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KLEIN-GORDON-MAXWELL-PROCA TYPE SYSTEMS IN THE ELECTRO-MAGNETO-STATIC CASE -THE HIGH DIMENSIONAL CASE

We investigate Klein-Gordon-Maxwell-Proca type systems in the context of closed n-dimensional manifolds with n ≥ 4. We prove existence of solutions and compactness of the system both in the subcritical and in the critical case.

Introduction

Let (M, g) be a smooth closed (connected) Riemannian manifold of dimension n ≥ 4. We study systems like

     ∆ g u + Φ(x, v, A)u = u p-1 ∆ g v + (b + q 2 u 2 )v = qu 2 ∆ g A + bA = q(∇S -qA)u 2 , (1.1) 
where q > 0 and ω are real numbers, a, b, S are smooth functions such that b ≥ 0 in M , p ∈ (2, 2 ] and 2 = 2n n-2 . The unknowns in (1.1) are two positive functions u, v > 0 and a 1-form A. The function Φ in (1.1) is given by Φ(x, v, A) = a -ω 2 (qv -1) 2 + |∇S -qA| 2 .

(1.2)

In the above, ∆ g denotes the Laplace-Beltrami operator ∆ g = -div g ∇ when acting on functions, and the Hodge-de Rham Laplacian ∆ g = δd + dδ when acting on 1-forms, where d stands for the differential and δ for the codifferential. The 3dimensional case of (1.1) has been studied recently by the authors in [START_REF] Klein-Gordon- | Maxwell-Proca Type Systems in the Electro-Magneto-Static Case[END_REF]. Systems of equations like (1.1) are derived from the full KGMP system when we look for solutions of such systems in the form Ψ(x, t) = u(x, t)e iS(x,t) with u depending only on x and S in the splitted form S(x, t) = S(x) -ωt (see Section 2 below). Such types of solutions were introduced in the very nice paper by Benci and Fortunato [START_REF]Spinning Q-balls for the Klein-Gordon-Maxwell equations[END_REF] for the Klein-Gordon-Maxwell equations in R 3 (see also D'Avenia, Mederski and Pomponio [START_REF] Avenia | Vortex ground states for Klein-Gordon-Maxwell-Proca type systems[END_REF] for an analogue of [START_REF]Spinning Q-balls for the Klein-Gordon-Maxwell equations[END_REF] in the Riemannian setting). A special choice of S in these papers gives rise to vortex solutions of the system. In the whole paper, the subscript R for functional spaces (e.g.

L p R , H 1 R , W k,p R , C k,θ R etc.
) means that we refer to a space of real valued functions, while the subscript V (e.g.

L p V , H 1 V , W k,p V , C k,θ V etc.
) means that we refer to a space of 1-forms. It is well known that 2 is the critical Sobolev exponent for the embeddings of H 1 R (H 1 V respectively) into Lebesgue spaces. Our main result establishes the existence of a smooth nontrivial solution to (1.1) and also the compactness in the C 2 -topology of the set of solutions of (1.1). It reads as follows.

Theorem 1.1. Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M , in the sense of the bilinear forms, where Rc g is the Ricci curvature of g. Let p ∈ [START_REF]Spinning Q-balls for the Klein-Gordon-Maxwell equations[END_REF][START_REF]Spinning Q-balls for the Klein-Gordon-Maxwell equations[END_REF], where 2 = 2n n-2 is the critical exponent for the Sobolev embeddings of H 1 R into Lebesgue spaces. We assume that ∆ g + f is coercive, where f = a + |∇S| 2 -ω 2 if b ≡ 0, and f = a + |∇S| 2 otherwise. When p = 2 we also assume either that

   max M a + |∇S| 2 - Sg 6 < ω 2 if b ≡ 0 , max M a + |∇S| 2 - Sg 6 < 0 otherwise , (1.3) when n = 4, or that max M a - (n -2)S g 4(n -1) < 0 , (1.4) 
when n ≥ 5, where S g is the scalar curvature of g. Then, (1.1) possesses a smooth solution (u, v, A) such that u > 0 and v > 0 in M . Moreover, the set S consisting of the smooth solutions (u, v, A) of (1.1) with u ≥ 0 and v ≥ 0 in M is compact in the C 2 -topology.

We actually prove in Sections 5 and 6 the stability of the system. This is a stronger statement than the sole compactness of the set of solutions of (1.1). Concerning existence, the leading equation in (1.1) is the first equation. It is subcritical when p < 2 and critical when p = 2 . From the variational viewpoint, the other equations are critical when n = 4 and supercritical when n ≥ 5 (while subcritical when n = 3). They are purely supercritical when n > 6 (as 2 > 2 -1 in these dimensions, independently of the fact that v might be bounded or not). Also the vector structure in the third equation of (1.1) brings terms with indefinite sign in the energy. A weak variational setting has been proposed in [START_REF] Hebey | Solitary waves in critical abelian gauge theories[END_REF][START_REF] Thizy | Klein-Gordon-Maxwell equations in high dimensions[END_REF] to address the question of the existence of a solution to (1.1). In [START_REF] Klein-Gordon- | Maxwell-Proca Type Systems in the Electro-Magneto-Static Case[END_REF], the n = 3 case was handled. We overcome the difficulty in the present paper by using Leray-Schauder degree theory. Even if this approach drops a little the variational flavor of the problem, our rather general procedure has its own interest for such autoinductive critical systems. As a remark, the situation a < 0 corresponds to an imaginary mass (see for instance [START_REF] Epstein | de Sitter tachyons and related topics[END_REF]).

The paper is organized as follows. The building of the equations is discussed in Section 2. Preliminary lemmas and notations are given in Sections 3 and 4. Theorem 1.1 in the subcritical case p ∈ (2, 2 ) is proved in Section 5. A general stability analysis of (1.1) in the critical asymptotic p → 2 , (p ≤ 2 ) is developed in Section 6, which implies the compactness of the set of the solutions of (1.1) claimed in Theorem 1.1. As a by product of Sections 5 and 6, we eventually get in Section 7 the existence of solutions for p = 2 , thus concluding the proof of Theorem 1.1.

The building of the equations

The physics purpose of Klein-Gordon-Maxwell-Proca systems is that they provide a model for the interaction between a charged relativistic matter scalar field and the electromagnetic field that it generates. In other words, the electromagnetic field is both generated by and drives the particle field. To be more precise the particle field interacts with the external field via the minimum coupling rule in a nonlinear Klein-Gordon equation. Formally, that means we replace time and space derivatives in the nonlinear Klein-Gordon total functional by gauge covariant derivatives such as

∂ t → ∂ t + iqϕ and ∇ → ∇ -iqA ,
where A and ϕ are gauge potentials which represent the electromagnetic field generated by the particle. In this theory they are governed by the Maxwell-Proca Lagrangian.

Let us assume for a while that the manifold is orientable. Then, from the variational viewpoint, we consider the two Lagrangian densities L N KG and L M P given by

L N KG (ψ, ϕ, A) = 1 2 ( ∂ ∂t + iqϕ)ψ 2 - 1 2 |(∇ -iqA)ψ| 2 - m 2 0 2 |ψ| 2 + 1 p |ψ| p and
L M P (ϕ, A) = 1 2 ∂A ∂t + ∇ϕ 2 - 1 2 |∇ × A| 2 + m 2 1 2 |ϕ| 2 - m 2 1 2 |A| 2 ,
where the curl operator ∇× is given by ∇× = d, is the Hodge dual, and d is the standard differential operator on forms. Basically L N KG is like 1/2 of the square of the time derivatives minus 1/2 of the square of the space derivative after the gauge change of derivatives, plus the potential term and the nonlinear term. This is the nonlinear Klein-Gordon part of the energy. Then L M P is only a functional of ϕ and A. It mixes space and time derivatives of A, and space derivatives of ϕ. This is the Maxwell-Proca part of the energy. One can note here that |ϕ| 2 -|A| 2 in this Maxwell-Proca part of the energy is nothing but the Lorentz norm of the external vector field (ϕ, A). And Proca comes here because we are giving a mass m 1 to the field. This means again that we are in a massive version of the more classical Klein-Gordon-Maxwell equations. In this model ψ represents the matter field, m 0 is its mass, q is its electric charge, (A, ϕ) is the gauge potential which represents the electromagnetic vector field generated by ψ, and m 1 is the mass of this vector field. Let S be the total action functional for ψ, ϕ, and A given by

S(ψ, ϕ, A) = (L N KG + L M P ) dv g dt
Writing ψ in the polar form

ψ(x, t) = u(x, t)e iS(x,t) ,
where u ≥ 0 and u, S : M × R → R are real valued, the total action functional rewrites as a functional of the four variables u, S, ϕ, A. Taking the variation of the total energy with respect to these four variables we get four equations which are written as

           ∂ 2 u ∂t 2 + ∆ g u + m 2 0 u = u p-1 + ∂S ∂t + qϕ 2 -|∇S -qA| 2 u ∂ ∂t ∂S ∂t + qϕ u 2 -∇. (∇S -qA) u 2 = 0 -∇. ∂A ∂t + ∇ϕ + m 2 1 ϕ + q ∂S ∂t + qϕ u 2 = 0 ∆ g A + ∂ ∂t ∂A ∂t + ∇ϕ + m 2 1 A = q (∇S -qA) u 2 , (KGM P )
where ∆ g = δd is half the Hodge-de Rham Laplacian acting on forms, and δ (as well as ∇.) represents the codifferential. This is the system which we refer to as the nonlinear Klein-Gordon-Maxwell-Proca system. Letting m 1 = 0, we face the more traditional nonlinear Klein-Gordon-Maxwell system.

Assume for the rest of this section that n = 3, and define the electric field E, the magnetic induction H, the charge density ρ and the current density J by the following equations:

E = - ∂A ∂t + ∇ϕ , H = ∇ × A , ρ = - ∂S ∂t + qϕ qu 2 , J = (∇S -qA) qu 2 .
Then the two last equations in the (KGM P )-system give rise to the first pair of the Maxwell-Proca equations with respect to a matter distribution whose charge and current density are respectively ρ and J. On the other hand, because of the definitions of E and H, this is classical in physics, we also get for free that the second pair of the Maxwell-Proca equations holds true. In other words we get the full Maxwell-Proca equations from the two last equations in the system with this change of variables and the two last equations in the system can be rewritten as the following system of Maxwell-Proca equations:

∇.E = ρ -m 2 1 ϕ , ∇ × H - ∂E ∂t = J -m 2 1 A , ∇ × E + ∂H ∂t = 0 , ∇.H = 0 . (2.1)
The first equation in the system is the nonlinear Klein-Gordon matter equation

∂ 2 u ∂t 2 + ∆ g u + m 2 0 u = u p-1 + ρ 2 -|J| 2 q 2 u 3 . (2.2)
And the second equation is the charge continuity equation which, in turn, is equivalent to the Lorentz condition

∇.A + ∂ϕ ∂t = 0 . (2.3)
In other words, the nonlinear (KGM P )-system is equivalent to this system (2.1)-(2.3) of six equations. More on the system of Maxwell-Proca equations can be found in the papers by Goldhaber and Nieto [START_REF] Goldhaber | Terrestrial and Extraterrestrial limits on the photon mass[END_REF][START_REF]Photon and Graviton mass limits[END_REF] and Gillies, Luo and Tu [START_REF] Luo | The mass of the photon[END_REF].

