is greater than
a given bound: p ≥ θ? In [65], Younes proposed SPRT as
an hypothesis testing algorithm, in which the hypothesis H0:
p ≥ p0 = θ + δ is tested against the alternative hypothesis
H1: p ≤ p1 = θ − δ. The strength of a test is determined by

two parameters (α, β) which are the probability of accepting
H0 when H1 holds (type I error or false negative), and the
probability of accepting H1 when H0 holds (type II error
or false positive). The interval [p0, p1] is referred to the
indifference region of the test which contains θ.

Analysis results using these two statistical algorithms will
be presented in Section V.

D. Statistical Timing Properties

In this paper, we consider the properties specified in
Bounded Linear Temporal Logic (BLTL). This logic enhances
Linear Temporal Logic (LTL) operators with time bounds. A
BLTL formula ϕ is defined over a set of atomic propositions
AP , the logical operators (e.g., true, false, ¬,→ and ∧) and
the temporal modal operators (e.g., U , X , F , G, M and W)
by the grammar as follows.

ϕ := true | false | ap ∈ AP | ¬ ϕ | ϕ1 ∧ ϕ2 | ϕ1 U≤T ϕ2

The time bounds T is the duration of one simulation run
during which we analyze the property. Temporal modality
F , for ”eventually”, can be derived from the ”until” U as
F≤T ϕ = true U≤T ϕ. It means that the property ϕ is
eventually satisfied within T . Similarly, temporal modality G
for ”always” can be derived from F as G≤T ϕ = ¬F≤T
¬ϕ. This equation can be explained as: the hypothesis that
the property ϕ is not satisfied within T will not occur or
the property ϕ is always satisfied within T . The semantic of
BLTL logic is the semantic of LTL logic restricted to a time
interval (see details in [46]). Consider the example in Fig.
1, the computation times of two actors A and B stay below
threshold values d1, d2: delay(A) ≤ d1 and delay(B) ≤ d2.
The BLTL formula to express the probability that the end-to-
end latency t latency always stays below a threshold value
d within T is ϕ = G≤T (((delay(A) ≤ d1)&(delay(B) ≤
d2)) => (t latency ≤ d)).

IV. APPROACH

Our approach is shown in Fig. 2. We start with a model
of our implemented system. This model consists of an SDF
computation model of an application that is mapped and
scheduled on a multi-processor hardware platform with shared
memory communication. The system model is described in
section IV-A in detail. The hardware architecture gets instan-
tiated on an FPGA and the modeled application is executed
on this system. We then measure the timing behavior of the
application running on this system for our model (see arrow
1© in Fig. 2). The results of the end-to-end latency analysis of

our model is then compared to the actual measured end-to-end
latency (see arrow 2© in Fig. 2) in section V-B.

A. System Model

In this section, we explain our software and hardware model,
as well as the mapping and scheduling of the software on the
hardware. Furthermore, we describe how we model the timing
behavior of the system.

Data
(End-to-End)

Data
(End-to-End)

Simulation
(Plasma Lab)

Probabilistic
SystemC Model

FPGA

SW (SDFG)

HW (MPSoC)

Sec. IV.A

Sec. IV.C

Sec. V

Sec. IV.A

②

①

Sec. V.D

Sec. VTiming
Measurement

Sec. IV.B

D⃗cx ,e , d,r ,w ,p

D⃗ Iteration

Fig. 2: Overview of our approach to use measured execution time
for a simulation-based stochastic end-to-end latency analysis. The
annotation refers to the paper section describing the individual steps.

Tile 0 Tile 1

BUS 0 (Data)

Shared Memory

Get
Pixel ABSGY GX

81 81

81
81

1

1 1

1

(a)

(b)

Get
Pixel

ABS

GX

GY

Cache 1Cache 0
DDR
Shared Memory

BRAM

BUS 1 (Instructions + Data)

Private Memory Private Memory

Actors FIFOs CacheSetup

DDR Ⓒ BRAM Ⓑ yes2

BRAM Ⓐ BRAM Ⓑ no1

Ⓐ

Ⓑ

Ⓒ

Ⓐ

Fig. 3: a) A Sobel filter modeled as an SDFG. A 9×9 pixels segment
of an image is read by GetPixel actor and is sent to the GX and GY
actors. The result of the convolutions in GX and GY is sent to the
ABS actor where a pixel for the resulting image is calculated.
b) Our platform consisting out of two tiles with caches and two
shared memories. The Sobel filter’s actors are mapped to the tiles.
The instructions and local data of the actors use either the private
memory A© or the shared DDR C©. The channels for data exchange
between the actors are mapped to the shared BRAM B©. Due to
the added caches and the DDR memory, the timing behavior of the
system becomes highly non-deterministic.

1) Model of Computation: The SDF model: The Sobel filter
(see Fig. 3a), used in our experiments, follows SDF semantics
that are described in subsection III-A.

SDF model of computation offers a strict separation of
computation and communication phases of actors. During the
computation phase, no interference with any other actor can

occur, if the respective code is mapped to dedicated memories
(see setup 1 in Fig. 3b). We later weaken this constraint and
run the code from a shared DDR memory (see setup 2 in
Fig. 3b). This obviously leads to interferences and extra delays
between the actors accessing shared memories which will be
also taken into consideration by our probabilistic model.

The channels are implemented as FIFO buffers on a shared
memory.

The actors are static scheduled and will not be preempted.
Iterations can overlap over time. In our example GetPixel of
one iteration will be executed at the same time ABS gets
executed from the iteration before (See Fig. 4.

2) Model of Architecture: The hardware model: We started
with a hardware model of a composable system that uses
multiple independent tiles to execute applications as determin-
istic as possible. Interference occurs only when applications
explicitly access shared resources like shared memories or
a shared interconnect. We then extend this hardware with a
common memory for the instructions of the software executed
on the tiles (Fig. 3b).

