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Abstract

In this work, we study discrete-time Markov decision processes (MDPs) under constraints
with Borel state and action spaces and where all the performance functions have the same
form of the expected total reward (ETR) criterion over the infinite time horizon. One of our
objective is to propose a convex programming formulation for this type of MDPs. It will be
shown that the values of the constrained control problem and the associated convex program
coincide and that if there exists an optimal solution to the convex program then there exists a
stationary randomized policy which is optimal for the MDP. It will be also shown that in the
framework of constrained control problems, the supremum of the expected total rewards over
the set of randomized policies is equal to the supremum of the expected total rewards over the
set of stationary randomized policies. We consider standard hypotheses such as the so-called
continuity-compactness conditions and a Slater-type condition. Our assumptions are quite weak
to deal with cases that have not yet been addressed in the literature. An example is presented
to illustrate our results with respect to those of the literature.

Keywords: Markov decision process, expected total reward criterion, occupation measure, constraints,
convex program.
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1 Introduction

We consider a discrete-time Markov decision process with constraints when all the objectives have
the same form of the expected total reward over the infinite time horizon. Markov decision processes
are a general family of controlled stochastic processes, which are suitable for the modeling of
sequential decision-making problems under uncertainty. They arise in many applications, such as
engineering, medicine, biology, operations research, management science, economics, among others.

Markov decision processes (MDPs) under the expected total reward (ETR) criterion have been
extensively studied by using mainly different approaches, see e.g. [9] for a complete and exhaustive
survey on that subject and also [15, Chapter 2] for an analysis of that topic through examples.

When dealing with constraints, the linear/convex programming approach (also called the convex
analytic method, see, e.g. [4, 5]) has proved to be a very powerful technique for solving MDPs. It
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has been extensively studied in the literature and we refer the interested reader to the following
works [2, 4, 5, 10, 14] and the references therein to get an overview of this technique. The convex
programming approach can be applied to a large class of control problems including for example,
the finite-horizon and the infinite-horizon discounted-reward problems; see, e.g., [5] for further
examples of performance functions. For such criteria, the key idea is to reformulate the original
dynamic control problem as an infinite dimensional static optimization problem over a space of
finite measures given by the occupation measures of the controlled process. However, it must be
emphasized that the expected total reward criterion is an exception where the convex programming
formulation may not be suitable except for very specific models. As mentioned in [5, p. 357-358]
and [12, p. 92-93], the ETR criterion is very demanding from a technical point of view and yields
some important technical difficulties which are basically of two types:

a) The first issue is directly related to the question of how to properly formulate a convex
program associated with an MDP under the ETR criterion. Indeed, as described in [5],
the classical and natural approach to formulate a convex program associated to a MDP is
to consider as underlying vector space the set of signed finite measures and as variables
the occupation measures of the process. However, in the context of the ETR criterion, this
approach fails since the occupation measures are not necessarily finite and may take the value
infinity. Therefore, the space of finite signed measures is not the appropriate vector space to
define the convex program.

b) An important issue is related to the so-called characteristic equation satisfied by the occupa-
tion measures of the process which is of the form:

µX(·) = ν(·) +

∫
X×A

Q(·|x, a)µ(dx, da)

where X and A are respectively the state and action spaces; Q is the transition probability
function of the MDP and µX is the marginal of the measure µ on X. Indeed, a solution µ
to this equation may not correspond to any occupation measures of the controlled process.
This difficulty makes the analysis of the ETR criterion very involved by using the convex
programming approach.

The objective of the current paper is to propose a suitable convex program for MDPs under
the ETR criterion. Our purpose is also to show that the value of the constrained control problem
corresponds to the value of an associated convex program and that if there exists an optimal
solution to the associated convex program then there exists a stationary randomized policy which
is optimal for the MDP. We consider standard assumptions, the so-called continuity-compactness
conditions introduced by Schäl in [16, 17]. These assumptions are of two types, namely conditions
(S) and (W). Roughly speaking condition (S) requires the transition kernel to be strongly continuous
whereas condition (W) refers to the case where the transition kernel is weakly continuous, see, e.g.,
[17, p. 367-368] for a precise statement of these assumptions. We also suppose the existence of
a policy in the interior of the set of admissible policies. This is the so-called Slater condition.
Conditions (W) and (S) do not play the same role in the sense that when working with condition
(W) instead of condition (S) we have to consider an additional hypothesis requiring the transition
kernel of the model to be absolutely continuous with respect to a Markov kernel uniformly in
the action variables. Our approach differs from that classically considered in the literature in the
sense that the variables of the convex program are not given by the occupation measures of the
controlled process but defined on the positive cone of the vector space given by the pair of finite
signed stochastic kernels on the action space given the state space.
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When compared to the literature, our results appear complementary and our assumptions are
rather weak. The references dealing with the ETR criterion by using the convex programming
formulation are very scarce in the literature. As for our work, the results in [6, 8] are concerned
with general Borel state and action spaces. However, it is important to observe that the approach
proposed in [6, 8] does not correspond to a linear/convex programming formulation of an MDP
under the ETR criterion. Indeed, the underlying variables of the optimization problem under
consideration are given by measures that may take the value infinity and therefore, this set does
not enjoy the structure of a standard vector space. This technical issue aside, the results of the
current paper differ significantly from those obtained in [6, 8]. The approach developed in [6] deals
with models satisfying condition (W) and strongly relies on the positiveness of the cost functions.
It must be emphasized that the general framework of signed cost functions cannot be addressed
with the technique presented in [6]. In [8], the model under consideration satisfies condition (S)
and it was assumed that the transition kernel is absolutely continuous with respect to a reference
probability measure uniformly in the state and action variables. In the present work, we show that
this assumption is not needed under condition (S). It must be also observed that the approach
developed in [8] for signed cost function cannot be applied under condition (W). In [2, Chapter 8],
the model is transient or absorbing and is restricted to discrete state and action spaces. Here, we
do not impose the MDP to be transient or absorbing. Another advantage of our approach is to
propose a convex programming formulation for constrained MDPs under the ETR criterion with
signed reward functions and satisfying condition (W). In this context, such formulation has not
been so far investigated in the literature. It should be also mentioned that in our work we imposed
the so-called Slater condition which is not required in [2, 6, 8]. However, this condition is rather
weak and it is a standard assumption in convex optimization problems with constraints, see e.g.
[3].

The rest of the paper is organized as follows. In Section 2, we present the control problem
that will be considered throughout this work. The assumptions and the convex programming
formulation of a constrained discrete-time MDP under the ETR criterion is introduced in Section
3. Important properties of the convex program as well as the constrained control problem are
established in Section 4. Our main results are presented in Section 5 showing that the original
control problem is equivalent to the convex program. Section 6 is dedicated to the presentation of
an example illustrating our results. Finally, a technical result used in Section 4 is derived in an
appendix.