As a remark, there is this breaking of the gauge invariance in this construction. The equivalence between the charge continuity equation and the Lorentz condition uses in a fundamental way the condition m 1 = 0. Taking the derivation of the first Maxwell equation in (2.1) with respect to time, and the divergence of the second equation in (2.1), we get that

∂ρ ∂t + ∇.J = ∇. ∂E ∂t + m 2 1 ∂ϕ ∂t + ∇.(∇ × H) -∇. ∂E ∂t + m 2 1 ∇.A = m 2 1 ∇.A + ∂ϕ ∂t since ∇.(∇ × H) = δ( d)H, δ = -1 d in Λ 1 , = Id in Λ 2
, and d 2 = 0 so that ∇.(∇ × H) = 0. In other words, the condition m 1 = 0 breaks the gauge invariance and enforces the Lorentz gauge.

Let us assume now that we are in the static case of the equations. In other words we assume that A and ϕ depend on the sole spatial variables. And we look for solutions of the system which are like Ψ(x, t) = u(x)e i(S(x)-ωt) .

These solutions for such kind of systems were introduced in a very nice work by Benci and Fortunato [START_REF]Spinning Q-balls for the Klein-Gordon-Maxwell equations[END_REF] with the specific choice of S given by

S(x) = lIm ln(x 1 + ix 2 ) ,
where l is an integer. In doing so Benci and Fortunato produce existence in R 3 of a solution which they refer to as a spinning Q-ball. This idea was discussed in the specific case of the KGMP-system by D'Avenia, Mederski and Pomponio [START_REF] Avenia | Vortex ground states for Klein-Gordon-Maxwell-Proca type systems[END_REF]. We slightly differ from this approach here by considering that S is any given but smooth function in M , and hence a free parameter in the system. When we plug Ψ in the system, and we assume that A and ϕ do not depend on t, we do get the following static system of equations

           ∆ g u + m 2 0 u = u p-1 + (qϕ -ω) 2 -|∇S -qA| 2 u ∇. (∇S -qA) u 2 = 0 ∆ g ϕ + m 2 1 ϕ + q (qϕ -ω) u 2 = 0 ∆ g A + m 2 1 A = q (∇S -qA) u 2 .
(2.4)

In the limit case where m 1 = 0, the second equation is automatically satisfied since the divergence of ∆ g is automatically zero. When m 1 = 0, thanks to the fourth equation in this system, still since δ∆ g = 0, the second equation in the system can be omitted and replaced by the Coulomb gauge equation δA = 0. Then the system can be rewritten as

           ∆ g u + m 2 0 u = u p-1 + (qϕ -ω) 2 -|∇S -qA| 2 u ∆ g ϕ + m 2 1 ϕ + q (qϕ -ω) u 2 = 0 ∆ g A + m 2 1 A = q (∇S -qA) u 2 δA = 0 (2nd eqt in original system) . (2.5)
As one can check, there holds that ∆ g A = ∆ g A when we do have the Coulomb gauge equation δA = 0, where ∆ g = dδ + δd is the usual Hodge-de Rham Laplacian on forms. Letting ϕ = ωv, and if we replace m 2 0 by a positive function a, and m 2 1 by a positive function b, the system (2.5) reduces to (1.1) when we forget about the last equation (the gauge condition). However, as a remark, the compactness (resp. stability) part in Theorem 1.1 (resp. in Theorems 5.1 and 6.1) applies with no restriction to (2.5) as the set of solutions of (2.5) is a closed subset in the C 2 -topology of the set of solutions of (1.1).

Auxiliary maps

We derive tools in this section that will help us controlling the two last equations in (1.1). Lemma 3.1. Let q > 0 be a real number and let b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in the sense of the bilinear forms in M . Then, for all u ∈ C 0 R , there exists a unique φ b,S (u

) ∈ H 1 V ∩ C 1 V such that ∆ g φ b,S (u) + bφ b,S (u) = q(∇S -qφ b,S (u))u 2 . (3.1)
Moreover, for all k ≥ 0, φ b,S restricts in a continuous map from

C k R to C k+1 V and we have that q|φ b,S (u)| ≤ max M |∇S| in M , (3.2) 
for all u.

Proof of Lemma 3.1. We split the proof into different parts.

(1) Proof of existence. Let u ∈ C 0 R be given. If u∇S = 0, then φ b,S (u) = 0 is solution of (3.1). We may thus assume that u∇S is not identically zero. Let I : H 1 V → R be the functional given by

I(φ) = M |dφ| 2 dv g + M |δφ| 2 dv g + M b + q 2 u 2 |φ| 2 dv g and let H = φ ∈ H 1 V s.t. q M (∇S, φ) u 2 dv g = 1 . Clearly H = ∅ as λ∇S ∈ H for some suitable λ ∈ R. Let µ = inf φ∈H I(φ) .
Let (φ α ) α be a smooth minimizing sequence for µ. By the Weitzenböck formula, for any 1-form φ,

(∆ g φ, φ) = 1 2 ∆ g |φ| 2 + |∇φ| 2 + Rc g (φ , φ ) , (3.3) 
where φ is the vector field we get from φ by the musical isomorphism. Then, by (3.3) and the Stokes formula,

I (φ α ) = M (∆ g φ α , φ α ) dv g + M b + q 2 u 2 |φ α | 2 dv g = M |∇φ α | 2 dv g + M (Rc g + bg) (φ α , φ α )dv g + q 2 M u 2 |φ α | 2 dv g ,
and since I (φ α ) → µ as α → +∞ and Rc g + bg > 0, we get that µ ≥ 0 and that the sequence (φ α ) α is bounded in H 1 V . Up to passing to a subsequence, by the reflexivity of H 1 V , we can assume that φ α φ in H 1 V as α → +∞, and by Rellich-Kondrakov we can assume that φ α → φ in L 2

V for some φ ∈ H 1 V . Then φ ∈ H. The bilinear form in H 1 V given by

B(A, B) = M (dA, dB)dv g + M (δA)(δB)dv g is nonnegative.
If Q is the quadratic form associated to B, then (same proof as for the Cauchy-Schwarz inequality),

|B(A, B)| ≤ Q(A) Q(B) for all A, B ∈ H 1 V . By the weak convergence φ α φ in H 1 V we then get that Q(φ) = lim α→+∞ B(φ α , φ) ≤ lim inf α→+∞ Q(φ α ) Q(φ) ,
and thus that

Q(φ) ≤ lim inf α→+∞ Q(φ α ) .
Then, since φ α → φ in L 2 V , I(φ) ≤ µ and in particular, I(φ) = µ. By differentiating we get that for any

B ∈ H 1 V , B(φ, B) + M b + q 2 u 2 (φ, B)dv g = qµ M (∇S, B)u 2 dv g .
There holds that φ ≡ 0 since φ ∈ H. In particular, µ > 0. The 1-form φ = 

∆ g (φ 2 -φ 1 ) + b + q 2 u 2 (φ 2 -φ 1 ) = 0
and contracting by φ 2 -φ 1 , since Rc g + bg > 0 in M and by the Weitzenböck formula again, we get that φ 2 ≡ φ 1 .

(3) Proof of the continuity of the map φ b,S :

C k R → C k+1 V . Fix k ∈ N and u ∈ C k R . Let B u = B u (1)
be the ball of center u and radius

1 in C k R . For h ∈ B u , let φ h = φ b,S (u + h) -φ b,S (u) . Then, ∆ g φ h + b + q 2 u 2 φ h = q∇S -q 2 φ b,S (u + h) (2u + h) h . (3.4) 
Anticipating on the proof of (3.2), there holds that q∇S -q 2 φ b,S (u + h) is bounded in L ∞ V (independently of h). Then, by (3.4), the Weitzenböck formula, and since Rc g + bg > 0, we get that

φ h H 1 V ≤ C h C 0 R (3.5)
for all h ∈ B u , where C > 0 is independent of h. There also holds that

∆ g φ h + b + q 2 (u + h) 2 φ h = q∇S -q 2 φ b,S (u) (2u + h) h
and thus that

∆ g φ h = F h + Gφ h , (3.6) 
where F ∈ C k V and G ∈ C k R are bounded with respect to h ∈ B u . By (local) elliptic estimates (e.g. see Lemma 1.7.9 in Biquard [START_REF] Biquard | Polycopié on Differential Geometry and Global Analysis[END_REF]), we get with (3.6) that for p ≤ k,

φ h H 2+p,2 V ≤ C ∆ g φ h H p,2 V + C φ h L 2 V ≤ C h H p,2 R + C φ h H p,2 V .
(3.7) By (3.5) and (3.7), having p running from p = 1 to k, we get that

φ h H 2+k,2 V ≤ C h C k R , (3.8) 
where C > 0 does not depend on h. By the Weitzenböck formula, for any 1-form A,

∆ g A = ∆ g A + Rc g (A) ,
where ∆ g is the rough Laplacian and Rc g (A) is the 1-form with coordinates Rc g (A) i = g αβ R iα A β . In particular, in local coordinates, for any i = 1, . . . , n,

-(∆ g A) i = g µν ∂ 2 µν A i + F µν i ∂ µ A ν + G µ i A µ , (3.9) 
where the F µν i 's and G µ i 's are smooth functions in the chart. By (3.6), (3.8) with k = 0, (3.9) and elliptic regularity as in Gilbarg-Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we get by induction and using Sobolev that for any p ≥ 1,

φ h H 2,p V ≤ C φ h H 1,p V + C h C 0 R ≤ C p h C 0 R , (3.10) 
where C, C p > 0 do not depend on h. For p 1 sufficiently large, there holds that

φ h C 1 V ≤ C φ h H 2,p V
. This proves the continuity of the map φ b,S :

C 0 R → C 1 V .
Higher regularity goes in a similar way.