Definition 2: (Tile) A tile is a tuple T = (PE,Mp) where
PE is the processing element and Mp is the private memory
only accessible by the processing element. A tile can execute
software without interfering with other tiles as long as the
software only accesses the private memory.

Definition 3: (Execution Platform) An execution platform
is defined as EP = (T ,Ms, Ca, I) consisting of a finite set
T of tiles T as defined in Def. 2, a finite set Ms of shared
memory Ms, a finite set Cs of dedicated caches Ca for each
tile, and a finite set I of shared interconnects I . While a
tile can be connected to multiple interconnects, we assume
that every memory is connected to only one interconnect.
Furthermore we assume that tiles can only communicate via
a shared memory.
In the experiments, without loss of generality, the used inter-
connects support a first-come first-serve-based communication
protocol. The EP1 and EP2 for the two setups in Fig. 3b) can
be expressed as follows:

EP1 = ({tile0, tile1}, {BRAM}, {}, {BUS0}) (1)

EP2 = ({tile0, tile1}, {DDR,BRAM}, {Cache0, Cache1}, {BUS0, BUS1})
(2)

As shown in Fig. 3b, in the first setup (EP1) the platform
consists of two tiles with local data and instruction memories
connected with a data bus to a shared memory, through
which inter-tile communication takes place. This setup is full
composable such that the computation phases of any actor
(taking place locally on private memory) can be considered
independent from communication phases (taking place via the
data bus supporting a single-beat transfer style). For the second
setup (EP2) the computation code of actors is placed on a
DDR memory where, with the help of a cache controller (one
for each tile), the code is accessed via a data/instruction bus
(see BUS1 in Fig. 3b). Also here the inter-tile communication
takes place via the data bus (BUS0) and the shared BRAM
memory.

ABS r

GetPixel

GX

GY

ABS

r

r r

w

r

Iteration i

MB0

MB1

di ,end-to-end

w GetPixelGY w

rw w

di ,cGetPixel

di ,c ABS
di ,cGX

di ,cGY
di+1,cGetPixel

(di ,WT GetPixel→GX
+di ,WT GetPixel→GY

)

di , RTGetPixel→ GY
di ,WT GY→ ABS

di−1,cGY

di−1,cABS
(di ,RT GX→ABS

+di , RTGY → ABS
)

di , RTGetPixel→ GX

w w

r

di ,WT GX→ABS

Fig. 4: Expected actor and phase activation for one iteration i (orange
- start of the first actor to the end of the last actor) The annotated
delays di,x ∈ ~D are our measured values for iteration i. di,RT

represent the read-time (equ. 4) and di,WT the write-time (equ. 3) of
the communication. di,cx is the computation time an actor x needs
in iteration i. The End-To-End latency di,end-to-end is the delay of one
iteration (cp. [55])

B. Timing Model

All timings are related to the mapped software (i.e. SDF
actors and channels) on a specific hardware. For this reason,
the annotation of any delays (in cycles) to the models takes
place after the mapping and scheduling process, as shown in
Fig. 4. While the execution of an actor’s computation phase
on a specific tile can be represented by a single delay d ∈ ~Dc

(see Def. 4) for each considered execution, the communication
timing model requires more effort.

To follow the SDF semantics, communication is real-
ized using a FIFO buffer. Communication between actors is
modeled considering every single memory access, including
synchronizing meta data, plus some time consumed by the
computational parts of the FIFO implementation. For our
implementation of the FIFO buffer the time for writing t
tokens is described by:

dWriteTokens(t) = (n+ 2) dr + (t+ 1) dw + n · dp + de (3)

The time for reading t tokens to the FIFO is:

dReadTokens(t) = (n+ t+ 2) dr + 2 · dw + n · dp + dd (4)

The read and write phase of an actor expects a ready (filled
or empty) FIFO buffer for each channel connected to the
actor. During these phases the state of the buffer is checked
via polling. Each polling iteration takes a time of dp that is
defined by the developer but can vary when executed from
shared memory or due to caching effects. The amount n of
polling iterations is determined during the analysis of the
model and varies between each SDF execution iteration i.
Accessing memory consumes read time dr ∈ ~Dr or write time
dw ∈ ~Dw for each token t that is transferred as well as for
updating meta data. Furthermore, it takes some computation
time for managing the FIFO. These delays are the enqueue
delay de ∈ ~De of the write phase or the dequeue delay
dd ∈ ~Dd for the read phase. Delays can vary in each SDF
execution iteration i.

Definition 4: (Time Model) D is defined as a set of delay
vectors ~D ∈ D with probable execution delays, consisting of
the following delay vectors:
• ~Dc ∈ D: The computation time of an actor A ∈ A.

bus

tile 0
Execute()

b_transport()

shared
memory

b_transport()
tile 1

Execute()

Fig. 5: Setup of our Simulation with SystemC TLM. Two tiles are
connected to a shared memory via interconnect. The interconnection
to the shared DDR memory (as given in EP2, see Setup 2 in
Fig. 3b) for the instructions and local data is not explicitly modeled
in SystemC. They are implicit in the timing data annotated to the
model.

• ~De, ~Dd ∈ D: The enqueue and dequeue time that repre-
sents the computation time of the FIFO driver.

• ~Dr, ~Dw ∈ D: The time to read and write to a memory
M ∈ Mp ∪ Ms. For shared memories this delay
also includes the overhead of the interconnect I ∈ I
communication.

• ~Dp: A polling delay when an actor Ax ∈ A tries to access
a FIFO that is blocked (not enough tokens, or not enough
free buffer space).