2 Description of the control problem

The main goal of this section is to introduce the notation, the parameters defining the model, and
to present the construction of the controlled process.

2.1 Notation and terminology

The following basic notation will be used in the forthcoming.
The set of integers is denoted by Z and N corresponds to the non-negative integers, that is,

N = {0, 1, 2, . . .}. The set of real numbers is given by R. For any subset D of R, D∗ denotes D \ {0}
and D+ = {d ∈ D : d ≥ 0}. We write Np for {1, . . . , p} with p ∈ N∗, R is the set of extended real
numbers, that is, R ∪ {−∞,+∞} and R+ = R+ ∪ {+∞}. Given x and y in the Euclidean space
Rn, let 〈x, y〉 be the usual inner product of x and y. By |x| = 〈x, x〉1/2 we will denote the norm of
x ∈ Rn. Let 0n be the element of Rn with all components equal to zero. If θ1 and θ2 are in Rn, we
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shall write θ1 ≥ θ2 when all the components of θ1 are greater than or equal to the corresponding
components of θ2.

Let X be a metric space and denote by B(X) its associated Borel σ-algebra. We use the
symbol f+ (respectively f−) to denote the positive part (respectively, negative part) of a function
f : X → R. The function I∞ is the function whose values are constant and equal to +∞. If X is a
metric space, M(X) denotes the set of real-valued measurable functions defined on X. Furthermore,
C(X) is the space of real-valued bounded continuous functions defined on X. The term measure
will always refer to a countably additive, R+-valued set function. The set of measures defined on
(X,B(X)) is denoted by M(X) and the set of probability measures on (X,B(X)) by P(X). For
µ ∈M(X) and a positive function h in M(X), µ(h) =

∫
X h(x)µ(dx) and for g ∈ M(X), µ(g) is

defined by µ(g+)− µ(g−) where by convention (+∞)− (+∞) = −∞. Consider two metric spaces
X and Y . If µ is a measure on X × Y then µX denotes the marginal of the measure µ on X. A
kernel K on X given Y is a R+-valued mapping defined on B(X) × Y such that for any y ∈ Y ,
K(·|y) ∈M(X) and for any Λ ∈ B(X), K(Λ|·) is a measurable function defined on Y . A kernel
K on X given Y is said to be finite if K(X|y) ∈ R+ for any y ∈ Y . The set of finite kernels on
X given Y is denoted K(X|Y ). A stochastic (or Markov) kernel K on X given Y is a kernel in
K(X|Y ) satisfying K(X|y) = 1 for any y ∈ Y . The set of stochastic kernels on X given Y will be
denoted by P(X|Y ). Let Q be a stochastic kernel on X given Y , then, for a function v : X → R,
we define Qv : Y → R as

Qv(y) :=

∫
X
v+(x)Q(dx|y)−

∫
X
v−(x)Q(dx|y),

provided that v is quasi-integrable with respect to the probability measure Q(·|y) for any y ∈ Y .

For a measure µ on Y , we denote by µQ the measure

∫
Y
Q(·|y)µ(dy) on X.

2.2 The control model.

Let us consider the stationary model(
X,A, {A(x) : x ∈ X}, Q, r, c, θ∗, ν

)
(1)

consisting of:

(a) A Borel space X (that is, a Borel subset of a complete and separable metric space), which is
the state space.

(b) A Borel space A, representing the control or action set.

(c) A family {A(x) : x ∈ X} of non-empty measurable subsets of A, where A(x) is the set of
feasible controls or actions when the system is in state x ∈ X. We suppose that

K := {(x, a) ∈ X×A : a ∈ A(x)}

is a measurable subset of X×A. There exists a measurable map ϑ : X→ A with ϑ(x) ∈ A(x).
For notational convenience, we introduce recursively the set Ht of histories up to time t ∈ N∗
by defining H1 = X and Ht = Kt−1 ×X for t ≥ 2.

(d) A stochastic kernel Q on X given K, which stands for the transition probability function.

(e) The one-step reward function is given by a measurable function r : K→ R.
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(f) For i ∈ Nq, the measurable mappings ci : K→ R are the one-step constraint functions.

(g) The constraint limits are real numbers given by θ∗ =
{
θ∗i
}
i∈Nq

.

(h) Finally, the initial distribution is ν ∈ P(X).

A control policy (a policy, for short) is a sequence π = {πt}t∈N∗ of stochastic kernels πt on A given
Ht such that πt(A(xt)|ht) = 1 for any ht = (x1, a1, . . . , xt) ∈ Ht. Let Π be the set of all policies.
A policy π = {πt}t∈N∗ ∈ Π is called a stationary randomized policy if there exists a stochastic
kernel ϕ on A given X satisfying ϕ(A(x)|x) = 1 for any x ∈ X and πt(·|ht) = ϕ(·|xt) for any
ht = (x1, a1, . . . , xt) ∈ Ht and t ∈ N∗. In such as case, we will write ϕ instead of π to emphasize
that the corresponding stationary randomized policy π is generated by ϕ. Let Πs be the set of all
stationary randomized policies.

To state the optimal control problem we are concerned with, we introduce the canonical space
(Ω,F) consisting of the set of sample paths Ω = (X×A)∞ and the associated product σ-algebra
F . The projection from Ω to the state space and the action space at time t are denoted by Xt and
At. That is, for

ω = (y1, b1, . . . , yt, bt . . .) ∈ Ω we have Xt(ω) = yt and At(ω) = bt

for t ∈ N∗. Consequently, {Xt}t∈N∗ is the state process and {At}t∈N∗ is the control process. It is a
well known result that for every policy π ∈ Π and any initial probability measure ν on (X,B(X))
there exists a unique probability measure Pπν on (Ω,F) such that Pπν (K∞) = 1 and

Pπν (X1 ∈ B) = ν(B), for B ∈B(X),

Pπν (Xt+1 ∈ C|σ{X1, . . . , Xt, At}) = Q(C|Xt, At) for C ∈B(X),

Pπν (At ∈ D|σ{X1, . . . , Xt−1, At−1, Xt}) = πt(D|X1, . . . , Xt−1, At−1, Xt) for D ∈B(A),

Pπν − a.s., for any t ∈ N∗.
The expectation with respect to Pπν is denoted by Eπν . The so-called occupation measure gener-

ated by a policy π ∈ Π, denoted by µπ, is defined by

µπ(Γ) =

∞∑
t=1

Pπν
(
(Xt, At) ∈ Γ

)
for any Γ ∈B(X×A). Denote by O (respectively, Os) the set of occupation measures generated
by randomized (respectively, stationary) policies.