(4) Proof of (3.2). Let Λ = max M (|φ b,S (u)||∇S|). If Λ = 0 then (φ b,S (u), ∇S) = 0 by the Cauchy-Schwartz inequality, and by the Weitzenböck formula (3.3), contracting (3.1) by φ b,S (u), we get that φ b,S (u) ≡ 0 since Rc g + bg > 0 in M . We assume now that Λ > 0. By (3.1) and (3.3), we have that

1 2 ∆ g |φ b,S (u)| 2 + b + q 2 u 2 |φ b,S (u)| 2 = q (φ b,S (u), ∇S) u 2 -|∇φ b,S (u)| 2 -Rc g φ b,S (u) , φ b,S (u) . (3.11) 
In particular, by (3.11),

1 2 ∆ g 1 q - |φ b,S (u)| 2 Λ + b + q 2 u 2 1 q - |φ b,S (u)| 2 Λ = b q + qu 2 1 - 1 Λ (φ b,S (u), ∇S) + |∇φ b,S (u)| 2 Λ + 1 Λ Rc g φ b,S (u) , φ b,S (u) . 
(3.12)

Since Rc g + bg > 0 in M there exists ε 0 > 0 such that Rc g ≥ -(b -ε 0 )g in M . In particular Rc g φ b,S (u) , φ b,S (u) ≥ -(b -ε 0 )|φ b,S (u)| 2 in M . Then, by (3.12), 1 2 ∆ g 1 q - |φ b,S (u)| 2 Λ + ε 0 + q 2 u 2 1 q - |φ b,S (u)| 2 Λ ≥ ε 0 q + qu 2 1 - 1 Λ (φ b,S (u), ∇S) + |∇φ b,S (u)| 2 Λ , (3.13) 
and since 1 Λ (φ b,S (u), ∇S) ≤ 1, we get from (3.13) that

1 2 ∆ g 1 q - |φ b,S (u)| 2 Λ + ε 0 + q 2 u 2 1 q - |φ b,S (u)| 2 Λ ≥ 0 (3.14)
in M . By the weak maximum principle it follows that 1 q -

|φ b,S (u)| 2 Λ ≥ 0 and thus that |φ b,S (u)| ≤ 1 q max |∇S| in M . This proves (3.2).
The proof of Lemma 3.1 follows from ( 1)-( 4) above.

Another lemma we need now concerns the v-part of the equation. The idea here goes back to Benci and Fortunato [START_REF] Benci | Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations[END_REF]. Lemma 3.2. Let q > 0 be a real number and let b be a smooth function such that b ≥ 0 in M . For all u ∈ C 0 R , there exists a unique

ψ b (u) ∈ H 1 R ∩ C 1 R such that ∆ g ψ b (u) + (b + q 2 u 2 )ψ b (u) = qu 2 (3.15)
as long as b ≡ 0

(or u ≡ 0). Define ψ b (u) ≡ 1 q if b ≡ 0. Then, for all k ≥ 0, ψ b restricts in a continuous map from C k R to C k+1 R
and we have that

0 ≤ qψ b (u) ≤ 1 in M (3.16) for all u. At last, if u ≡ 0, then ψ b (u) > 0 in M .
Proof of Lemma 3.2. Here again we split the proof into different parts.

(1) Proof of existence and uniqueness. Let u ∈ C 0 R be given. Suppose b + q 2 u 2 ≡ 0. Then existence easily follows from standard variational arguments. Concerning uniqueness it suffices to prove that if

u ∈ C 0 R and ψ ∈ H 1 R are such that ∆ g ψ + (b + q 2 u 2 )ψ = 0 (3.17)
in M , then ψ ≡ 0. We multiply (3.17) by ψ and integrate. Then ∇ψ ≡ 0 so that ψ is a constant, and we get that ψ ≡ 0 as soon as b + q 2 u 2 ≡ 0. In particular, since b ≥ 0, we get that ψ ≡ 0 if b ≡ 0 or if b ≡ 0 and u ≡ 0. This proves uniqueness. By the maximum principle,

ψ b (u) > 0 in M if u ≡ 0. By regularity theory, ψ b (u) ∈ C k+1 R if u ∈ C k R . (2) Proof of (3.16). Let u ∈ C 0 R and κ = 1 q -ψ b (u). It is clear from the maximum principle that ψ b (u) ≥ 0. Noting that ∆ g κ + b + q 2 u 2 κ = b q
it also follows from the maximum principle that κ ≥ 0. Then ψ b (u) ≤ 1 q , and this proves (3.16).

(3) Proof of the continuity of the map

ψ b : C k R → C k+1 R . We may assume that b ≡ 0 since ψ 0 is constant. Fix k ∈ N and u ∈ C k R . Let B u = B u (1) be the ball of center u and radius 1 in C k R . For h ∈ B u , let ψ h = ψ b (u + h) -ψ b (u) .
Then,

∆ g ψ h + b + q 2 u 2 ψ h = q (1 -qψ b (u + h)) h 2 + 2uh . (3.18) Since b ≥ 0 and b ≡ 0, the operator ∆ g + b is coercive in the sense that there exists ε > 0 such that M |∇u| 2 dv g + M bu 2 dv g ≥ ε M (|∇u| 2 + u 2 )dv g for all u ∈ H 1
R (this is easily proved by contradiction, using the reflexivity of H 1 R , the compactness of the embedding H 1 R ⊂ L 2 R and restricting the inequality to the unit sphere in H 1 R ). Then, multiplying (3.18) by ψ h and integrating over M , using (3.16), we get that

ψ h H 1 R ≤ C h C 0 R (3.19)
for all h ∈ B u , where C > 0 is independent of h. There also holds that

∆ g ψ h + b + q 2 (u + h) 2 ψ h = q (1 -qψ b (u)) (h + 2u)h
and thus that

∆ g ψ h = F h + Gψ h , (3.20) 
where F, G ∈ C k R are bounded with respect to h. We conclude to the continuity of ψ b using (3.19), (3.20) and local estimates as in Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

The proof of Lemma 3.2 follows from (1)-( 3) above.

Klein-Gordon-Maxwell-Proca systems have been investigated in Clapp, Ghimenti and Micheletti [START_REF] Clapp | Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed Riemannian manifold[END_REF], d'Avenia, Medreski and Pomponio [START_REF] Avenia | Vortex ground states for Klein-Gordon-Maxwell-Proca type systems[END_REF], Druet and Hebey [START_REF] Druet | Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces[END_REF], Druet, Hebey and Vétois [START_REF]Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds. II[END_REF], Hebey and Truong [START_REF] Hebey | Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds[END_REF], Hebey and Thizy [START_REF] Klein-Gordon- | Maxwell-Proca Type Systems in the Electro-Magneto-Static Case[END_REF], Hebey and Wei [START_REF] Hebey | Resonant states for the static Klein-Gordon-Maxwell-Proca system[END_REF] and Thizy [START_REF] Thizy | Klein-Gordon-Maxwell equations in high dimensions[END_REF].

Basic convergence

For the reader's convenience we state and prove the following basic convergence result in this section. Lemma 4.1. Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M , in the sense of bilinear forms. Let p ∈ (2, 2 ] and θ ∈ (0, 1).

Let (a ε ) ε , (b ε ) ε and (S ε ) ε be sequences of smooth functions such that a ε → a, b ε → b in C 0,θ R and S ε → S in C 1,θ R as ε → 0, and such that b ε ≥ 0 in M for all 0 < ε 1. Let (ω ε ) ε and (p ε ) ε be sequences of real numbers such that p ε → p in (2, 2 ] and ω ε → ω in R as ε → 0. Let (u ε , v ε , A ε ) ε be a sequence such that      ∆ g u ε + Φ ε (x, v ε , A ε )u ε = u pε-1 ε ∆ g v ε + (b ε + q 2 u 2 ε )v ε = qu 2 ε ∆ g A ε + b ε A ε = q(∇S ε -qA ε )u 2 ε , (4.1) 
for all ε, where

Φ ε (x, v ε , A ε ) = a ε -ω 2 ε (qv ε -1) 2 + |∇S ε -qA ε | 2 (4.2)
and u ε > 0 in M . Assume u ε L ∞ R = O(1)
. Then, up to passing to a subsequence,

u ε → u, v ε → v in C 2 R and A ε → A in C 2 V as ε → 0, where u, v ∈ C 2 R and A ∈ C 2 V solve (1.1). Proof of Lemma 4.1. By Lemma 3.1, A ε = φ bε,Sε (u ε ) for all ε, while by Lemma 3.2, v ε = ψ bε (u ε ) for all ε.
By assumption, by (3.2) and (3.16), thanks to the convergences we have on the a ε 's and S ε 's, we then get that the sequences

(u ε ) ε , (v ε ) ε and (Φ ε ) ε are bounded in L ∞ R and that the sequence (A ε ) ε is bounded in L ∞ V .
By the Calderon-Zygmund inequality and the third equation in (4.1), (A ε ) ε is actually bounded in H 2 V . By the third equation in (4.1), by (3.9) and the regularity theory for functions (see ) we then get that the

(A ε ) i 's are bounded in H 2,2
R , and by bootstrapping we then get that they are bounded in C 1,θ R . By the two first equations in (4.1), and again by standard regularity theory, the u ε 's and the v ε 's are then bounded in C 2,θ R . Still by standard regularity theory we then obtain from the third equation in (4.1) and from (3.9) that the (A ε ) i 's are actually bounded in C 2,θ R . This ends the proof of Lemma 4.1.

As a remark on Lemma 4.1, the following result holds true.

Lemma 4.2. Under the same assumptions than in Lemma 4.1, if we assume either that b ≡ 0 or that b ε ≡ 0 for all ε, and if we also assume that ∆ g + f is coercive, where f = a + |∇S| 2 -ω 2 if b ≡ 0, and f = a + |∇S| 2 otherwise, then there holds that u > 0 and v > 0. There also holds that A ≡ 0 if S is not a constant.

Proof of Lemma 4.2. By Lemma 4.1, up to passing to a subsequence, we get that

u ε → u , v ε → v , A ε → A in C 2 R and C 2 V , Φ ε → Φ in C 0,θ R , where Φ = a -ω 2 (qv -1) 2 + |∇S -qA| 2 if b ≡ 0, and 
∆ g u + Φu = u 2 -1
in M . By the maximum principle, either u ≡ 0 or u > 0. If u > 0 then we are done since we also have that

∆ g v + (b + q 2 u 2 )v = qu 2 ∆ g A + bA = q(∇S -qA)u 2 .
Suppose by contradiction that u ≡ 0.

Then Φ = f , where f = a + |∇S| 2 -ω 2 if b ≡ 0 or f = a + |∇S| 2 otherwise
as there are no nontrivial harmonic 1-forms when Rc g > 0. By our assumption, ∆ g + f is coercive. Let δ > 0 be such that ∆ g + f δ is still coercive, where f δ = f -δ. For all ε 1, we can write

M |∇u ε | 2 + f δ u 2 ε dv g ≤ M |∇u ε | 2 + Φ ε u 2 ε dv g = M u pε ε dv g ≤ C M |∇u ε | 2 + f δ u 2 ε dv g pε/2
.

In particular, we get that

M |∇u| 2 + f δ u 2 dv g > 0
and this is the contradiction we were looking for. This proves the lemma.

Another useful complement to Lemma 4.1 is given by the following result.