For all above delays, when the corresponding software
components need to be loaded from shared memories via
caches (like the case in setup 2, see Fig. 3b), the interference
with other actors and caching effects is also captured in the
corresponding delay vectors. It is assumed that for different
mappings the influences of the cache on the execution time of
an actor is similar.

C. Probabilistic SystemC Model

The SystemC model is a representation of the whole system.
It models the mapped and scheduled SDF application on a
specific hardware platform. As shown in Fig. 5 it consists of
three major parts: 1) the tile modules for simulating the actors’
execution on a tile, 2) the bus module that simulates the bus
behavior (arbitration and transfer) and 3) the shared memory
module for the read and write access to the shared memory on
which the SDF channels are mapped. For this paper, as seen
in Fig. 5, we didn’t explicitly model the caches, the DDR
memory and its bus (BUS1), as given in EP2 (Setup 2 in
Fig. 3b). Instead, for simplification reasons, we capture the
timing influence of those components (latency times of the
cache, bus transfer and memory latency for loading and storing
instructions) in the measured actors’ execution times being
executed from this memory. It remains interesting for future
research to see how the explicit modeling of these elements
in the SystemC model would improve the accuracy of EP2

analysis results.
The behavior of the SDF application is simulated as an

SC THREAD of the tile module. This module also implements
the read and write phases of the actors that run on those tiles.
The computation phase of an actor is a simple wait statement
using the actors’ computation time ~Dc.

The read and write phase are modeled in more details. They
are methods that implement a FIFO behavior that follows the

Measure delays

After n sim.

Distribution of
measured delays

Distribution of
simulated delays

P
m

(d
m

)

d
m

P
s
(d

s
)

d
s

Tile Y

ActorX()
sc_core::wait(GetDelay(A))

All n samples

Uniform distributed
GetDelay(X)

D
el

ay

Sample

Get random sample

SystemC
Simulation

Fig. 6: Process of annotating the SystemC model with measured
delays from the real system shown for an example actor ActorX
on a tile Y. The measured delays are stored in a file (top). The
SystemC model (bottom) then gets a random value (center) from
that file as delay for the simulation. So the distribution of delays for
the simulation are similar to the distribution of the measured delays.

SDF semantics. Both, read and write phases are divided into
multiple sections. Each section has a different delay annotation
~De, ~Dd and ~Dp as described in IV-B.

The bus module manages the arbitration using First Come
First Server (FCFS) strategy. The shared memory simply
distinguishes read (~Dr) and write (~Dw) access. Depending on
the access type, it proceeds the simulation time by the related
time.

In the SystemC model, the probabilistic timing information
can be modeled with the distributions provided by GNU
Scientific Library (GSL) [66]. In the case of the Sobel Filter,
we consider the computation time of four actors GetPixel, GX,
GY, ABS and the communication time to read/write data on
the channels or on shared memory. In each iteration of the
SystemC model, a computation time or communication time
is assigned to a value that is either randomly chosen from the
a) uniform, b) normal distributions of the measured delays
or c) from a text file containing the raw measured delays of
software components (we refer to as injected data). Any other
distribution can be used.

To apply the uniform distribution, we choose a random
value in the interval of [BCET, WCET]. While in the normal
distribution, we consider the mean µ and the variance σ of the
corresponding measured delays.

To improve the accuracy of the uniform/normal distributions
it is desired to model a probability distribution that accurately
reflects the distribution of the measured delays. This is realised
by reading a random value (see GetDelay(A) in Fig. 6) for
every component (e.g. an actor delay) from a text file that
provides all measured delays of this component (we refer
to as injected data). This process from measuring an actor
to simulating its timing behavior is shown in Fig. 6. The
same process is applied for modeling the communication. The
measured delay of a random iteration of the actual executed
actor gets collected in a file containing all samples of the
execution times of that specific actor. So after measurement,
there exists files of delays for each delay vector described
Def. 4 in Sect. IV-B. To use these data inside the simulation,
a function GetDelay (Fig. 6) selects a random value from

the measured raw data file. The distribution of the randomly
selected delays is uniform. This achieves a similar delay
distribution of the simulated actor compared to the real actor
as we will show in the experiments section.

D. Statistical Model-Checking of SystemC Models

The statistical model-checker workflow that we consider
takes as inputs a probabilistic model written in SystemC
language, a set of observed variables, a BLTL property, and
a series of confidence parameters needed by the statistical
algorithms, as shown in Fig. 7. First, a monitor model is
generated by the Monitor and aspect-advice generator (MAG)
tool proposed by V.C Ngo in [46]. Then, the generated monitor
and the probabilistic system are instrumented and compiled
together to build an executable model. In the simulation phase,
Plasma Lab iteratively triggers the executable model to run
simulations. The generated monitor observes and delivers the
execution traces to Plasma Lab. An execution trace contains
the observed variables and their simulation instances. The
length of traces depends on the satisfaction of the formula to
be verified. This length is finite because the temporal operators
in the formulas are bounded. Similarly, the required number
of execution traces depends on the statistical algorithms in use
supported by Plasma Lab (e.g., Monte Carlo with Chernoff-
Hoeffding bounds or SPRT).

The executable model is built with three main steps, as illus-
trated in Fig. 8: Generation, Instrumentation and Compilation.
Users create a configuration file that especially contains the
properties to be verified, the observed variables and the tempo-
ral resolution. The configuration file is then used by the MAG
tool to generate an aspect-advice file and a monitor model.
The aspect-advice file declares the monitor as a friend class
of the SystemC model, so that the monitor can access to the
private variables of the observed model. The monitor model
contains a monitor class and a class called local observer.
The local observer class contains a callback function that
invokes step() function of the appropriate monitor class at a
given sampling point during the simulation [67]. The step()
function captures the value of the observed variables and their
instances to produce execution trace. The temporal resolution
specifies when the set of observed variables is evaluated by the
monitor during the simulation of the SystemC model. In the
Instrumentation step, the SystemC model and the generated
monitor are instrumented by AspectC++ with the help of the
aspect-advice file. The instrumented models are linked to the
libraries of SystemC and compiled by g++ compiler in the
Compilation step to build an executable model. Afterward,
users run the Plasma Lab to verify the property.