Statement of the control problem.
For h ∈M(K) and π ∈ Π, define Jν(h, π) by

Jν(h, π) =
∞∑
t=1

Eπν
[
h+(Xt, At)

]
−
∞∑
t=1

Eπν
[
h−(Xt, At)

]
where by convention (+∞) − (+∞) = −∞. In fact, assumptions will be introduced in the next
section to avoid dealing with such cases. Observe that Jν(h, π) can be written equivalently in terms
of the occupation measure generated by the policy π ∈ Π as follows

Jν(h, π) = µπ(h).

In this paper, we will repeatedly use this equality without mentioning it.
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Definition 2.1 A policy π ∈ Π is said to be admissible if Jν(ci, π) ≥ θ∗i for i ∈ Nq. The set of
admissible policies will be denoted by Πθ∗. The optimal control problem we consider consists in
maximizing the expected reward Jν(r, π) over the set of admissible policies π ∈ Πθ∗. The value
associated to this constrained control problem is given by sup

{
Jν(r, π) : π ∈ Πθ∗

}
. A policy π̂ ∈ Π

is optimal if π̂ ∈ Πθ∗ and Jν(r, π̂) = sup
{
Jν(r, π) : π ∈ Πθ∗

}
.

3 Assumptions and the convex programming formulation

The objective of this section is both to list the assumptions we will use in this work and to introduce
the convex program associated with the control problem we presented in the previous section. In
this work, we deal with MDPs satisfying the so-called Conditions (W) or (S) which are standard
hypotheses of the literature, see for example [16].

Condition (W)

(W1) For any x ∈ X, the action set A(x) is compact and the multifunction from X to A defined
by x→ A(x) is upper-semicontinuous.

(W2) For any f ∈ C(X), Qf is continuous on K.

(W3) The reward r and the constraint ci for i ∈ Nq are upper-semicontinuous on K.

Condition (S)

(S1) For any x ∈ X, A(x) is compact.

(S2) For any x ∈ X and Λ ∈B(X), Q(Λ|x, ·) is continuous on A(x).

(S3) For any x ∈ X, the reward r(x, ·) and the constraint ci(x, ·) for i ∈ Nq are upper-semicontinuous
on A(x).

In order to introduce the convex program associated to an MDP under the ETR criterion, we
need to make some hypotheses. First, it is assumed that the transition kernel Q of the MDP under
consideration is absolutely continuous with respect to a Markov kernel P (see Assumption A). This
hypothesis is rather weak and is satisfied in a large number of practical cases as discussed in the
remark below.

Assumption A. There exists P ∈ P(X|X) satisfying Q(·|x, a) � P (·|x) for any (x, a) ∈ K.
Associated to the kernel P , p will denote the probability measure on X defined by

p(dx) =
∑
k∈N

1

2k+1
νP k(dx). (2)

Remark 3.1 1. In Lemma 3.2 below, it is shown that under Conditions (S1) and (S2), As-
sumption A is satisfied.

2. If the sets of feasible actions are countable, that is A(x) = {ak(x)}k∈N∗ where for any k ∈ N∗
ak is a measurable function from X to A then Assumption A is satisfied for P defined by

P (dy|x) =
∑
k∈N∗

1

2k
Q(dy|x, ak(x)),

for any x ∈ X.
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3. If Q(·|x, a) � q(·) for any (x, a) ∈ K then clearly Assumption A is satisfied. This condition
corresponds to the main hypothesis used in [8]. It is of course less general than Assump-
tion A but it is naturally satisfied for a large class of practical systems. Indeed, in many
applications, the evolution of an MDP is specified by a discrete-time equation of the form
xt+1 = F (xt, at) + ξt where F is an Rn-valued measurable mapping defined on Rn × A and
(ξt)t∈N∗ is an independent and identically distributed sequence of random variables with den-
sity α with respect to the Lebesgue measure on B(Rn). By using the change of variable

formula, we obtain that Q(A|x, a) =

∫
A
α(y − F (x, a))dy showing that Q(·|x, a) � q(·) for

any (x, a) ∈ K is satisfied for q defined for example by the standard normal distribution on
B(Rn).
Observe also that when X is finite or countable, Q(·|x, a)� q(·) for any (x, a) ∈ K is satisfied
when q is given for example by a geometric distribution.

Lemma 3.2 Conditions (S1) and (S2) imply Assumption A, that is, Q � P with P ∈ P(X|X)
given by

P (dy|x) =
∑
k∈N∗

1

2k
Q(dy|x, ξk(x)) (3)

where {ξk}k∈N∗ is a sequence of measurable selectors from the multifunction defined from X to A
by x→ A(x) and satisfying A(x) = {ξn(x) : n ∈ N∗} for any x ∈ X.

Proof: The multifunction A from X to A defined by x→ A(x) is by assumption Borel measurable
and so, weakly measurable. From (S1), Corollary 18.15 in [1] gives the existence of a sequence
{ξn}n∈N∗ of measurable selectors from the multifunction A satisfying A(x) = {ξn(x) : n ∈ N∗} for
any x ∈ X. Now by using (S2), we obtain that Q(dy|x, a) � P (dy|x) for any (x, a) ∈ K for the
Markov kernel P defined by (3). 2

Remark 3.3 The previous proof is an extension of an argument used in the proof of Theorem 1
in [13, p. 183].

In the next definition, we introduce the set of feasible variables. It will be shown below that it
is a convex subset of the vector space of finite signed kernels on A given X.

Definition 3.4 Suppose Assumption A holds and let p be the measure introduced in (2).

• For Φ = (ϕ∞, ϕ∗) ∈ K(A|X)2, ηΦ will denote the measure in M(X×A) given by

ηΦ(dx, da) = I∞(x)ϕ∞(da|x)p(dx) + ϕ∗(da|x)p(dx), (4)

recalling that I∞ is constant function equal to infinity.

• Consider Kp as the set of Φ = (ϕ∞, ϕ∗) ∈ K(A|X)2 satisfying

ϕ∞(A|x) + ϕ∗(A|x) > 0,

ϕ∞(A(x)c|x) + ϕ∗(A(x)c|x) = 0,

and
ηΦ
X = ν + ηΦQ.

Any Φ ∈ Kp induces a measure ηΦ that will be called the Kp-measure generated by Φ. Kp is
called the set of feasible variables.
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Remark 3.5 Observe first that αΦ1 + (1− α)Φ2 ∈ Kp and in particular,

ηαΦ1+(1−α)Φ2 = αηΦ1 + (1− α)ηΦ2 , (5)

for any α ∈ [0, 1] and (Φ1,Φ2) ∈ K2
p. Therefore, Kp is a convex subset of the vector space of signed

finite kernel on A given X.