Lemma 4.3. Under the same assumptions than in Lemma 4.1, and if we assume that |ω| < min M √ a, then there holds that u > 0 and v > 0. There also holds that

A ≡ 0 if S is not a constant. Proof of Lemma 4.3. Since |ω| < min M √ a, the operator ∆ g + a -ω 2 is coercive. Then, for δ 0 > 0 sufficiently small, ∆ g + (a -ω 2 -δ 0 ) is still coercive. Since u ε > 0 in M it follows from Lemma 3.2 that 0 ≤ v ε ≤ 1
q for all ε 1. In particular, by (4.1) and the Sobolev inequality, for any ε 1 sufficiently small,

M |∇u ε | 2 + a -ω 2 -δ 0 u 2 ε dv g ≤ M |∇u ε | 2 dv g + M Φ ε u 2 ε dv g = M u pε ε dv g ≤ C M |∇u ε | 2 + a -ω 2 -δ 0 u 2 ε dv g pε/2
for some C > 0 independent of ε. This implies that u > 0. Passing to the limit we get from (4.1) that

∆ g v + b + q 2 u 2 v = qu 2 ∆ g A + bA = q (∇S -qA) u 2 ,
and it follows that v > 0. Also A ≡ 0 if ∇S ≡ 0. The lemma follows.

5. Proof of Theorem 1.1 in the subcritical case p ∈ (2, 2 )

Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M in the sense of the bilinear forms, where Rc g is the Ricci curvature of g. Let p ∈ (2, 2 ) be given. We assume that ∆ g + f is coercive, where f = a + |∇S| 2 -ω 2 if b ≡ 0, and f = a + |∇S| 2 otherwise. First we prove the following key lemma. Lemma 5.1. Let ε 0 > 0 be given. Let h t : M × R → R be given by

h t (•, u) = (1 -t)ε 0 + tΦ(•, ψ b (u), φ b,S (u)) (5.1)
for all u ∈ C 0 R and all t ∈ [0, 1], where Φ is as in (1.2), φ b,S is as in Lemma 3.1 and ψ b is as in Lemma 3.2. Then,

α 0 := inf t∈[0,1] inf u∈St min x∈M u > 0 , (5.2) 
where

S t ⊂ H 2,q R ∩ C 1 R , q 1 
, is the set of the smooth solutions of

∆ g u + h t (•, u)u = u p-1 (5.3)
which are such that u > 0 in M .

Proof of Lemma 5.1. First, by Lemmas 3.1 and 3.2, there exists C 1 > 0 such that

h t (•, u) ≤ C 1 (5.4)
in M for all u ∈ C 0 R and all t ∈ [0, 1]. Then, as a corollary of Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF], there exists C 2 > 1 such that u ≤ C 2 (5.5) in M for all t ∈ [0, 1] and for all u ∈ S t . It is clear that α 0 ≥ 0 in (5.2). From now on we assume by contradiction that α 0 = 0. Then there exists a sequence (t ε ) ε of numbers in [0, 1], u ε ∈ S tε and x ε ∈ M for all ε, such that u ε (x ε ) → 0 as ε → 0. By (5.3) with u = u ε and t = t ε , by (5.4), (5.5) and by the Harnack inequality (e.g.

see Gilbarg and Trudinger [15], Theorem 8.20), we then get that u ε C 0 R → 0 as ε → 0. It follows that u ε H 1 R → 0 as ε → 0 by noting that by (5.3) and the above,

∆ g u ε + u ε = f ε in M , where f ε C 0 R → 0 as ε → 0.
By the continuity of φ b,S and ψ b , see Lemmas 3.1 and 3.2, and since u ε C 0 R → 0 as ε → 0, we can write that

ψ b (u ε ) → 0 if b ≡ 0 1 q if b ≡ 0 in C 0
R , and that φ b,S (u ε ) → 0 in C 0 V as ε → 0. However, multiplying (5.3) by u ε , integrating by parts, using the coercivity of ∆ g + f , where f = a + |∇S| 2 -ω 2 if b ≡ 0, and f = a + |∇S| 2 otherwise, using the Sobolev inequality and since p > 2, we get from the above that

lim inf ε→0 u ε H 1 R > 0 .
This is the contradiction we look for. Lemma 5.1 is proved.

A rather standard lemma, following Lin, Ni and Takagi [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF], is Lemma 5.2 below. We refer to Brézis-Li [START_REF] Brézis | Some nonlinear elliptic equations have only constant solutions[END_REF] and Hebey [START_REF]Compactness and stability for nonlinear elliptic equations[END_REF] for the critical version of this lemma. We skip its proof as it is rather standard. Lemma 5.2. Let p ∈ (2, 2 ). There exists δ 0 > 0 such that the equation

∆ g u + εu = u p-1 (5.6) 
with u > 0 in M , admits the sole solution u ≡ ε 1/(p-2) for all ε ∈ (0, δ 0 ). Now we are in position to prove Theorem 1.1 in the subcritical case.

Proof of Theorem 1.1 in the subcritical case. We fix ε 0 ∈ (0, δ 0 ), where δ 0 is as in Lemma 5.2. Let L be the compact operator given by

L = (∆ g + 1) -1 (5.7)
in C 0 R . By Lemmas 3.1 and 3.2, and elliptic theory, given t ∈ [0, 1] and h t as in (5.1), the elements in S t , where S t is as in Lemma 5.1, are precisely the solutions

u ∈ C 0 R of T t (u) := u -L u p-1 -(h t (•, u) -1)u = 0 (5.8) with u > 0 in M . Up to reducing ε 0 > 0, the operator DT 0 ε 1/(p-2) 0
given by

DT 0 ε 1/(p-2) 0 (ϕ) = ϕ -L (((p -2)ε 0 + 1)ϕ) = L (∆ϕ -(p -2)ε 0 ϕ) (5.9)
possesses -(p -2)ε 0 as a unique simple negative eigenvalue since its eigenvalues are the λ i -(p -2)ε 0 , where the λ i 's are the eigenvalues of ∆ g . By the Leray-Schauder degree theory and our above remarks, we can deduce that

deg (T 0 , Ω, 0) = -1 , (5.10) 
where Ω is given by

Ω = u ∈ C 0 R s.t. 1 2 α 0 < u < 2C 2 (5.11)
where α 0 is as in (5.2) and C 2 is as in (5.5). Moreover, by the homotopy invariance of the Leray-Schauder degree, using in a crucial way Lemma 5.1, we get in particular that T t does not vanishes in ∂Ω and conclude that deg (T t , Ω, 0) = -1 (5.12) for all t ∈ [0, 1]. Since deg (T 1 , Ω, 0) = 0, (5.3) admits at least one positive solution u ∈ Ω for t = 1. By Lemmas 3.1 and 3.2 with elliptic theory, u turns out to be smooth; moreover ψ b (u) > 0 in M and (u, ψ b (u), φ b,S (u)) is the smooth nontrivial solution of (1.1) we look for in Theorem 1.1. Also any solution is in Ω. By Lemmas 3.1 and 3.2 with elliptic theory, we then get that S 1 is compact in C 2 R , so that S in Theorem 1.1 is also compact in the C 2 -topology. This concludes the proof of Theorem 1.1 when p ∈ (2, 2 ).

As a remark we can prove more than the compactness of the set of solutions and actually prove the stability of the equation. This is what we state in the following theorem.

Theorem 5.1. Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M , in the sense of bilinear forms. Let p ∈ (2, 2 ) and θ ∈ (0, 1).

Let (a ε ) ε , (b ε ) ε and (S ε ) ε be sequences of smooth functions such that a ε → a, b ε → b in C 0,θ R and S ε → S in C 1,θ R as ε → 0, and such that b ε ≥ 0 in M for all 0 < ε 1. Let (ω ε ) ε and (p ε ) ε be sequences of real numbers such that p ε → p in (2, 2 ) and ω ε → ω in R as ε → 0. Then, for any sequence (u ε , v ε , A ε ) ε such that      ∆ g u ε + Φ ε (x, v ε , A ε )u ε = u pε-1 ε ∆ g v ε + (b ε + q 2 u 2 ε )v ε = qu 2 ε ∆ g A ε + b ε A ε = q(∇S ε -qA ε )u 2 ε , (5.13) 
for all ε, where

Φ ε (x, v ε , A ε ) = a ε -ω 2 ε (qv ε -1) 2 + |∇S ε -qA ε | 2 (5.14)
and u ε > 0 in M , there holds that, up to a subsequence,

u ε → u, v ε → v in C 2 R and A ε → A in C 2 V as ε → 0, where u, v ∈ C 2 R and A ∈ C 2 V solve (1.1
). Proof of Theorem 5.1. By Lemma 3.1, A ε = φ bε,Sε (u ε ) for all ε, while by Lemma 3.2, v ε = ψ bε (u ε ) for all ε. In particular, by (3.2) and (3.16), thanks to the convergences we have on the a ε 's and S ε 's, we get that |Φ ε | ≤ C for all ε, where

Φ ε = Φ ε (x, v ε , A ε ) and C > 0 is independent of ε. By Lemma 4.1 it suffices to prove that (u ε ) ε is bounded in L ∞ R .
At this point we assume by contradiction that max

M u ε → +∞ (5.15)
as ε → 0. Let x ε ∈ M and µ ε > 0 be such that

u ε (x ε ) = max M u ε = µ -2/(pε-2) ε .
By (5.15), µ ε → 0 as ε → 0. Define ũε by

ũε (x) = µ 2 pε-2 ε u ε exp xε (µ ε x)
and g ε by g ε (x) = exp xε g (µ ε x) for x ∈ B 0 (δµ -1 ε ), where δ > 0 is small. Since µ ε → 0, we get that g ε → ξ in C 2 loc (R n ) as ε → 0, where ξ is the Euclidean metric. Moreover, by (5.13),

∆ gε ũε + µ 2 ε Φε ũε = ũpε-1 ε (5.16)
for all ε, where Φε is given by Φε (x) = Φ ε exp xε (µ ε x) .

In addition, ũε (0) = 1 and 0 ≤ ũε ≤ 1. By (5.16) and standard elliptic theory arguments, we can write that, after passing to a subsequence, ũε → u in C 1,θ loc (R n ) as ε → 0, where u is such that u(0) = 1 and 0 ≤ u ≤ 1. Then

∆ ξ u = u p-1
(5.17) in R n , where ∆ ξ is the Euclidean Laplacian and, since 2 < p < 2 , we get a contradiction with the Liouville result of Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF]. This ends the proof of Theorem 5.1.

Stability in the critical case p = 2

We prove the following stability result in this section.