V. EXPERIMENTS

In this section we describe our experiments and discuss the
results.

A. Experiment Definition

In our experiments we use two different configurations of
our system. Our platform is shown in Fig. 3b and consists

SystemC
Probabilistic

Model

Observed
Variables

Property
In BLTL

Parameters
α, β, Ɛ, δ

Generation
Instrumentation

Compilation

Observed
 Model

Monitor

Executable Model

Plasma Lab
Monte Carlo/SPRT

Result

Input Output
Executable

Model
Process

Traces

Triggers

Fig. 7: Generation and instrumentation of SystemC models and
interaction with Plasma Lab statistical model checker.

of two MicroBlaze processors as processing elements. First
the private memories A© of the tiles were used for local data
(e.g. stack and heap) and instructions of the actors mapped on
that tile. Then the private memory gets replaced by a shared
memory C©.

The memory for the local data and instructions are con-
nected to a different interconnect than the shared memory
for inter-processor communication. For the communication
between the actors, the channels are mapped onto a shared
BRAM Memory (Fig. 3b B©).

In our first experiment, we execute the actors from a private
BRAM memory (Fig. 3b A©) that is exclusively connected to
each tile. So there is guaranteed that loading instructions and
accessing private data (e.g. from the stack) is deterministic and
does not interfere with the other tile.

In the second experiment, we use the shared DDR memory
instead of the private memory. (Fig. 3b C©) The DDR memory
is connected via a second bus to the tiles and does not interfere
with the bus used to access the SDF channels’ FIFO buffers.
In this setup, the two tiles are no longer independent from each
other. This will lead to a higher variance in the execution time
distribution.

The interconnect for inter-tile communication uses First
Come First Serve arbitration and a single beat transfer pro-
tocol. The caches that are used in the second setup use burst
transfer to synchronize with the DDR Memory C©.

The four actors, GetPixel, GX, GY and ABS, of the applica-
tion (Fig. 3b) are mapped onto the tiles as shown in Fig. 3b.
Instructions and local data like the heap and the stack are
mapped to private memory A© or to a shared DDR memory
C©.

In addition, channels used for communication between
actors are mapped to the shared Block RAM memory B©.
These channels are organized as FIFO buffers with 4Bytes
for each token and the buffer size is fixed to the input rate
of each actor. The mapping and scheduling is fixed for all

experiments.
The measurement technique, we use in the experiments, to

get the different delays vectors of different components is
based on one presented in [68]. An IP-Core which is con-
nected via a dedicated AXI-Stream bus to communicate with
each MicroBlaze processor without interfering with the main
system buses, is used. The measured cycle-accurate timings
were forwarded via an UART interface without influencing the
timing behavior of the platform under observation. In order to
achieve that, the code of the application is instrumented in a
minimal way (for details refer to [68]).

The multicore system is instantiated on a Xilinx Zynq 7020
with external DDR3-1333 memory.

B. End-to-end Timing Validation

In this subsection, we evaluate the best-case and worst-
case end-to-end latencies, denoted in the following as BC
latency and WC latency. We declare the end-to-end latency as
an observed variable t latency in the configuration file used
for the SystemC model generation. To quantitatively evaluate
the end-to-end latency, the analyzed property is: ”What is the
probability that the end-to-end latency stays within an interval
[d1, d2]?”. This property can be expressed in BLTL with the
operators ”eventually” as shown in formula 5.

ϕ = F≤T ((t latency ≥ d1)&(t latency < d2)) (5)

This property is then analyzed through a finite set of simu-
lations controlled by Plasma Lab. In each simulation, Plasma
Lab observes the end-to-end latency of a particular iteration to
determine the probability that the end-to-end latency stays in
the interval [d1, d2]. Fig. 9a and Fig. 9b present the probability
evolution over the intervals [d1, d2] for the two experiments
presented in Section V-A. In both experiments, we compare
the real measured end-to-end latency data with the analysis
results. We use the Monte Carlo algorithm with Chernoff-
Hoeffding bound with absolute error δ = 0.02 and confidence
1− α = 0.98. It means that the analysis results guarantee the
following condition: Pr(|p′ − p| ≤ 0.02) ≥ 0.98 (see Section
III.C for details).

In the first experiment, the computation time of the actors
is modeled by using the uniform and normal distributions. We
consider also the injected computation time data. Based on
the measured results, the communication time varies in a small
interval. Since the measured communication time varies within
limited number of values, it is reasonable to apply the uniform
distribution to model the variation of the communication time.

Fig. 9a presents the probability evolution over the intervals
[d1, d2] for the first experiment. The end-to-end latencies
obtained from the SystemC model are close to the measured
end-to-end latency with a similar range of variation for the
different distributions. In the two cases, the WC latencies
are over-estimated. We also analyze the SystemC model by
applying the injected data which represent the measured data
for both computation and communication time. The achieved

Configuration
file

Aspect-
Advice file

MonitorMAG

Generation

SystemC
Model

AspectC++
Instrumented

Model

Instrumentation

g++
Executable

Model

Compilation

Patched
SystemC

Fig. 8: Successive generation, instrumentation and compilation steps to build SystemC executable model.

TABLE II: Comparison of the end-to-end latencies of the analysis with the different distributions compared with the measured data. While
for setup I a normal distribution is sufficient, in setup II the observed worst-case was only covered with the actual distribution of the delays.