Definition 3.6 Let Φ = (ϕ∞, ϕ∗) ∈ Kp. Introduce the kernel ϕΦ on A given X defined by

ϕΦ(da|x) = IEc
Φ

(x)
ϕ∞(da|x)

ϕ∞(A|x)
+ IEΦ

(x)
ϕ∗(da|x)

ϕ∗(A|x)
. (6)

where

EΦ = {x ∈ X : ϕ∞(A|x) = 0}. (7)

Observe that ϕΦ is a stochastic kernel satisfying ϕΦ(A(x)|x) = 1 for any x ∈ X. The stationary
randomized policy ϕΦ will be called the policy induced by Φ.

We will also need the following technical hypothesis:

Assumption B.

(B.1) sup
{
ηΦ(r+) : Φ ∈ Kp

}
and sup

{
ηΦ(c+

i ) : Φ ∈ Kp

}
< +∞ for any i ∈ Nq.

(B.2) µ(r−) < +∞ and µ(c−i ) < +∞ for any µ ∈ O, i ∈ Nq.

This hypothesis is comparable to Assumption (A2) introduced in [8, p. 847]. Assumption (B.1)
essentially imposes that the values of the unconstrained convex programs associated to a reward
function given by either r or ci for i ∈ Nq are different from +∞ while Assumption (B.2) ensure
that the performance criteria associated to the reward r and the constraints ci for i ∈ Nq are not
equal −∞. In particular, Assumption (B.1) will be used to introduce the linear program.

Definition 3.7 Suppose Assumptions A and (B.1) hold. The convex program, denoted by KPp,
consists in maximizing ηΦ(r) over Φ ∈ Kp subject to ηΦ(ci) ≥ θ∗i for any i ∈ Nq. The value of the
convex program is given by

sup
{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
. (8)

A variable Φ̂ ∈ Kp is said to be an optimal solution to the convex program KPp if

ηΦ̂(r) = sup
{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
and ηΦ̂(ci) ≥ θ∗i for any i ∈ Nq.

Remark 3.8 Let h be a function given by either r or ci for i ∈ Nq. From Assumption (B.1), it
follows that αηΦ1(h)+(1−α)ηΦ2(h) is well defined for any α ∈ [0, 1] and (Φ1,Φ2) ∈ K2

p. Therefore,
we obtain from equation (5) that

ηαΦ1+(1−α)Φ2(h) = αηΦ1(h) + (1− α)ηΦ2(h)

for any α ∈ [0, 1] and (Φ1,Φ2) ∈ K2
p. This implies that the mathematical program defined in (8)

is indeed a convex program. In [3, p. 153], a convex program is written in terms of an infimum.
The KPp program introduced in Definition 3.7 can be equivalently written in terms of an infimum
by changing the sign of the reward function. We prefer to keep this setting to deal with an MDP
under a reward optimization criterion.
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Finally, we introduce an additional standard hypothesis:

The Slater condition

There exists µ∗ ∈ O such that θ∗i < µ∗(ci) for any i ∈ Nq.

4 Preliminary results

The main goal of this section is to establish several properties of the constrained control problem
as well as properties of the convex program.

4.1 Properties of the convex program

In this subsection, we will show in Lemma 4.2 that for any stationary randomized policy π ∈ Πs

there exists Φ ∈ Kp such that the Kp-measure generated by Φ is equal to the occupation measure
generated by the stationary randomized policy π. An important result which is a cornerstone of
the paper is presented at the end of this subsection. It can be roughly stated as follows: for any
feasible variable Φ ∈ Kp of the convex program, the reward Jν(h, ϕΦ) associated to the stationary
randomized policy ϕΦ ∈ Πs is greater than ηΦ(h) for specific functions h that will be discussed in
Theorem 4.3. To get these results, we first need to establish that the occupation measures of the
controlled process have a special structure, that is, the marginal on X of any occupation measure
is absolutely continuous with respect to the probability measure p introduced in Assumption A.

Lemma 4.1 Suppose Assumption A holds. Then for any µ ∈ O,

µX(dx)� p(dx) (9)

where p ∈ P(X) is defined in (2).

Proof: For any µ ∈ O, it can be easily shown from Lemma 9.4.3 in [11] the existence of an
increasing sequence of finite measures {µk}k∈N∗ on X and a sequence of stochastic kernels {ϕk}k∈N∗

on A given X satisfying ϕk(A(x)|x) = 1 and

lim
k→∞

µk(Λ) = µX(Λ) (10)

and

µk+1(Λ) = ν(Λ) +

∫
X

∫
A
Q(Λ|x, a)ϕk(da|x)µk(dx) (11)

for Λ ∈B(X), k ∈ N∗ and µ1 = ν. Let us show by induction that µk � p for any k ∈ N∗. We have

clearly µ1 � p. Assume that µk � p. Observe that

∫
A
Q(·|x, a)ϕk(da|x) � P (·|x) for any x ∈ X

implying that ∫
X

∫
A
Q(·|x, a)ϕk(da|x)µk(dx)�

∫
X
P (·|x)p(dx)

and so, combining (2) and (11) we have µk+1 � p. We obtain the result by using (10). 2

As a consequence, we can show that the set of the Kp-measures contains the occupation mesures
generated by the stationary randomized policies.
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Lemma 4.2 Suppose Assumption A holds. For any π ∈ Πs, there exists Φ ∈ Kp such that

µπ = ηΦ.

Proof: Let π ∈ Πs. Clearly, the increasing sequence {µπt }t∈N∗ of finite measures defined on X×A
by

µπt (Γ) =

t∑
k=1

Pπν
(
(Xk, Ak) ∈ Γ

)
for any Γ ∈ B(X ×A) converges to µπ. From Lemma 4.1, there exists a sequence of increasing

measurable R+-valued functions {Dt}t∈N∗ defined on X such that

t∑
k=1

Pπν (Xk ∈ Λ) =

∫
Λ
Dt(x)p(dx)

for Λ ∈B(X) and so, µπt (dx, da) = Dt(x)π(da|x)p(dx). Therefore,

µπ(dx, da) = D(x)π(da|x)p(dx)

= I∞(x)I{D(x)=∞}π(da|x)p(dx) +D(x)I{D(x)<∞}π(da|x)p(dx)

whereD(x) = limt→∞Dt(x). Consequently, Φ = (ϕ∞, ϕ∗) defined by ϕ∞(da|x) = I{D(x)=∞}π(da|x)
and ϕ∗(da|x) = D(x)I{D(x)<∞}π(da|x) belongs to Kp since µπX = ν + µπQ. 2

The following result is in a way a converse of the previous one. It is a key result in our work.
Roughly speaking, it states that for any feasible variable Φ ∈ Kp of the convex program, the reward
Jν(h, ϕΦ) associated to the stationary randomized policy ϕΦ ∈ Πs is greater than ηΦ(h) for specific
functions h described below.