Theorem 6.1. Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M , in the sense of bilinear forms. Let θ ∈ (0, 1) be given. Let (a ε ) ε , (b ε ) ε and (S ε ) ε be sequences of smooth functions such that a ε → a, b ε → b in C 0,θ R and S ε → S in C 3 R as ε → 0, and such that b ε ≥ 0 in M for all 0 < ε 1. We assume either (1.3) if n = 4, or (1.4) if n ≥ 5. Let (ω ε ) ε and (p ε ) ε be sequences of real numbers such that p ε → 2 in (2, 2 ] and ω ε → ω in R as ε → 0. Then, for any sequence

(u ε , v ε , A ε ) ε such that      ∆ g u ε + Φ ε (x, v ε , A ε )u ε = u pε-1 ε ∆ g v ε + (b ε + q 2 u 2 ε )v ε = qu 2 ε ∆ g A ε + b ε A ε = q(∇S ε -qA ε )u 2 ε , (6.1) 
for all ε, where

Φ ε (x, v ε , A ε ) = a ε -ω 2 ε (qv ε -1) 2 + |∇S ε -qA ε | 2 (6.2)
and u ε > 0 in M , there holds that, up to a subsequence,

u ε → u, v ε → v in C 2 R and A ε → A in C 2 V as ε → 0, where u, v ∈ C 2 R and A ∈ C 2 V solve (1.1) in the critical case p = 2 .
We start here the proof of Theorem 6.1. Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that

Rc g + bg > 0 (6.3)
in M in the sense of the bilinear forms. Let θ ∈ (0, 1) be given. Let (a ε ) ε , (b ε ) ε and (S ε ) ε be sequences of smooth functions such that

a ε → a , b ε → b in C 0,θ R and S ε → S in C 3 R (6.4)
as ε → 0, and such that b ε ≥ 0 in M for all 0 < ε 1. Let (ω ε ) ε and (p ε ) ε be sequences of real numbers such that p ε → 2 in (2, 2 ] and ω ε → ω in R as ε → 0. Let (u ε , v ε , A ε ) be smooth, such that (6.1) holds true and such that u ε > 0 in M for all ε. Observe in particular that since u ε > 0 in M , we have that v ε = ψ bε (u ε ) even if b ε ≡ 0, so that we can use (3.16). Observe also that, by (6.3) and (6.4), we have Rc g + b ε g > 0 in M in the sense of the bilinear forms, so that we get A ε = φ bε,Sε (u ε ) for all ε small. Then, by Lemmas 3.1 and 3.2, and (6.4), we clearly have that lim sup

ε→0 Φ ε (x, v ε , A ε ) L ∞ R ≤ a L ∞ R + 4 ∇S 2 L ∞ V + ω 2 , (6.5) 
where Φ ε (x, v ε , A ε ) is as in (6.2). By Lemma 4.1 the convergence of (u ε , v ε , A ε ) ε in the C 2 -topology at the end of Theorem 6.1 holds true as soon as u ε L ∞ R = O(1). We proceed by contradiction and assume from now on that, up to a subsequence,

lim ε→0 max M u ε = +∞ . (6.6)
In order to get Theorem 6.1, our goal is to prove eventually that our assumptions (1.3)-(1.4) allow to rule out (6.6). Following the global strategy in Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF], which goes back to Coda-Marques [START_REF] Marques | A priori estimates for the Yamabe problem in the non-locally conformally flat case[END_REF], Druet [START_REF] Druet | From one bubble to several bubbles: The low-dimensional case[END_REF][START_REF]Compactness for Yamabe metrics in low dimensions[END_REF], Li-Zhu [START_REF] Li | Yamabe type equations on three dimensional Riemannian manifolds[END_REF] and Schoen [START_REF] Schoen | Lecture notes from courses at Stanford[END_REF] (See Hebey [START_REF]Compactness and stability for nonlinear elliptic equations[END_REF] for a presentation in book form), we start by analyzing the local blow-up behavior of the u ε 's in a model case. In the sequel, i g > 0 denotes the injectivity radius of (M, g). We let (x ε ) ε be a sequence of points in M , (ρ ε ) ε be a sequence of positive real numbers such that 7ρ ε < i g . Up to a subsequence, we have that lim

ε→0 x ε = x 0 , (6.7) 
for some x 0 ∈ M . We assume that there exists C > 0 such that

     d g (x ε , •) 2 pε-2 u ε ≤ C in B xε (7ρ ε ) and all ε , ∇u ε (x ε ) = 0 , lim ε→0 ρ 2 pε-2 ε sup Bx ε (6ρε) u ε = +∞ , (6.8)
where d g (•, •) denotes the Riemannian distance on (M, g), and where B x (r) ⊂ M denotes the open geodesic ball of center x ∈ M and radius r > 0. Let µ ε > 0 be given by

µ ε = u ε (x ε ) -pε-2 2 .
(6.9) Focusing on the first equation in (6.1), and using (6.5) and (6.8), as a by product of the classification in Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we get as in [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF][START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF] that

µ ε → 0, that ρ ε /µ ε → +∞ and that µ 2 pε-2 ε u ε exp xε (µ ε •) → u 0 (6.10) in C 1 loc (R n ) as ε → 0, where u 0 is given in R n by u 0 (y) = 1 + |y| 2 n(n -2) -n-2 2 .
(6.11)

We derive below several useful lemmas and aim to get precise asymptotics for

Φ ε := Φ ε (•, v ε , A ε ).
The first lemma we prove basically only uses the estimate (6.10) on the u ε 's.

Lemma 6.1 (Control of (Φ ε ) ε for n ≥ 5). Let n, (M, g), q > 0, b, S, θ be given as in Theorem 6.1, satisfying in particular b ≥ 0 in M and (6.3). Let (b ε ) ε and (S ε ) ε be sequences of smooth functions such that (6.4) holds true and such that b ε ≥ 0 in M for all ε. Let (u ε ) ε be a sequence of smooth positive functions in M . Let (x ε ) ε be a sequence of points in M such that µ ε > 0 given by (6.9) satisfies µ ε = o(1) as ε → 0. We assume that n ≥ 5 and that (6.10) holds true. Then, up to a subsequence, for all given p ∈ [1, +∞), we have that

|qφ bε,Sε (u ε ) -∇S ε | exp xε (µ ε •) → 0 in L p loc (R n ) , (6.12 
)

ψ bε (u ε ) exp xε (µ ε •) → 1 q in L p loc (R n ) , (6.13) 
as ε → 0, where φ bε,Sε and ψ bε are given by Lemmas 3.1 and 3.2 respectively.

Proof of Lemma 6.1. Even if (b ε ) ε is not necessarily here a constant sequence, i.e. such that b ε = b for all ε, (6.13) may be easily obtained by following the lines of [30, Lemma 2.1] and the end of the argument below. We focus now on the slightly less obvious proof of (6.12). For all ε small, we set A ε = φ bε,Sε (u ε ) and let Ãε be given by

Ãε = ∇S ε q -A ε . (6.14)
Then, we get from (3.1) that

∆ g Ãε + q 2 u 2 ε Ãε = ∇(∆ g S ε ) q + b ε A ε (6.15)
in M . According to the Weitzenböck formula, for all smooth 1-form A in M , we have that

(∆ g A, A) = 1 2 ∆ g |A| 2 + |∇A| 2 + Rc g (A , A ) , (6.16) 
where is the musical isomorphism. Then, we get from (6.15), dropping the nonnegative critical term |∇ Ãε | 2 , that

1 2 ∆ g | Ãε | 2 + q 2 u 2 ε | Ãε | 2 ≤ -Rc g ( Ã ε , Ã ε ) + b ε (A ε , Ãε ) + 1 q (∇(∆ g S ε ), Ãε ) (6.17) in M . Let f ε ≥ 0 be given by f ε (y) = | Ãε | exp xε (µ ε y) 2 . Let R > 0 and δ R := 1 + |2R| 2 n(n -2) -n-2 2 > 0 ,
be fixed. It follows from (3.2), (6.4), (6.10) and (6.17) that there exists

C > 0 such that 1 2 ∆ gε f ε + (qδ R ) 2 µ 2-4 pε-2 ε f ε ≤ Cµ 2 ε (6.18)
in B 0 (R) ⊂ R n for all ε small, where g ε := exp xε g (µ ε •) → ξ, the Euclidean metric as ε → 0. Let us control f ε with a Dirichlet and a quasi-harmonic term, more precisely, we can write

f ε ≤ f ε,H + f ε,D , where f ε,H satisfies 1 2 ∆ gε f ε,H + (qδ R ) 2 µ 2-4 pε-2 ε f ε,H = 0 in B 0 (R) , f ε,H = Λ on ∂B 0 (R) , (6.19)
where Λ > 0 is chosen such that

Λ > 4 ∇S 2 L ∞ V q 2
, using (3.2) and (6.4) with the maximum principle, and where f ε,D satisfies

1 2 ∆ gε f ε,D + (qδ R ) 2 µ 2-4 pε-2 ε f ε,D = Cµ 2 ε in B 0 (R) , f ε,D = 0 on ∂B 0 (R) , (6.20)
where C is as in (6.18). By the maximum principle,

0 ≤ f ε,H ≤ Λ (6.21)
in B 0 (R). Also we get from (6.19) that for any smooth function ϕ with compact support in B 0 (R),

B0(R) ∆ gε ϕ + (qδ R ) 2 µ 2-4 pε-2 ε ϕ f ε,H dv gε = 0
and then we get with (6.21) that

µ 2-4 pε-2 ε B0(R)
ϕf ε,H dv gε = O(1) .

Since n ≥ 5 there holds that µ

2-4 pε-2 ε
→ +∞ as ε → 0. Letting ϕ be nonnegative and such that ϕ = 1 in B 0 (R/2), since f ε,H ≥ 0, we get that

B0(R/2)
f ε,H dv gε → 0 as ε → 0. Then, by (6.21), it follows that f ε,H → 0 in any L p (B 0 (R/2)) as ε → 0. By (6.20) and the maximum principle,

0 ≤ f ε,D ≤ C (qδ R ) 2 µ 4 pε-2 ε .
Then it follows that f ε,D → 0 in L p (B 0 (R)) as ε → 0, and thus that f ε → 0 in L p (B 0 (R/2)) as ε → 0. This concludes the proof of (6.12) since R > 0 is arbitrary.