Subject BC latency I WC latency I BC latency II WC latency II

Measured data 38170 38806 290004 293970
Uniform/Uniform [39300, 39400] [40000, 40100] [277000, 278000] [292000, 293000]
Normal/Uniform [39400, 39500] [39900, 40000] [277000, 278000] [291000, 292000]
Injected data [39400, 39500] [39900, 40000] [319000, 320000] [327000, 328000]

results do not significantly variate between the uniform, nor-
mal distributions and the injected data.

In the second experiment, we follow the same analysis pro-
cess, as presented in the first experiment. In Fig. 9b, the uni-
form and normal distributions clearly under-estimate the WC
latency. Moreover, the interval of variation is larger than the
interval of the measured latency. However, the achieved end-
to-end latency of the injected data clearly over-approximates
the measured WC latency since the chosen delay values are
based on the exact measured delay values. The interval of
variation is also closer to the interval of the measured latency.
This can be explained that the caches in this experiment cause
a large variation in communication time. The applied uniform
distribution shows a poor representation of the variation of the
communication time in such a complex architecture.

The bias between the real-measured latency and the sim-
ulated latencies comes from a pessimistic communication
model and the lack of consideration of data dependencies
between actors. In the real application, the two actors GX
and GY have equal execution time in one iteration due to
there symmetry. The ABS actor waits for the slowest dependent
actor (GX, GY). In our simulation the execution times of GX
and GY gets selected randomly and independently. So that
the measured timings for faster executions get covered by the
slower execution times.

Tab. II summarizes the BC latency and WC latency obtained
from the analysis with the uniform, normal distribution and
the injected data compared with the measured data in the two
experiments. Given an interval, it takes from 10 minutes to 40
minutes to analyze the property. Further analysis to identify
precisely the worst-case end-to-end latency is presented in the
next section.

C. Evaluation of Statistical Model Checking Methods

We want now to bound the end-to-end latency within a
threshold value d for the two experiments. Thus, we analyze
the property: ”The cumulative probability that the end-to-end
latency (t latency) stays below time bound d”. This property
can be translated in BLTL with the operator ”always” as
follows (Formula 6).

ϕ = G≤T (t latency ≤ d) (6)

The temporal modal operator G is applied that allows
us to check whether all the end-to-end latencies of several
successive iterations during the simulation time T stay below
d. Therefore, the worst-case end-to-end latency obtained from
this property is much more accurate than in the first property.
Fig. 10 presents the cumulative probability of the end-to-
end latency over time bound d for the first experiment. We
compare the analyzed results using the uniform distribution,
normal distribution and the injected computation time data.
The cumulative probability converges to 1 which means that
all the end-to-end latencies analyzed stay below the value d.
We can consequently bound the WC latency of the normal
distribution and injected computation time under 40 000 cycles
(3.08% higher than the measured WC latency). The bound
of WC latency of the uniform distribution is 40 100 cycles
(3.33% higher than the measured WC latency).

In the second experiment, the same evolution of the cumu-
lative probability is observed. However, the results obtained
from the normal and uniform distributions under-estimate the
WC latency. Only the injected data can provide an over-
approximation of the WC latency. Thus, we present the cumu-
lative probabilities of the SystemC model with normal distribu-
tion and the injected data, as shown in Fig. 11. The injected
data can provide an over-approximation of the WC latency.
The bound of WC latency of the injected data is 328 000 cycles

38000 38250 38500 38750 39000 39250 39500 39750 40000 40250
0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Measured
Injected
Normal
Uniform

(a) without caches

280000 285000 290000 295000 300000 305000 310000 315000 320000 325000 330000
0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

Measured
Injected
Normal
Uniform

(b) with caches

Fig. 9: Histogram of end-to-end latency analysis with normal distribution for computation time and different distributions for communication
time. Uniform and Normal distributions as well as the injected delay data are compared with the real measured end-to-end latency (measured
data).

(11.57% higher than the measured WC latency). While the
normal distribution bounds the WC latency of 324 900 cycles
(10.52% higher than the measured WC latency). For each
threshold value d, it takes from several minutes to one hour
to analyze.

In the following, we analyze timing properties of the Sys-
temC model using the algorithm SPRT. SPRT checks if the
probability to satisfy a property is above or below to a given
bound θ. In Plasma Lab, SPRT first estimates a probability
to satisfy a property and then this estimated probability is
compared with θ to answer the qualitative question. We apply
SPRT to analyze the second property with the parameters:
α = β = 0.001, δ = 0.01 and a bound θ.

In the first experiment, we compare the results ob-
tained by Monte Carlo with Chernoff-Hoeffding bound and
SPRT applying the normal/uniform distributions for compu-
tation/communication time. As illustrated in Fig.12, SPRT
shows an over approximation on the probability compared to
Monte Carlo with Chernoff-Hoeffding bound. The WC latency
obtained by SPRT can be bounded with a closer value of time
bound d to the measured WC latency (39 950 cycles compared
to 40 000 cycles as in Monte Carlo with Chernoff-Hoeffding
bound). Moreover, the analysis with SPRT costs significantly
less time than Monte Carlo with Chernoff-Hoeffding bound.
In one analysis, SPRT takes 4 minutes compared to 20 minutes
in Monte Carlo with Chernoff-Hoeffding bound.