Theorem 4.3 Suppose that Assumption A holds. For any Φ ∈ Kp, there exists ϕΦ ∈ Πs such that

Jν(h, ϕΦ) ≥ ηΦ(h),

for any h ∈M(K) satisfying sup
{
ηΦ(h+) : Φ ∈ Kp

}
< +∞.

Proof: For h ∈M(K) satisfying sup
{
ηΦ(h+) : Φ ∈ Kp

}
< +∞, let us prove the result by showing

that

µϕΦ(h) ≥ ηΦ(h) (12)

where ϕΦ is the stationary randomized policy induced by Φ (see (6)). There is no loss of generality
to assume that ηΦ(h) > −∞ and so we have ηΦ(|h|) <∞. We are going to proceed by contradiction
to get (12). More precisely, if µϕΦ(h) < ηΦ(h) then we will introduce a sequence {Ψk}k∈N in Kp

satisfying lim
k→∞

ηΨk(h) = +∞ contradicting the hypothesis. The proof is divided into two steps.

We will first introduce {Ψk}k∈N and show that Ψk ∈ Kp for any k ∈ N. In a second step, it will be
proven that lim

k→∞
ηΨk(h) = +∞ showing the result.

First step: construction of a sequence {Ψk}k∈N in Kp.
Let µϕΦ be the occupation measure induced by the stationary randomized policy ϕΦ. As in the
proof of Lemma 4.2, there exists a measurable R+-valued function DϕΦ defined on X satisfying

µϕΦ(dx, da) = DϕΦ(x)ϕΦ(da|x)p(dx). (13)

For k ∈ N, consider Ψk = (ψ∞, ψ∗k) where ψ∞ ∈ K(A|X) is given by

ψ∞(da|x) = IEc
Φ

(x)ϕΦ(da|x) (14)
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and ψ∗k is a signed kernel on A given X defined by

ψ∗k(da|x) = IEΦ
(x)
[
ϕ∗(A|x) + k

[
ϕ∗(A|x)−DϕΦ(x)

]]
ϕΦ(da|x) + (k + 1)IEc

Φ
(x)ϕ∗(da|x). (15)

Observe that in the previous definition, ϕ∗(A|x) − DϕΦ(x) is well defined since ϕ∗ ∈ K(A|X).
To get the result, we will proceed in two steps. First we will show that ϕ∗(A|·) ≥ DϕΦ(·) on EΦ

implying that ψ∗k ∈ K(A|X) and so, Ψk ∈ K(A|X)2 for any k ∈ N. In a second step, we will prove
that Ψk ∈ Kp.

• Let us show that Ψk ∈ K(A|X)2.
From (4), ηΦ(dx, da) = I∞(x)ϕ∞(da|x)p(dx) + ϕ∗(da|x)p(dx) and so, by using (7)

ηΦ(dx, da) = IEΦ
(x)ϕ∗(da|x)p(dx) + IEc

Φ
(x)I∞(x)ϕ∞(da|x)p(dx) + IEc

Φ
(x)ϕ∗(da|x)p(dx),

where by convention 0×∞ = 0. Recalling the Definition of ϕΦ (see equation (6)), we easily obtain
IEΦ

(x)ϕ∗(da|x) = IEΦ
(x)ϕ∗(A|x)ϕΦ(da|x) and IEc

Φ
(x)I∞(x)ϕ∞(da|x) = IEc

Φ
(x)I∞(x)ϕΦ(da|x)

and so, we get

ηΦ(dx, da) =IEΦ
(x)ϕ∗(A|x)ϕΦ(da|x)p(dx) + IEc

Φ
(x)I∞(x)ϕΦ(da|x)p(dx)

+ IEc
Φ

(x)ϕ∗(da|x)p(dx). (16)

Therefore,

ηΦ
X(dx) =

[
IEΦ

(x)ϕ∗(A|x) + IEc
Φ

(x)
[
I∞(x) + ϕ∗(A|x)

]]
p(dx)

=
[
IEΦ

(x)ϕ∗(A|x) + IEc
Φ

(x)I∞(x)
]
p(dx). (17)

Since ηΦ
X = ν + ηΦQ, we have by using (16)

ηΦ
X(Λ) =ν(Λ) +

∫
EΦ

QϕΦ(Λ|x)ϕ∗(A|x)p(dx) +

∫
Ec

Φ

QϕΦ(Λ|x)I∞(x)p(dx)

+

∫
Ec

Φ

Qϕ
∗
(Λ|x)p(dx), (18)

and with (17) it follows

ηΦ
X(Λ) = ν(Λ) + ηΦ

XQ
ϕΦ(Λ) +

∫
Ec

Φ

Qϕ
∗
(Λ|x)p(dx).

However, µϕΦ
X is the minimal solution to the equation β = ν+βQϕΦ and so, µϕΦ

X ≤ ηΦ
X. Combining

equations (13) and (17), we obtain
[
IEΦ

(·)ϕ∗(A|·) + IEc
Φ

(·)I∞(·)
]
≥ DϕΦ(·) p− a.s.. Consequently,

DϕΦ(·) ≤ ϕ∗(A|·) p−a.s. on EΦ and according to the definition of DϕΦ(·) (see equation (13)), there
is no loss of generality to claim

DϕΦ(·) ≤ ϕ∗(A|·) on EΦ. (19)

Therefore, ψ∗k ∈ K(A|X) and so, Ψk ∈ K(A|X)2 for any k ∈ N.

• Let us show that Ψk ∈ Kp.
Recalling the definition Ψk (see equations (14)-(15)), we have ψ∞(A(x)c|x) +ψ∗k(A(x)c|x) = 0 and
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ψ∞(A|x) + ψ∗k(A|x) ≥ IEΦ
(x)ϕ∗(A|x) + IEc

Φ
(x) > 0 for any x ∈ X. The only point which remains

to prove is that ηΨk(dx, da) = I∞(x)ψ∞(da|x)p(dx) + ψ∗k(da|x)p(dx) satisfies

ηΨk
X = ν + ηΨkQ. (20)

Combining the definition of Ψk (see equations (14)-(15)) and the expression of ηΦ (see equation
(16)), we obtain

ηΨk = ηΦ + kγ (21)

where γ ∈M(X×A) is given by

γ(dx, da) = IEΦ
(x)
[
ϕ∗(A|x)−DϕΦ(x)

]
ϕΦ(da|x)p(dx) + IEc

Φ
(x)ϕ∗(da|x)p(dx). (22)

To show that (20) holds, we will consider two cases.
a) Firstly, we will show that equation (20) is satisfied on B(EΦ). For that, let us consider Λ ∈
B(EΦ). From (21), we have ηΨk

X (Λ) = ηΦ
X(Λ) + kγX(Λ). However, ηΦ

X(Λ) = ν(Λ) + ηΦQ(Λ)

showing that ηΨk
X (Λ) = ν(Λ) + ηΦQ(Λ) + kγX(Λ). If we show that γX(Λ) = γQ(Λ) then ηΨk

X (Λ) =
ν(Λ) + ηΨkQ(Λ) implying that (20) holds on B(EΦ). To see that γX(Λ) = γQ(Λ), observe from
(22) that

γX(Λ) =

∫
Λ

[
ϕ∗(A|x)−DϕΦ(x)

]
p(dx).