For r ∈ (0, i g ) and x ∈ M , |∂B x (r)| g denotes the volume of the ∂B x (r) with respect to the metric induced by g. We let ϕ ε be the smooth function given in (0, 2ρ ε ) by

ϕ ε (r) = 1 |∂B xε (r)| g ∂Bx ε (r) u ε dσ g . (6.22) Set Λ 0 = 2 n(n -2) and define r ε ∈ [Λ 0 µ ε , ρ ε ] by r ε = sup r ∈ [Λ 0 µ ε , ρ ε ] s.t. d ds s 2 pε-2 ϕ ε (s) ≤ 0 for all s in [Λ 0 µ ε , r] . (6.23)
By (6.10), we get that

µ ε = o(r ε ) (6.24)
as ε → 0. Moreover, (6.23) implies that

d ds s 2 pε-2 ϕ ε (s) s=rε = 0 (6.25) if r ε < ρ ε . Let B ε be given in M by B ε (x) = 1 µ 2 pε-2 ε   1 1 + dg(xε,x) 2 µ 2 ε n(n-2)   n-2 2 . ( 6.26) 
At last, using only the information in (6.5) to control the Φ ε , following closely the lines of [20, Lemmas 9.1-9.3], for all R > 1 such that Rr ε ≤ 6ρ ε for all ε, there exists C > 0 and a sequence (δ ε ) ε of positive real numbers converging to 0 such that

|∇u ε | ≤ Cµ n-2-2 pε-2 ε d g (x ε , •) 1-n , (6.27) 
and

|u ε -B ε | ≤ Cµ n-2-2 pε-2 ε r 2-n ε + d g (x ε , •) 3-n + δ ε B ε , (6.28) in B xε Rrε 2
\{0}, for all ε. In the same spirit, keeping our notations, in dimension n = 4, there also holds that the following lemma holds true. Lemma 6.2. Assume n = 4. Then there exist C > 0 and a sequence (δ ε ) ε of positive real numbers converging to 0 such that (6.11), and where (Θ ε ) ε is a sequence of positive real numbers which satisfies that Θ ε → +∞ as ε → 0 and Θ ε = o ln( rε µε ) .

|∇u ε -B ∇ ε | ≤ Cµ 2-2 pε-2 ε Θ ε r -3 ε + d g (x ε , •) -2 + δ ε d g (x ε , •) -3 (6.29) in B xε Rrε 2 \B xε (µ ε ), for all ε, where B ∇ ε is given in B xε (i g ) by µ pε pε-2 ε B ∇ ε exp xε (µ ε •) = ∇u 0 for u 0 as in
Proof of Lemma 6.2. Assume that n = 4. Fix (Θ ε ) ε as in the lemma. By a diagonal argument and (6.10) we get that there exists a sequence (R ε ) ε of positive real numbers converging to +∞ such that, up to passing to a subsequence,

lim ε→0 µ 2 pε-2 ε u ε exp xε (µ ε •) -u 0 C 1 R (B0(Rε)) = 0 . (6.30) Let (y ε ) ε ∈ B xε Rrε 2 \B xε (R ε µ ε ), where by (y ε ) ε ∈ B xε Rrε 2 \B xε (R ε µ ε ) we mean that y ε ∈ B xε Rrε 2 \B xε (R ε µ ε ) for all ε.
We assume that we also have that

d g (x ε , y ε ) ≤ Θ -1/3 ε r ε for all ε. In particular, d g (x ε , y ε ) = o(1). Set ũε = u ε (exp xε (•)) and Bε = B ε (exp xε (•))
. By a standard abuse of notations, if ξ is the Euclidean metric, we may write in the exponential chart at x ε that

∆ ξ ũε + O (| • ||∇ũ ε |) + O (ũ ε ) = ũpε-1 ε , ∆ ξ Bε = Bpε-1 ε , (6.31) 
uniformly in B xε (i g /2), for all ε. The first equation in (6.31) comes from (6.1), and uses the expansion of the ∆ g in normal coordinates and (6.5). Independently, we get from (6.27) and (6.28) that

|ũ ε -Bε | + | • ||∇ũ ε | + ũε = O Bε , (6.32) 
uniformly in B 0 (Rr ε /2)\B 0 (µ ε ) and for all ε. Then, since p ε → 2 , using the basic inequality

(1 + t) pε-1 = O t pε-2 |t -1| + |t -1| pε-1 , (6.33) 
uniformly in t ≥ 0 and for all ε, we get from (6.31)-(6.32) that

|∆ ξ (ũ ε -Bε )| = O Bε + Bpε-2 ε |ũ ε -Bε | , (6.34) 
uniformly in B 0 (Rr ε /2)\B 0 (µ ε ) and for all ε. Setting now

d ε = d g (x ε , y ε ) , ûε = ũε (d ε •) , Bε = Bε (d ε •) and D = B 0 (2)\B 0 (1/
2), we get from (6.30) and (6.34) that

∆ ξ (û ε -Bε ) L ∞ (D) = d 2 ε O µ 2-2 pε-2 ε d -2 ε + O µ 2pε-6 ε d -2pε+4 ε ûε -Bε L ∞ (D) , = d ε O µ 2-2 pε-2 ε d -2 ε + O 1 R ε 2pε-6 ûε -Bε L ∞ (D) , (6.35) 
for all ε. By standard elliptic theory, we have that

∇(û ε -Bε ) L ∞ (∂B0(1)) = O ûε -Bε L ∞ (D) + ∆ ξ (û ε -Bε ) L ∞ (D) ,
and we conclude that there exists C > 0 and a sequence (δ ε ) ε of positive real numbers converging to 0 such that

|∇u ε (y ε ) -B ∇ ε (y ε )| ≤ Cµ 2-2 pε-2 ε r -2 ε d g (x ε , y ε ) -1 + d g (x ε , y ε ) -2 + δ ε d g (x ε , y ε ) -3 ≤ Cµ 2-2 pε-2 ε d g (x ε , y ε ) -2 + δ ε d g (x ε , y ε ) -3 + Θ -2/3 ε d g (x ε , y ε ) -3 (6.36) for all sequences (y ε ) ε ∈ B xε Rrε 2 \B xε (R ε µ ε ) such that d g (x ε , y ε ) ≤ Θ -1/3 ε
r ε for all ε. On the other hand, by (6.27), there exists C > 0 such that

|∇u ε (y ε ) -B ∇ ε (y ε )| ≤ |∇u ε (y ε )| + |B ∇ ε (y ε )| ≤ Cµ 2-2 pε-2 ε Θ ε r -3 ε for all sequences (y ε ) ε ∈ B xε Rrε 2 \B xε (R ε µ ε ) such that d g (x ε , y ε ) ≥ Θ -1/3 ε r ε for all ε. Let now (y ε ) ε be a sequence of points in the set B xε Rrε 2 \B xε (µ ε ), i.e. y ε ∈ B xε Rrε 2 \B xε (µ ε ) for all ε, such that (y ε ) ε ∈ B xε Rrε 2 \B xε (R ε µ ε ).
If we assume that y ε ∈ B xε (Rµ ε ) for all ε, then by (6.24) and (6.30)

lim ε→0 µ pε pε-2 ε |∇u ε (y ε ) -B ∇ ε (y ε )| = 0 .
From the above, and by contradiction, we clearly get that there exist C > 0 and a sequence (δ ε ) ε of positive real numbers converging to 0 such that, up to passing to a subsequence, (6.29) holds true in B xε Rrε 2

\B xε (µ ε ), for all ε. This ends the proof of Lemma 6.2.

The following lemma is the complement of Lemma 6.1 when the dimension n = 4. Lemma 6.3 (Control of (Φ ε ) ε for n = 4). Assume that n = 4. Let (M, g), q > 0, a, b, S, θ, ω be given as in Theorem 6.1, satisfying in particular b ≥ 0 in M and (6.3). Let (a ε ) ε , (b ε ) ε and (S ε ) ε be sequences of smooth functions such that (6.4) holds true and such that b ε ≥ 0 in M for all ε. Let (ω ε ) ε and (p ε ) ε be sequences of real numbers such that p ε → 2 in (2, 2 ] and ω ε → ω in R as ε → 0. Let (u ε , v ε , A ε ) ε be a sequence of smooth maps solving (6.1) such that u ε > 0 in M for all ε. We assume that (x ε ) ε is a sequence of points in M such that µ ε > 0 given by (6.9) satisfies µ ε = o(1) as ε → 0. We assume (6.10) and that (6.28) holds true in B xε (r ε )\{0}, where the r ε 's are numbers in (0, i g /2) satisfying

µ 2-2 pε-2 ε = o(r 2 ε ) . (6.37)
Let F ε be given by

F ε (x) = µ 2-4 pε-2 ε ln 2 + dg(xε,•) µε 1 + dg(xε,•) 2 µ 2 ε . (6.38)
Then we can split v ε according to

v ε = v D ε + v H ε in B xε (r ε )
, where, up to a subsequence, v H ε satisfies lim

ε→0 v H ε exp xε (r ε •) = v 0 , (6.39) 
in C 1 loc (B 0 (1)) for some C 1 -function v 0 valued in [0, 1/q], and where v D ε satisfies for all ε that

0 ≤ v D ε ≤ CF ε (6.40)
in B xε (r ε ), for some C > 0 independent of ε. Moreover, there exist C > 0 and a sequence (δ ε ) ε of positive real numbers converging to 0 such that

|A ε | 2 ≤ CF ε + δ ε (6.41)
in B xε (r ε ) (whether b ≡ 0 or not), and such that

v ε ≤ CF ε + δ ε , (6.42) in B xε (r ε ) if b ≡ 0, for all ε.
Proof of Lemma 6.3. First we aim to prove the global control (6.47) below of v ε and |A ε | 2 by u ε . We get from the third equation of (6.1) and from (6.16) that

1 2 ∆ g |A ε | 2 + (Rc g + b ε g)(A ε , A ε ) ≤ q(A ε , ∇S ε )u 2 ε ,
in M . Thus, since Rc g + bg > 0, and by (3.2), there exists a smooth function η 0 > 0 in M and C > 0 such that

∆ g |A ε | 2 + η 0 |A ε | 2 ≤ Cu 2 ε (6.43)
in M for all ε small, thanks to (6.4). Now since v ε is nonnegative, by the second equation of (6.1) and by (6.4), if b ≡ 0, there exists a smooth function η 0 ≥ 0 in M , η 0 ≡ 0, such that

∆ g v ε + η 0 v ε ≤ qu 2 ε (6.44)
in M for all ε small. Since (6.5) holds true and by the first equation of (6.1), we may also find a constant C 0 > 0 such that

∆ g u ε + C 0 u ε ≥ u pε-1 ε + u ε (6.45)
in M for all ε small. By Robert [START_REF] Robert | Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux[END_REF], given any smooth function c in M such that the operator ∆ g + c is coercive in M , there exists C > 1 such that the Green's function

G c > 0 of ∆ g + c satisfies 1 Cd g (x, y) 2 ≤ G c (x, y) ≤ C d g (x, y) 2 , (6.46) 
for all x, y ∈ M such that x = y. Then, by (6.43)-(6.46), by the Green's representation formula, there exists C > 0 such that

Cu ε ≥ |A ε | 2 in any case , v ε if b ≡ 0 , (6.47) 
in M for all ε, and we used here that t 2 ≤ t pε-1 + t for all t ≥ 0 and all 0 < ε 1. Now, we turn to the proof of (6.39)-(6.40). We write v ε = v D ε + v H ε , where v D ε and v H ε are given by

∆ g v D ε + b ε v D ε = qu 2 ε (1 -qv ε ) in B xε (r ε ) , v D ε = 0 on ∂B xε (r ε ) , (6.48) 
and by is smaller than qu 2 ε , and we get from the Green's representation formula, (6.10), (6.28) and Giraud's type computations that (6.40) holds true. The lower bound in (6.40) holds true by the maximum principle, since b ε and the RHS of (6.48) are both nonnegative. Independently, we set