In the second experiment, we compare the results obtained
by Monte Carlo with Chernoff-Hoeffding bound and SPRT
applying the injected data. In Fig. 13, SPRT leads to under or
over approximate the probability. The WC latency is bounded
under 327 000 cycles compared to 328 000 cycles as in Monte
Carlo with Chernoff-Hoeffding bound. The analysis time is
1 min for one analysis compared to 40 minutes in Monte
Carlo with Chernoff-Hoeffding bound. Tab. III summarizes the
results of the over-approximation and the analysis time of the
two experiments. The overall analysis time of two algorithms
Monte Carlo with Chernoff-Hoeffding bound and SPRT de-
pends on the number of simulations and the analysis time of
each simulation. In the case of Monte Carlo with Chernoff-
Hoeffding bound, the number of simulations is constant in both

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

C
u

m
ul

at
iv

e
p

ro
b

ab
ili

ty

Time bound d (cycles)

Uniform/Uniform

Comp./Com. Distributions:

Normal/Uniform

Injected data

Fig. 10: Cumulative probability that the end-to-end latency is less or
equal to a threshold value d, analyzed by Monte Carlo with Chernoff-
Hoeffding bound algorithm in the first experiment.

two configurations because of the same values of the precision
δ and the confidence σ. Therefore, the higher complexity of
system in the second configuration makes a higher overall
analysis time. However, in the case of SPRT, the number of
simulations depends on the satisfaction of the ratio test (see
details in [1]) and the higher complexity of system in the
second configuration only makes a higher analysis time of
each simulation. The smaller number of simulations analyzed
in the second configuration causes the less overall analysis
time compared to the first configuration.

Most of the time, it is not necessary to identify precisely the
probability to satisfy a property and we only want to bound
this probability with a threshold value θ. In these cases, SPRT
is more efficient than Monte Carlo with Chernoff-Hoeffding
bound in terms of analysis time.

VI. SUMMARY & FUTURE WORK

In this work, we have presented a framework that is used
to evaluate the efficiency of SMC methods to analyse real-
time properties of SDF applications running on multicores.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

C
u

m
ul

at
iv

e
p

ro
b

ab
ili

ty

Time bound d (10 cycles)

Normal/Normal

Comp./Com. Distributions:

Injected data

3

Fig. 11: Cumulative probability that the end-to-end latency is less or
equal to a threshold value d, analyzed by Monte Carlo with Chernoff-
Hoeffding bound algorithm in the second experiment.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

C
u

m
ul

at
iv

e
p

ro
b

ab
ili

ty

Time bound d (cycles)

Monte Carlo

SPRT

Fig. 12: Cumulative probability that the end-to-end latency stays
below a threshold value d, analyzed by Monte Carlo with Chernoff-
Hoeffding bound and SPRT in the first experiment.

Our approach uses real measured execution times to annotate
a probabilistic SystemC model. The viability of our approach
was demonstrated on a Sobel filter running on a 2 tiles
platform implemented on top of a Xilinx Zynq 7020. In
contrast to traditional real-time analysis methods the SMC
approach requires a more sophisticated model of the execution
time distribution and thus can tackle the limitations to deliver
fast yet accurate timing estimations. Our experiments showed
that the selection of the probabilistic distribution function is
crucial for the quality of analysis results. In the two consid-
ered experiment, worst case end-to-end latency was estimated
with an approximation close to 3% and 11% compared to
real implementations. The SPRT simulation method proved
significantly reduced analysis time compared to Monte-Carlo.
In future work we plan to use the Kernel Density Estimation
technique [69] that will be applied to estimation a more

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

C
u

m
ul

at
iv

e
p

ro
b

ab
ili

ty

Time bound d (cycles)

Monte Carlo

SPRT

Fig. 13: Cumulative probability that the end-to-end latency stays
below a threshold value d, analyzed by Monte Carlo with Chernoff-
Hoeffding bound and SPRT in the second experiment.

TABLE III: Estimation the WC latency with the analysis accuracy
and duration.

Subject WC latency I WC latency II

Measured data 38806 293970

Over-approximation
Monte Carlo 3.08% 11.58%
SPRT 2.94% 11.23%

Analysis time
Monte Carlo 20 mins 40 mins
SPRT 4 mins 1 min

accurate PDF from measured data.

REFERENCES

[1] A. Nouri, M. Bozga, A. Moinos, A. Legay, and S. Bensalem, “Building
faithful high-level models and performance evaluation of manycore
embedded systems,” in ACM/IEEE International conference on Formal
methods and models for codesign, 2014.

[2] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model check-
ing: An overview,” in Runtime Verification, H. Barringer, Y. Falcone,
B. Finkbeiner, K. Havelund, I. Lee, G. Pace, G. Roşu, O. Sokolsky,
and N. Tillmann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 122–135.

[3] I. S. Association et al., “Ieee standard for standard systemc language
reference manual,” IEEE Computer Society, 2012.

[4] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “Systemcodesigner-an automatic esl syn-
thesis approach by design space exploration and behavior synthesis for
streaming applications,” ACM Trans. Des. Autom. Electro. Syst., vol. 14,
no. 1, pp. pp.1–23, 1 2009.

[5] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, “A framework
for system-level modeling and simulation of embedded systems archi-
tectures,” EURASIP Journal on Embedded Systems, 2007.

[6] R. Dmer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. Gajski, “System-on-chip environment: A specc-based framework for
heterogeneous mpsoc design,” EURASIP Journal on Embedded Systems,
vol. 2008, 2008.

[7] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, and H. T.D., “Uml-based
multiprocessor soc design framework,” ACM Transactions on Embedded
Computing Systems, vol. 5, no. 2, pp. 281–320, 5 2006.

[8] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. Stefanov, D. D. Gajski,
and J. Teich, “Electronic system-level synthesis methodologies,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1517–1530, 2009.

[9] J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J. Soininen, P. Andersson,
and K. Tiensyrjä, “Combining uml2 application and systemc platform
modelling for performance evaluation of real-time embedded systems,”
EURASIP Journal on Embedded Systems, vol. 2008, pp. 6:1–6:18, 1
2008.

[10] T. Arpinen, E. Salminen, T. D. Hämäläinen, and M. Hännikäinen, “Per-
formance evaluation of uml-2 modeled embedded streaming applications
with system-level simulation,” EURASIP Journal on Embedded Systems,
vol. 2009, 2009.