Assuming that ηΦ
X(Λ) <∞ and combining (13), (17) and the previous equation we have

γX(Λ) =

∫
Λ

[
ϕ∗(A|x)−DϕΦ(x)

]
p(dx) = ηΦ

X(Λ)− µϕΦ
X (Λ). (23)

Now, we obtain by using (18) and the fact that ηΦ
X(Λ) <∞∫

Ec
Φ

QϕΦ(Λ|x)I∞(x)p(dx) = 0 (24)

implying also ∫
Ec

Φ

QϕΦ(Λ|x)DϕΦ(x)p(dx) = 0. (25)

Now, combining (18) and (24)

ηΦ
X(Λ) = ν(Λ) +

∫
EΦ

QϕΦ(Λ|x)ϕ∗(A|x)p(dx) +

∫
Ec

Φ

Qϕ
∗
(Λ|x)p(dx).

Recalling that µϕΦ
X = ν + µϕΦ

X QϕΦ , we have with (13) and (25)

µϕΦ
X (Λ) = ν(Λ) +

∫
EΦ

QϕΦ(Λ|x)DϕΦ(x)p(dx).

The two previous equations gives

ηΦ
X(Λ)− µϕΦ

X (Λ) =

∫
EΦ

QϕΦ(Λ|x)
[
ϕ∗(A|x)−DϕΦ(x)

]
p(dx) +

∫
Ec

Φ

Qϕ
∗
(Λ|x)p(dx). (26)
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From (23) and (26)

γX(Λ) =

∫
EΦ

QϕΦ(Λ|x)
[
ϕ∗(A|x)−DϕΦ(x)

]
p(dx) +

∫
Ec

Φ

Qϕ
∗
(Λ|x)p(dx)

Recalling the definition of γ (see (22)) we get γX(Λ) = γQ(Λ) for Λ ∈ B(EΦ) with ηΦ
X(Λ) < ∞.

However, equation (17) implies that ηΦ
X is σ-finite on EΦ and combining (16) and (22), we have

γX ≤ ηΦ
X. Therefore, it follows that γX(Λ) = γQ(Λ) for any Λ in B(EΦ), and so (20) holds on

B(EΦ).

b) Secondly, we will show that equation (20) is satisfied on B(EcΦ). For that, let Λ ∈B(EcΦ). It is
important to observe from (17) that in this case ηΦ

X(Λ) = 0 or +∞. Therefore, we obtain on one

hand ηΨk
X (Λ) = ηΦ

X(Λ) + kγX(Λ) = ηΦ
X(Λ) by recalling (21) and using the fact that γX ≤ ηΦ

X and
on the other hand ηΦ

X(Λ) = ηΦ
X(Λ) + kγQ(Λ) since by (22)

γQ(Λ) =

∫
EΦ

QϕΦ(Λ|y)
[
ϕ∗(A|y)−DϕΦ(y)

]
p(dy) +

∫
Ec

Φ

Qϕ
∗
(Λ|y)p(dy) ≤ ηΦ

X(Λ)

where the last inequality comes from (18). Therefore, ηΨk
X (Λ) = ηΦ

X(Λ)+kγQ(Λ) = νΛ)+ηΨkQ(Λ)
showing that (20) holds on B(EcΦ).

Finally, equation (20) is satisfied and as a consequence Ψk ∈ Kp for any k ∈ N.

Second step: lim
k→∞

ηΨk(h) = +∞.

Recalling that ηΦ(|h|) <∞, we get from (16)∫
Ec

Φ

|h(x, a)|I∞(x)ϕΦ(da|x)p(dx) = 0

implying also ∫
Ec

Φ

|h(x, a)|DϕΦ(x)ϕΦ(da|x)p(dx) = 0.

Therefore, combining (13), (16), (22) and the two previous equations we obtain easily that

ηΦ(h)− µϕΦ(h) = γ(h).

If ηΦ(h) > µϕΦ(h) then γ(h) > 0 and lim
k→∞

ηΨk(h) = ηΦ(h) + lim
k→∞

kγ(h) = +∞ giving the result. 2

4.2 Properties of the constrained control problem

The main objective of this subsection is to show that in the framework of constrained control
problems, the supremum of the expected total rewards over the set of randomized policies is equal
to the supremum of the expected total rewards over the set of stationary randomized policies. Our
results use Theorem A.1 presented in the Appendix which is a slight modification of Theorem 1
in Schäl [17] who has established a stronger version of this type of result but in the unconstrained
case. To use Schäl’s results, we need to impose Conditions (W) or (S) and in addition, to deal with
the constrained case, we need to impose a Slater-type condition.

The next technical Lemma shows that, roughly speaking, under Assumption (B.1), the uncon-
strained control problems associated to a reward function given by either r or ci for i ∈ Nq are
different from +∞.
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Lemma 4.4 Suppose Assumptions A and (B.1) and either Conditions (W) or (S) hold. Then,

sup
{
µ(r+) : µ ∈ O

}
< +∞ and sup

{
µ(c+

i ) : µ ∈ O
}
< +∞,

for i ∈ Nq.

Proof: The idea is to apply Theorem A.1 to the unconstrained models associated to the reward
functions given by one of the following mappings: r+ and c+

i for i ∈ Nq. Clearly, the Conver-
gence Assumption and the Continuity and Compactness Assumptions in [17, p. 367] are satisfied.
Therefore, we have by using Theorem A.1

sup{µ(h) : µ ∈ O} = sup{µ(h) : µ ∈ Os}

for any function h given by either r+ or c+
i for i ∈ Nq. Now, from Assumption A we can apply

Lemma 4.2 to have

sup{µ(h) : µ ∈ Os} ≤ sup{ηΦ(h) : Φ ∈ Kp}.

Recalling Assumption (B.1) we obtain the result. 2

The next result shows that if the Slater condition is satisfied for an arbitrary policy then there
exists a stationary randomized policy satisfying the same type of condition.

Proposition 4.5 Suppose Assumptions A, B and either Conditions (W) or (S) hold. If the Slater
condition is satisfied, then there exists µ̃ ∈ Os satisfying θ∗i < µ̃(ci) for any i ∈ Nq.

Proof: The result is proved by induction. Applying Theorem A.1 for the unconstrained model
associated to the reward function c1, we have

sup{µ(c1) : µ ∈ O} = sup{µ(c1) : µ ∈ Os}.