∆ g v H ε + b ε v H ε = 0 in B xε (r ε ) , v H ε = v ε on ∂B xε (r ε ) .
vε = v H ε exp xε (r ε •) , bε = b ε exp xε (r ε •) and ĝε = exp xε g (r ε •) in the Euclidean ball B 0 (2) ⊂ R 4 . Whether r ε = o(1)
or not, up to a subsequence, we may assume that ĝε → ĝ0 in C 2 (B 0 (2)) as ε → 0, where ĝ0 is some C 2 -metric in B 0 (2), and that vε satisfies ∆ ĝε vε + r 2 ε bε vε = 0 in B 0 (1) , 0 ≤ qv ε ≤ 1 on ∂B 0 (1) , (6.50) for all ε, using (3.16). By standard elliptic theory and the maximum principle using b ε ≥ 0, we get from (6.4), (6.50) that vε → v 0 in C 1 loc (B 0 (1)), up to a subsequence, where v 0 is valued in [0, 1/q]. In other words, (6.39) is proved. Now we focus on (6.42) and then assume that b ≡ 0. By (6.40), it is sufficient to prove that

v H ε L ∞ R (Bx ε (rε)) = o(1) .
(6.51) By (6.28) and (6.37),

u ε L ∞ (∂Bx ε (rε)) = o(1) . (6.52)
Then, by the maximum principle with b ε ≥ 0, (6.47) and (6.49), we get that (6.51) holds true, which concludes the proof of (6.42). In order to conclude the proof of Lemma 6.3, it remains to prove (6.41). The first estimate in (6.47) holds true whatever b ≡ 0 or not. We split

|A ε | 2 into |A ε | 2 = A H ε + A D ε where A D ε is given by ∆ g A D ε = ∆ g |A ε | 2 in B xε (r ε ) , A D ε = 0 on ∂B xε (r ε ) ,
and A H ε ≥ 0 is given by

∆ g A H ε = 0 in B xε (r ε ) , A H ε = |A ε | 2 on ∂B xε (r ε ) .
By the maximum principle, (6.47) and (6.52), A H ε L ∞ (Bx ε (rε)) = o [START_REF] Benci | Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations[END_REF] . By the Green's representation formula, using (6.43) and that G ε , η 0 are nonnegative, we get from Giraud's type computations as above that there exists C > 0 such that

A D ε ≤ CF ε in B xε (r ε )
, for all ε. This concludes the proof of (6.41) and that of Lemma 6.3. Let X ε be the 1-form given for x in a neighborhood of x ε by

X ε (x) = 1 - 1 6(n -1) Rc g (∇d ε (x), ∇d ε (x)) ∇d ε (x) (6.53)
where

d ε = 1 2 d g (x ε , •) 2
. By the Pohozaev identity as in Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF] (see also Hebey [19] and Hebey and Thizy [START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF]):

T 0,ε = T 1,ε + T 2,ε + R 1,ε + R 2,ε , (6.54) 
where T 1,ε is given by

T 1,ε = n -2 2n ∂Bx ε (rε) (div g X ε )∂ ν u ε u ε dσ g - ∂Bx ε (rε) 1 2 X ε (ν)|∇u ε | 2 -∂ ν u ε X ε (∇u ε ) dσ g , (6.55) 
T 2,ε is given by

T 2,ε = 1 2 - 1 p ε Bx ε (rε) (div g X ε )u pε ε dv g , (6.56) 
R 1,ε is given by

R 1,ε = - Bx ε (rε) ∇X ε - 1 n (div g X ε )g (∇u ε , ∇u ε )dv g , R 2,ε is given by R 2,ε = 1 p ε ∂Bx ε (rε) X ε (ν)u pε ε dσ g - n -2 4n ∂Bx ε (rε) ∂ ν (div g X ε )u 2 ε dσ g , (6.57) 
and T 0,ε , involving Φ ε , is given by

T 0,ε = Bx ε (rε) Φ ε u ε X ε (∇u ε ) + n -2 2n (div g X ε ) u 2 ε dv g + n -2 4n Bx ε (rε) (∆ g (div g X ε )) u 2 ε dv g . (6.58)
Concerning the notations in (6.54), the T i,ε 's terms may matter, while the R i,ε 's terms will eventually be only remainder terms. As in Hebey and Thizy [START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF]Lemma 9.4] we get from (6.27)-(6.28), using (6.5), that

R 1,ε =        o µ 4-4 pε-2 ε ln 1 µε + o µ 4-4 pε-2 ε r -2 ε if n = 4 , o µ n-4 pε-2 ε + o µ 2n-4-4 pε-2 ε r 2-n ε if n ≥ 5 , (6.59) 
for all ε. Still following Hebey and Thizy [START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF]Lemma 9.4] we also get the estimate

R 2,ε = µ 2n-4-4 pε-2 ε r 2-n ε o(1) + O(r 2 ε ) , (6.60) 
in M for all ε. Independently, we observe that, if n ≥ 5,

R n u 0 X(∇u 0 ) + n -2 2 u 2 0 dy = - R n u 2 0 dy , (6.69) 
integrating by parts, where X(∇u 0 )(x) = x i (∇u 0 ) i (x). Then, we get from (3.2), (3.16), (6.4), (6.10), (6.27), (6.28), Lemma 6.1, (6.67) and the dominated convergence theorem that (6.63) holds true. Thus, from now on, we focus on the remaining case, namely we assume that n = 4 and (6.37) holds true. First, for F ε as in (6.38), we observe that

Bx ε (rε) F i ε (u 2 ε + d g (x ε , •)|∇u ε |u ε )dy = O µ 4-4 pε-2 + 4(pε-4) pε-2 ε , (6.70) 
for all i ∈ {1/2, 1, 2}, by (6.10), (6.27) and (6.28). Consider first the case where b ≡ 0. Then (6.41)-(6.42) hold true. We currently use here and in the sequel that, if (z ε ) ε is some sequence of points and

(f ε ) ε is some sequence in C 1 R converging in C 1 R to some f ∈ C 1 R , then f ε = f ε (z ε ) + O(d g (z ε , •)). We have that Bx ε (rε) a ε -ω 2 ε + |∇S ε | 2 u ε X ε (∇u ε ) + n -2 2n (div g X ε ) u 2 ε dv g = -64ω 3 a -ω 2 + |∇S| 2 (x 0 )µ 4-4 pε-2 ε ln r ε µ ε + o µ 4-4 pε-2 ε ln 1 µ ε , (6.71) 
by (6.4), (6.10), (6.28), (6.29) and (6.66). Then, we get (6.64) in the case b ≡ 0, by (6.41)-(6.42), and by (6.67), (6.70), (6.71). Consider now the case b ≡ 0. Then, (6.39), and (6.40)-(6.41) hold true. Computing as in (6.71), we get that

Bx ε (rε/2) a ε -ω 2 ε (1 -qv H ε ) 2 + |∇S ε | 2 u ε X ε (∇u ε ) + n -2 2n (div g X ε ) u 2 ε dv g = -64ω 3 a -ω 2 (1 -qv 0 (0)) 2 + |∇S| 2 (x 0 )µ 4-4 pε-2 ε ln r ε µ ε + o µ 4-4 pε-2 ε ln 1 µ ε , (6.72) 
using also (6.24) and (6.39). We also have that

Bx ε (rε)\Bx ε (rε/2) (u 2 ε + d g (x ε , •)|∇u ε |u ε )dv g = O µ 4-4 pε-2 ε , (6.73) 
by (6.27) and (6.28). By (6.67), using (6.4), (6.40), (6.41), (6.70), (6.72) to compute in B xε (r ε /2) the terms involving Φ ε , and using only (6.5) and (6.73) to estimate these terms in B xε (r ε )\B xε (r ε /2), we get (6.64) also for b ≡ 0, which concludes the proof of Lemma 6.4.

We are in position to state the following key proposition, and we assume from now on (1.3)-(1.4) as in Theorem 6.1. Proposition 6.1. Assume that (1.3) holds true if n = 4 or that (1.4) holds true if n ≥ 5. Then, up to passing to a subsequence, r ε = o(1) , (6.74)

r ε = ρ ε and r n-2 ε µ 2 pε-2 -n+2 ε u ε exp xε (r ε •) → α n | • | n-2 + H (6.75) in C 1 loc (B 0 (2)\{0}) as ε → 0, where α n = (n(n -2)) n-2 2 
, where ρ ε is as in (6.8), µ ε as in (6.9), r ε as in (6.23), and H is a harmonic function in B 0 (2) such that H(0) ≤ 0 .

(6.76)

Proof of Proposition 6.1. By (6.27) and (6.28), we get first the estimate

T 1,ε = O µ 2n-4-4 pε-2 ε r 2-n ε , (6.77) 
where T 1,ε is as in (6.55). If n = 4, by plugging in (6.54) the estimates in (6.59), (6.60), (6.61), (6.62) and (6.77), we get that

4 -p ε = O µ 4-4 pε-2 ε ln 1 µ ε + O µ 4-4 pε-2 ε r -2 ε , (6.78) 
so that, if (6.37) holds true, we clearly have that

0 ≤ 4 -p ε ≤ µ 2-2 pε-2 ε .
In particular, we have that

µ 4(pε-4) pε-2 ε = o ln 1 µ ε . (6.79) 
We prove now (6.74). Since (6.74) is obvious if (6.37) is not satisfied, we assume that (6.37) holds true in order to conclude the proof of (6.74). Mimicking the argument to get (6.78), but using now (6.79), (6.63) and (6.64) instead of (6.62), using the sign of T 2,ε we get in (6.61) and our assumptions (1.3)-(1.4), we get that

µ 4-4 pε-2 ε ln r ε µ ε = O µ 4-4 pε-2 ε r -2 ε + o µ 4-4 pε-2 ε ln 1 µ ε if n = 4 , µ n-4 pε-2 ε = O µ 2n-4-4 pε-2 ε r 2-n ε + o µ n-4 pε-2 ε if n ≥ 5 .
(6.80) By (6.80), (6.74) is clearly satisfied also when (6.37) holds true. This proves (6.74). Assuming (6.74), the proof of (6.75) is by now rather standard (see for instance Hebey and Thizy [START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF]Lemma 9.6]). It uses in particular (6.5), the first equation in (6.1) and the Bôcher's theorem about nonnegative harmonic functions. The value of α n is then obtained by integrating the first equation of (6.1) in B xε (r ε ), and by using again (6.10) and (6.28). At last, if we assume (6.76), then we get r ε = ρ ε from (6.25) (see for instance Hebey and Truong [START_REF] Hebey | Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds[END_REF]). Thus, it remains to prove the key inequality (6.76). Since we have now (6.74) and (6.75), we may improve (6.77) and get ε , (6.81) where β n = ω n-1 n n-2 (n -2) n /2 > 0. Assume either that n ≥ 5, or that n = 4 and (6.37) holds true. Then, using now (6.81) instead of (6.77), we may resume the arguments used to get (6.80) from ( 6 for all ε small, and then that (6.76) is true. In order to conclude the proof of (6.76) and thus that of Proposition 6.1, we assume that we are in the remaining case:

namely n = 4 and (6.37) is not true. We assume by contradiction that (6.76) is not satisfied, in other words that H(0) is positive. Starting from (6.54), resuming the estimates to get (6.82) from (6.54), but using now (6.62) instead of (6.64), we get that ) with H(0) > 0 enforces (6.37) to be satisfied. Since we assumed that (6.37) is not satisfied there must be the case that Since T 2,ε has a sign, which is given by (6.61), the RHS of (6.83) is negative, and this contradicts H(0) > 0. This concludes the proof of (6.76). Proposition 6.1 is proved.