[11] Intel, “Intel cofluent studio,” http://www.intel.com/content/www/us/
en/cofluent/intel-cofluent-studio.html.

[12] T. Architect, http://www.timing-architects.com.
[13] ChronSIM, http://www.inchron.com/tool-suite/chronsim.html.
[14] TraceAnalyzer, http://www.symtavision.com/products/symtastraceanalyzer/.
[15] SpaceCoDesign, www.spacecodesign.com.
[16] MirabilisDesign, www.mirabilisdesign.com.
[17] S. Perathoner, E. Wandeler, L. Thiele, A. Hamann, S. Schliecker,

R. Henia, R. Racu, R. Ernst, and M. González Harbour, “Influence
of different abstractions on the performance analysis of distributed
hard real-time systems,” Des. Autom. Embedded Syst., vol. 13, no. 1-2,
pp. 27–49, Jun. 2009. [Online]. Available: http://dx.doi.org/10.1007/
s10617-008-9015-1

[18] K. Huang, W. Haid, I. Bacivarov, M. Keller, and L. Thiele,
“Embedding formal performance analysis into the design cycle of
mpsocs for real-time streaming applications,” ACM Trans. Embed.
Comput. Syst., vol. 11, no. 1, pp. 8:1–8:23, 4 2012. [Online]. Available:
http://doi.acm.org/10.1145/2146417.2146425

[19] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis - the SymTA/S Approach,” in IEE
Proceedings Computers and Digital Techniques, 2005.

[20] J.-P. Katoen and H. Wu, “Probabilistic model checking for uncertain
scenario-aware data flow,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 22, no. 1, pp. 15:1–15:27, Sep. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2914788

[21] M. Skelin, E. R. Wognsen, M. C. Olesen, R. R. Hansen, and K. G.
Larsen, “Model checking of finite-state machine-based scenario-aware
dataflow using timed automata,” in Industrial Embedded Systems (SIES),
2015 10th IEEE International Symposium on. IEEE, 2015, pp. 1–10.

[22] X.-Y. Zhu, R. Yan, Y.-L. Gu, J. Zhang, W. Zhang, and G. Zhang,
“Static Optimal Scheduling for Synchronous Data Flow Graphs with
Model Checking,” in FM 2015: Formal Methods. Springer, 2015, pp.
551–569. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-319-19249-9 34

[23] R. K. Thakur and Y. N. Srikant, “Efficient Compilation of Stream
Programs for Heterogeneous Architectures: A Model-Checking based
approach,” Indian Institute of Science, India, Tech. Rep. IISc-CSA-
TR-2015-2, 2015. [Online]. Available: http://www.csa.iisc.ernet.in/TR/
2015/2/TechReport2015.pdf

[24] W. Ahmad, E. de Groote, P. K. Hlzenspies, M. I. A. Stoelinga, and J. C.
van de Pol, “Resource-constrained optimal scheduling of synchronous
dataflow graphs via timed automata,” in Proceedings of 14th IEEE
International Conference on Application of Concurrency to System
Design (ACSD). IEEE, 2014.

[25] A. Malik and D. Gregg, “Orchestrating Stream Graphs Using Model
Checking,” ACM Trans. Archit. Code Optim., vol. 10, no. 3, pp. 19:1–
19:25, 9 2013. [Online]. Available: http://doi.acm.org/10.1145/2512435

[26] Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Auto-
mated bottleneck-driven design-space exploration of media processing
systems,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2010, pp. 1041–1046.

[27] C. Norstrom, A. Wall, and W. Yi, “Timed automata as task models for
event-driven systems,” in Real-Time Computing Systems and Applica-
tions, 1999. RTCSA’99. Sixth International Conference. IEEE, 1999,
pp. 182–189.

[28] M. Hendriks and M. Verhoef, “Timed automata based analysis of
embedded system architectures,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International. IEEE, 2006, pp.
8–pp.

[29] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining Abstract Interpretation
with Model Checking for Timing Analysis of Multicore Software,” in
2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 339–349.

[30] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards
WCET analysis of multicore architectures using UPPAAL,” in WCET,
2010, pp. 101–112.

[31] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in Proc. International
Conference on Embedded Software (EMSOFT). Tampere, Finland:
ACM, 10 2012, pp. 63–72.

[32] A. Brekling, M. R. Hansen, and J. Madsen, “Models and formal
verification of multiprocessor system-on-chips,” The Journal of Logic
and Algebraic Programming, vol. 77, no. 1-2, pp. 1–19, 9 2008.

[33] W. Zhang, “Bounding Worst-Case Performance for Multi-Core Proces-
sors with Shared L2 Instruction Caches,” Journal of Computing Science
and Engineering, vol. 5, no. 1, pp. 1–18, 2011.

[34] M. Bker, “An Automated Semantic-Based Approach for Creating Task
Structures,” Dissertation, University of Oldenburg, 2013.

[35] M. Fakih, K. Grüttner, M. Fränzle, and A. Rettberg, “State-based real-
time analysis of SDF applications on mpsocs with shared communication
resources,” Journal of Systems Architecture - Embedded Systems Design,
vol. 61, no. 9, pp. 486–509, 2015.

[36] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van
Vliet, and Z. Wang, “Statistical model checking for networks of priced
timed automata,” in Formal Modeling and Analysis of Timed Systems,
ser. Lecture Notes in Computer Science, U. Fahrenberg and S. Tripakis,
Eds. Springer Berlin Heidelberg, 2011, vol. 6919, pp. 80–96.

[37] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” in In Proc. International Conference
on Computer Aided Verification (CAV’11), 7 2011, pp. 585–591.

[38] C. Jegourel, A. Legay, and S. Sedwards, “A platform for high perfor-
mance statistical model checking - plasma,” in In Proc. International
Conference Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’12), 2012, pp. pp.498 – 503.