Since µ∗(c1) > θ∗1 (by recalling the Slater condition), we have sup{µ(c1) : µ ∈ Os} > θ∗1 implying
the existence of µ1 ∈ Os such that µ1(c1) > θ∗1. For n ∈ Nq−1, let us assume the existence of
µn ∈ Os such that µn(ci) > θ∗i for i ∈ Nn. Therefore, we can combine Lemma 4.4 and Proposition
A.2 to obtain

sup
{
µ(cn+1) : µ ∈ O and µ(ci) > θ∗i for i ∈ Nn

}
= sup

{
µ(cn+1) : µ ∈ Os and µ(ci) > θ∗i for i ∈ Nn

}
.

However,

sup
{
µ(cn+1) : µ ∈ O and µ(ci) > θ∗i for i ∈ Nn

}
≥ µ∗(cn+1) > θ∗n+1

implying the existence of µn+1 ∈ Os such that µn+1(ci) > θ∗i for i ∈ Nn+1. This gives the result. 2

Below is the main result of this subsection that states roughly speaking that in the framework
of constrained control problems, the supremums of the expected total rewards over the set of
randomized policies and over the set of stationary randomized policies coincide.

Theorem 4.6 Suppose Assumptions A, B and either Conditions (W) or (S) hold. If the Slater
condition is satisfied, then

sup{µ(r) : µ ∈ O and µ(ci) ≥ θ∗i for i ∈ Nq}
= sup{µ(r) : µ ∈ Os and µ(ci) ≥ θ∗i for i ∈ Nq}.

Proof: Applying Proposition 4.5, there exists µ̃ ∈ Os satisfying the Slater condition, that is,
µ̃(ci) > θ∗i for i ∈ Nq. Now, combining Lemma 4.4 and Proposition A.2, we obtain the result. 2
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5 Main results

In this section, we present the main results of this paper showing that the original control problem
is equivalent to the convex program introduced in Definition 3.7 for a weakly or strongly continuous
transition kernel.

The case of Condition (W)

Theorem 5.1 Suppose Assumptions A, B and Condition (W) hold. If the Slater condition is
satisfied, then

sup
{
Jν(r, π) : π ∈ Πθ∗

}
= sup

{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
(27)

where p ∈ P(X) is defined in (2). Moreover, if Φ̂ is an optimal solution to the convex program
KPp then the stationary randomized policy ϕΦ̂ induced by Φ̂ is optimal for the constrained control
problem, that is,

Jν(r, ϕΦ̂) = sup
{
Jν(r, π) : π ∈ Πθ∗

}
. (28)

Proof: Theorem 4.6 states that

sup
{
Jν(r, π) : π ∈ Πθ∗

}
= sup

{
Jν(r, π) : π ∈ Πs ∩Πθ∗

}
.

However, from Lemma 4.2, we have

sup
{
Jν(r, π) : π ∈ Πs ∩Πθ∗

}
≤ sup

{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
,

Now, consider Φ ∈ Kp. By using Theorem 4.3, Jν(h, ϕΦ) ≥ ηΦ(h) for h given either r or ci for
i ∈ Nq implying that ϕΦ ∈ Πs ∩Πθ∗ and also the reverse inequality

sup
{
Jν(r, π) : π ∈ Πs ∩Πθ∗

}
≥ sup

{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
showing the first part of the result.

Now if Φ̂ ∈ Kp is an optimal solution to the convex program KPp then ηΦ̂(ci) ≥ θ∗i for any

i ∈ Nq and ηΦ̂(r) = sup
{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
. Therefore, the stationary

randomized policy ϕΦ̂ ∈ Πθ∗ satisfies Jν(r, ϕΦ̂) ≥ ηΦ̂(r) by using Theorem 4.3. Now, by using
the first part of the result (see equation (27)) it follows that Jν(r, ϕΦ̂) ≥ sup

{
Jν(r, π) : π ∈ Πθ∗

}
giving the last part of the result. 2

Remark 5.2 As mentioned in the introduction, the previous result has the advantage of proposing
a convex programming formulation for constrained MDPs under the ETR criterion with signed
reward functions and satisfying condition (W) which has not been so far addressed in the literature.
In [6], the authors do not really analyse a convex program, but study a related optimization problem
where the MPDs under consideration satisfy condition (W) but the proposed approach strongly relies
on the positiveness of the cost functions and cannot be generalized to the framework of signed cost
functions.
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The case of condition (S)

Theorem 5.3 Suppose Assumptions B and Condition (S) hold. If the Slater condition is satisfied,
then

sup
{
Jν(r, π) : π ∈ Πθ∗

}
= sup

{
ηΦ(r) : Φ ∈ Kp and ηΦ(ci) ≥ θ∗i for i ∈ Nq

}
where p is defined in (2) for P given by (3). Moreover, if Φ̂ is an optimal solution to the convex
program then the stationary randomized policy ϕΦ̂ induced by Φ̂ is optimal for the constrained
control problem introduced in Definition 2.1.

Proof: Up to the definition of p whose existence is established in Lemma 3.2, the proof of this
result is identical to that of Theorem 5.1. 2

Remark 5.4 In [8], the authors do not really analyse a convex program but study a related opti-
mization problem where the MPDs under consideration satisfy condition (S) by assuming that the
transition kernel is absolutely continuous with respect to a reference probability measure uniformly
in the state and action variables. In the previous result, we show that this assumption is not needed
under condition (S) if this hypothesis is replaced by a Slater-type condition.

6 Example

In this section, we provide an example with one constraint to illustrate our results and compare
them with reference [8]. The results obtained in [6] cannot be used for this model because the
contraint function takes positive and negative values. We will show that one of the conditions of
[8] is not satisfied while the approach developed in the present paper can be applied. This example
shows that there is a gap between the initial optimization problem and the mathematical program
associated to the measures satisfying the characteristic equation, that is,

sup
{
Jν(r, π) : π ∈ Π and Jν(c1, π) ≥ θ∗1

}
< sup

{
µ(r) : µ ∈M(X), µX = ν + µQ and µ(c1) ≥ θ∗1

}
.

It means that the characteristic equation µX = ν +µQ generates measures that do not correspond
to any occupation measures of the process. This type of measures has been called in [7] phantom
solutions of the characteristic equation. The interesting point is that at the same time, we may
have

sup
{
Jν(r, π) : π ∈ Π and Jν(c1, π) ≥ θ∗1

}
= sup

{
ηΦ(r) : Φ ∈ Kp and ηΦ(c1) ≥ θ∗1

}
.