At that stage, we can conclude the proof of Theorem 6.1 following that of Hebey and Thizy [START_REF] Hebey | Stationary Kirchhoff systems in closed high dimensional manifolds[END_REF]Theorem 8.1].

Proof of Theorem 6.1. The goal is to prove that (6.6) cannot hold true if one assumes (1.3)-(1.4). We will use for this Proposition 6.1 where (1.3)-(1.4) are crucially assumed. As in Druet [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF] and Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF] (see also Hebey [START_REF]Compactness and stability for nonlinear elliptic equations[END_REF]), there exist C > 0 such that there exists N ε ∈ N , N ε critical points of u ε denoted by x 1,ε , ..., x Nε,ε and such that d g (x i,ε , x j,ε ) 2 pε-2 u ε ≥ 1 (6.84) for all i, j ∈ {1, ..., N ε }, i = j, and such that min i∈{1,...,Nε}

d g (x i,ε , •) 2 pε-2 u ε ≤ C in M , (6.85) 
for all ε. We let d ε > 0 be given by as ε → 0 for some d > 0. We prove (6.88) by contradiction and assume that d ε → 0 as ε → 0. Then, N ε ≥ 2 for ε > 0 small. We set for x ∈ B 0 ( δd -1 ε ), 0 < δ < Since d ε → 0 as ε → 0, we get that ĝε → ξ in C 2 loc (R n ) as ε → 0, where ξ is the Euclidean metric. Thanks to (6.1), we have that

d ε =      i g 4 if N ε =
∆ ĝε ûε + d 2
ε Φε ûε = ûpε-1 ε (6.89) in B 0 ( δd -1 ε ). For any R > 0, we let 1 ≤ N R,ε ≤ N ε be such that d g (x 1,ε , x i,ε ) ≤ Rd ε for 1 ≤ i ≤ N R,ε and

d g (x 1,ε , x i,ε ) > Rd ε for N R,ε + 1 < i ≤ N ε .
Such an N R,α does exist thanks to (6.87). We also have N R,ε ≥ 2 for R > 1 and that the sequence (N R,ε ) ε is bounded for all R by (6.86). Given R > 0, there holds that either ûε (x i,ε ) = O(1) for all 1 ≤ i ≤ N R,ε , or ûε (x i,ε ) → +∞ as α → +∞ for all 1 ≤ i ≤ N R,ε , (

where xi,ε = 1 d ε exp -1 x1,ε (x i,ε ) . (6.91)

At this point we split the proof into the study of two cases. In the first case, we assume that there exist R > 0 and 1 ≤ i ≤ N R,ε such that ûε (x i,ε ) = O(1). Then, by (6.90), ûε (x j,ε ) = O(1) for all 1 ≤ j ≤ N R,ε and all R > 0. Noting that the two first equations in (6.8) are satisfied by x ε = x j,ε and ρ ε = 1 8 d ε , it follows from (6.10) that the sequence (û ε ) ε is uniformly bounded in the balls B xj,ε 1 2 and, adding (6.85), in B 0 (R/2). Thus, by (6.89) and elliptic theory, up to passing to a subsequence, we get that the ûε 's converge in C 1 loc (R n ), as ε → 0, to some nonnegative û which solves (5.17) with p = 2 and which satisfies that û = 0 by (6.84). Moreover, still up to passing to a subsequence, û has at least two critical points, namely 0 and x2 ∈ S n-1 , the limit of (x 2,ε ) ε . By the classification result of the nonnegative solutions of (5.17) with p = 2 , see Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], this is not possible and we are left with the second case of our study, where we assume that there exist R > 0 and 1 ≤ i ≤ N R,ε such that ûε (x i,ε ) → +∞ as ε → 0. Then, by (6.90), ûε (x j,ε ) → +∞ as ε → 0 for all 1 ≤ j ≤ N R,ε and all R > 0. The assumptions (6. Up to passing to a subsequence, we let xi be the limit of (x i,ε ) ε in (6.91) and I = {1, ..., lim R→+∞ lim ε→0 N R,ε }. We pick a compact set K ⊂ R n \{x i , i ∈ I}.

( 6 .

 6 49) Let G ε > 0 be the Green's function of ∆ g in B xε (r ε ) with zero Dirichlet boundary condition. By construction and the maximum principle, there exists C > 0 such that G ε (x, y) ≤ Cd g (x, y) -2 , for all ε and all x, y ∈ B xε (r ε ), x = y. Then, since b ε ≥ 0 and by (3.16), ∆ g v D ε

T 1 ,

 1 ε = -(β n H(0) + o(1)) r 2

  .54), and obtain that-(β n H(0) + o(1)) r 2-n

  o (|T 2,ε |) .

ε

  u ε exp x1,ε (d ε x) , Φε (x) = Φ ε exp x1,ε (d ε x) , and ĝε (x) = exp x1,ε g (d ε x) .

∆ ĝε ŵε + d 2 ε 2 - 1 )

 221 8) are satisfied by x α = x 1,ε and ρ ε = 1 8 d ε . Let ŵε = ûα (0) Φε ŵε = 1 ûα (0) (pε-2)( (pε-2)(n-2)

  Proof of uniqueness. If φ 1 and φ 2 both solve (3.1), then

	1 µ φ solves
	(3.1) in H 1 V . By elliptic regularity, noting that u 2 φ ∈ L 2 V , we get that φ ∈ H 2 V . Bootstrapping, φ ∈ H 2,k V for all k ≥ 1 and we then get that φ ∈ C 1 V . Clearly it follows from standard regularity that φ ∈ C k+1 V as soon as u ∈ C k R .
	(2)

  1 , min i,j∈{1,...,Nε},i =jd g (x i,ε , x j,ε ) otherwise ,(6.86)where i g is the injectivity radius. In case N ε ≥ 2, we reorder the x i,ε 's such thatd ε = d g (x 1,ε , x 2,ε ) ≤ d g (x 1,ε , x 3,ε ) ≤ ... ≤ d g (x 1,ε , x Nε,ε ) .

	(6.87)

Our first claim is that, up to passing to a subsequence,

d ε → d (6.88)
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using (6.24). At last, still from (6.10) and (6.28), we get that

for all ε small, for some given constant δ > 0. Now, we consider T 0,ε . By (6.5), and Lemmas 6.1 and 6.3, we are in position to get the estimates gathered in the following lemma.

Lemma 6.4. Up to passing to a subsequence, there holds that

if n = 4, and that

if n ≥ 5. Moreover, if n = 4 and (6.37) holds true, we also have that

where u 0 is as in (6.11), x 0 is as in (6.7), µ ε is as in (6.9), r ε is as in (6.23), ω n is the volume of the unit n-sphere in R n+1 and h in (6.64) is given by

where v 0 is as in (6.39).

Proof of Lemma 6.4. By (6.10), (6.27) and (6.28), we have that

in M for all ε, we get from (6.10) and (6.28) that

Then, if n = 4, (6.62) follows from rough computations with (6.5), (6.10), (6.27), (6.28), and the estimates

The sequence (û ε ) ε is bounded in K by (6.85). Hence by (6.92), we get that for some positive constant C independent of ε. Adding Proposition 6.1, we get that, up to a subsequence, ŵε

The Λ i 's in (6.94) are positive and ĤR is a harmonic function in B 0 (R). In order to see that Λ i = 0 for i ≥ 2, we can apply Proposition 6.1 around x i,ε as we did around x 1,ε , and use the Harnack inequality again to get that the ratio of ûε (x i,ε ) over ûε (0) tends to a positive limit. We have that Ĝ ≥ 0. Hence, by the maximum principle, we get that X(0) ≥ -Λ 1 R 2-n for all R > 1, so that X(0) ≥ 0. Then, by Proposition 6.1, we get that X(0) = 0. By the maximum principle,

Choosing R 1 sufficiently large, we get that X(0) > 0 and this is a contradiction with X(0) = 0. This proves (6.88). We are now in position to conclude the proof of Theorem 6.1, mixing the results of (6.88) and of Proposition 6.1. By (6.88), M being compact, (N ε ) ε is a bounded sequence. Up to passing to a subsequence, we can assume that N ε = N for all ε and some N ∈ N . Let (x ε ) ε be a sequence of maximal points of u ε . By (6.6) and (6.85), we get that d g (x ε , x i,ε ) → 0 as ε → 0 for some i, maybe after passing to a subsequence. Then, by (6.88), noting that

for all x, we get with (6.85) that (6.8) holds true with the x ε 's and ρ ε = δ, for some δ > 0. But this contradicts Proposition 6.1 for which ρ ε → 0, as ε → 0. In particular, assumption (6.6) cannot hold true. Theorem 6.1 is proved.

7. Proof of Theorem 1.1 in the critical case p = 2

Let n ≥ 4 be an integer, let (M, g) be a smooth closed n-manifold, let q > 0 and ω be real numbers, and let a, b, S be smooth functions such that b ≥ 0 in M and such that Rc g + bg > 0 in M , in the sense of the bilinear forms, where Rc g is the Ricci curvature of g. We assume that ∆ g + f is coercive, where f = a + |∇S| 2 -ω 2 if b ≡ 0, and f = a + |∇S| 2 otherwise. We also assume that (1.3)-(1.4) hold true. The compactness part in Theorem 1.1 is an easy consequence of Theorem 6.1. It remains to prove the existence of a nontrivial solution. Let (p ε ) ε be a sequence of subcritical exponents in (2, 2 ) converging to 2 , and let (u ε , v ε , A ε ) ε , u ε > 0, be a sequence of solutions of (6.1) given by Section 5. Here we apply Theorem 1.1 with a, b, S fixed and p = p ε . By Theorem 6.1, up to passing to a subsequence, we get that (u ε ) ε is bounded in L ∞ R . Then we conclude thanks to Lemma 4.1 and Lemma 4.2. This ends the proof of Theorem 1.1 in the critical case.