[39] P. Bulychev, A. David, K. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang, “Statistical model checking for priced timed
automata,” in In Proc. 10th workshop on quantitative aspects of pro-
gramming languages and systems (QAPL’12), 2012.

[40] M. Chen, D. Yue, X. Qin, X. Fu, and P. Mishra, “Variation-aware
evaluation of mpsoc task allocation and scheduling strategies using
statistical model checking,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 199–204.

[41] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston et al., “Proartis: Probabilis-
tically analyzable real-time systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 2s, p. 94, 2013.

[42] F. J. Cazorla, J. Abella, J. Andersson, T. Vardanega, F. Vatrinet, I. Bate,
I. Broster, M. Azkarate-Askasua, F. Wartel, L. Cucu et al., “Proxima:
Improving measurement-based timing analysis through randomisation
and probabilistic analysis,” in Digital System Design (DSD), 2016
Euromicro Conference on. IEEE, 2016, pp. 276–285.

[43] A. Kumar, “Analysis, design and management of multimedia multi-
processor systems,” Ph.D. dissertation, Eindhoven University of Tech-
nology, 2009.

[44] A. Nouri, S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, and
A. Legay, “Statistical model checking qos properties of systems with
sbip,” International Journal on Software Tools for Technology Transfer,
vol. 17, no. 2, pp. 171–185, 2014.

[45] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the bip
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, May 2011.

[46] V. C. Ngo, A. Legay, and J. Quilbeuf, “Statistical model checking for
systemc models,” 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering, pp. 197–204, 2016.

[47] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, “Predictability considerations in the design
of multi-core embedded systems,” in Proceedings of the Embedded Real
Time Software and Systems Congress (ERTS2) 2010, 2010.

[48] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, no. 2-3, pp. 117–134, 4 1994. [Online]. Available:
http://dx.doi.org/10.1016/0165-6074(94)90080-9

[49] T.-Y. Yen and W. Wolf, “Performance estimation for real-time distributed
embedded systems,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 9, no. 11, pp. 1125–1136, 11 1998.

[50] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems,” in
Proceedings of the tenth international symposium on Hardware/software
codesign. ACM, 2002, pp. 187–192. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=774828

[51] B. Andersson, A. Easwaran, and J. Lee, “Finding an upper bound on
the increase in execution time due to contention on the memory bus in
COTS-based multicore systems,” ACM Sigbed Review, vol. 7, no. 1, p. 4,
2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1851172

[52] M. Fakih, K. Grttner, M. Frnzle, and A. Rettberg, “State-based real-time
analysis of SDF applications on MPSoCs with shared communication
resources,” Journal of Systems Architecture, vol. 61, no. 9, pp. 486 –
509, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1383762115000326

[53] R. Stemmer, M. Fakih, K. Grttner, and W. Nebel, “Towards state-
based RT analysis of FSM-SADFGs on MPSoCs with shared memory
communication,” in 9th Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools (RAPIDO) 2017, 1 2017.

[54] A. Nouri, S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, and
A. Legay, “Statistical model checking qos properties of systems with
sbip,” International Journal on Software Tools for Technology Transfer,
p. pp. 14, 2014.

[55] R. Stemmer, H. Schlender, M. Fakih, K. Grttner, and W. Nebel, “Prob-
abilistic state-based RT-analysis of SDFGs on MPSoCs with shared
memory communication,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 3 2019.

[56] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke,
B. Wachter, and S. Wilhelm, Static Timing Analysis for Hard Real-Time
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
3–22. [Online]. Available: https://doi.org/10.1007/978-3-642-11319-2 3

[57] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet,
G. Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “Proartis: Probabilistically
analyzable real-time systems,” ACM Trans. Embed. Comput. Syst.,

vol. 12, no. 2s, pp. 94:1–94:26, May 2013. [Online]. Available:
http://doi.acm.org/10.1145/2465787.2465796

[58] F. J. Cazorla, J. Abella, J. Andersson, T. Vardanega, F. Vatrinet,
I. Bate, I. Broster, M. Azkarate-askasua, F. Wartel, L. Cucu, F. Cros,
G. Farrall, A. Gogonel, A. Gianarro, B. Triquet, C. Hernández, C. Lo,
C. Maxim, D. Morales, E. Quiñones, E. Mezzetti, L. Kosmidis, I. Agirre,
M. Fernández, M. Slijepcevic, P. Conmy, and W. Talaboulma, “PROX-
IMA: improving measurement-based timing analysis through randomi-
sation and probabilistic analysis,” in DSD. IEEE Computer Society,
2016, pp. 276–285.

[59] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[60] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” International conference on runtime verification, pp. 122–
135, 2010.

[61] C. P. Robert, G. Casella, and G. Casella, Introducing monte carlo
methods with r. Springer, 2010, vol. 18.

[62] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, Approximate
probabilistic model checking. Springer, 2004, no. 73–84.

[63] R. Grosu and S. A. Smolka, Monte carlo model checking. Springer,
2005, no. 271–286.

[64] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[65] H. L. Younes, “Verification and planning for stochastic processes with
asynchronous events,” Ph.D. dissertation, Carnegie Mellon University,
2005.

[66] GSL, “https://www.gnu.org/software/gsl/.”
[67] S. Dutta, D. Tabakov, and M. Y. Vardi, “Chimp: a tool for assertion-

based dynamic verification of systemc models,” Program Proceedings,
p. 38, 2013.

[68] C. Schlaak, M. Fakih, and R. Stemmer, “Power and execution time
measurement methodology for sdf applications on fpga-based mpsocs,”
arXiv preprint arXiv:1701.03709, 2017.

[69] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, 09 1962. [Online].

Available: https://doi.org/10.1214/aoms/1177704472