This means that the set
{
ηΦ : Φ ∈ Kp

}
which is by the way a subset of

{
µ ∈M(X) : µX = ν+µQ}

may generate less of phantom solutions.
Two different values of the constraint limit θ∗1 will be studied. For the first value of the constraint

limit, it will be shown that the approach proposed in the present paper can be applied implying
that the value of the original control problem coincides with the value of the convex program KPp.
When changing the value of the constraint limit, the Slater condition will not be satisfied. However,
it is interesting to observe that in this latter case, the values of the original control problem and
its associated convex program KPp still coincide although the Slater condition is not fulfilled.
It appears that the Slater condition is not a necessary condition to establish the correspondance
between the constrained control problem and its associated convex program KPp.
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We consider the control model (
X,A, Q, r, c1, θ

∗
1, ν
)

where X = Z∪{∆} and the action set is given by A = {a, b}. For x 6= 1, A(x) = {a}; A(1) = {a, b}
and A(∆) = {a}. The stochastic kernel Q is given by Q(x+ 1|x, a) = 1 for x ≤ 0 and Q(y|x, a) =
(1/2)I{x+1}(y) + (1/2)I{x+2}(y), for x ≥ 1 and finally, Q(∆|1, b) = Q(∆|∆, a) = 1. The one-step

reward function is given by r(x, a) = (1/2)|x| for x 6= 1; r(1, a) = r(1, b) = 1/2 and r(∆, a) = 0.
The one-step constraint function is given by c1(x) = (−1/2)|x| for x 6= 1; c1(1, a) = −1/18 and
c1(1, b) = 1. The initial distribution ν satisfies ν({1}) = ν({∆}) = 1/2. The constraint limit is
given by θ∗1. Two cases are studied: θ∗1 = 1/4 and θ∗1 = 1/2.

Let µ ∈ M(X) satisfying the characteristic equation µX = ν + µQ and so, µ(∆, a) = +∞;
µ(x, a) = µ(0, a) for x ≤ 0; µ(1, a) + µ(1, b) = 1/2 + µ(0, a) and finally, µ(2, a) = (1/2)µ(1, a)
and µ(x, a) = (1/2)µ(x − 1, a) + (1/2)µ(x − 2, a) for x ≥ 3 showing that for x ≥ 2, µ(x, a) =
(1/6)[4− (−1/2)x−2]µ(1, a). Therefore,

sup
{
µ(r) : µ ∈M(X), µX = ν + µQ

}
≥ sup

{
µ(0, a) : µ(0, a) ∈ R+

}
= +∞

since µ(r) =
∑
x 6=1

(1/2)|x|µ(x, a) + (1/2)[µ(1, a) + µ(1, b)]. This implies that Assumption (A2) in [8]

is not satisfied and therefore, the approach developed there cannot be applied.

The stochastic kernel P on X given X defined by P (x|y) = Q(x|y, a) for y ∈ {∆} ∪Z \ {1} and
P (2|1) = P (3|1) = P (∆|1) = 1/3 satisfies Assumption A.

The probability p associated to P and given by (2) satisfies p(x) = 0 for x ≤ 0. As a consequence,
ηΦ(x, a) = 0 for any x ≤ 0 and Φ ∈ Kp. Moreover, since ηΦ satisfies the characteristic equation,
it follows that ηΦ(1, a) + ηΦ(1, b) = 1/2 and ηΦ(x, a) = (1/6)[4− (−1/2)x−2]ηΦ(1, a) for x ≥ 2 and
ηΦ(∆, a) = +∞. Thus,

ηΦ(r) = r(1, a)ηΦ(1, a) + r(1, b)ηΦ(1, b) +
∑
x≥2

r(x, a)ηΦ(x, a)

= (1/2)[ηΦ(1, a) + ηΦ(1, b)] +
∑
x≥2

(1/2)x(1/6)[4− (−1/2)x−2]ηΦ(1, a)

= 1/4 + (3/10) ηΦ(1, a)

and similarly,

ηΦ(c1) = (−1/18)ηΦ(1, a) + ηΦ(1, b) +
∑
x≥2

(−1/2)x(1/6)[4− (−1/2)x−2]ηΦ(1, a)

= 1/2− ηΦ(1, a)

where ηΦ(1, a) ∈ [0, 1/2]. Clearly, we have ηΦ(r+) < +∞ and ηΦ(c+
1 ) < +∞ for any Φ ∈ Kp

showing that Assumption (B.1) is satisfied.
Now, let πa (respectively, πb) be the deterministic stationary policy given by πa({a}|x) = 1 for

x ∈ Z∪{∆} (respectively, πb({a}|x) = 1 if x ∈ Z∪{∆} \ {1} and πb({b}|1) = 1). It is easy to
see that the occupation measure µπa is given by µπa(1, a) = 1/2; µπa(1, b) = 0; µπa(∆, a) = +∞;
µπa(x, a) = 0 for any x ≤ 0 and µπa(x, a) = (1/12)[4 − (−1/2)x−2] for x ≥ 2 and the occupation
measure µπb satisfies µπb(x, a) = 0 for any x ∈ Z; µπb(1, b) = 1/2 and µπb(∆, a) = +∞. It follows
easily µπa(r) =

∑
x≥2(1/2)x(1/12)[4− (−1/2)x−2] + 1/4 = 2/5 and µπb(r) = r(1, b)µπb(1, b) = 1/4.
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Observe also that µπa(c1) = −1/18 +
∑

x≥2(−1/2)x(1/6)[4 − (−1/2)x−2] = 0 and µπb(c1) = 1/2.
Clearly, the reward Jν(r, π) takes values in the interval [Jν(r, πb),Jν(r, πa)] when the policy π ranges
over Π and the constraint Jν(c1, π) takes values in [Jν(c1, πa),Jν(c1, πb)]. Therefore, Assumption
(B.2) is satisfied.

Finally, Condition (W) is obviously satisfied for this model.

Remark that for any α ∈ [0, 1], the stationary randomized policy given by π({a}|1) = α,
π({b}|1) = 1 − α and π({a}|x) = 1 for x ∈ Z \ {1} yields Jν(r, π) = (1 − α)Jν(r, πb) + αJν(r, πa)
and Jν(c1, π) = (1− α)Jν(c1, πb) + αJν(c1, πa).

The case where θ∗1 = 1/4. From the previous discussion, we have

sup
{
Jν(r, π) : π ∈ Π and Jν(c1, π) ≥ θ∗1

}
= Jν(r, π∗) = 13/40

where π∗ is the stationary randomized policy given by π∗({a}|1) = π∗({b}|1) = 1/2, π∗({a}|x) = 1
for x ∈ Z \ {1}. Moreover,

sup
{
ηΦ(r) : Φ ∈ Kp and ηΦ(c1) ≥ θ∗1

}
= sup{(3/10) ηΦ(1, a) + 1/4 : ηΦ(1, a) ∈ [0, 1/2] and (1/2− ηΦ(1, a)) ≥ 1/4}
= 13/40.

Therefore, the values of the original control problem and the convex program KPp agree as claimed
by Theorem 5.1 since the Slater condition holds.

Observe that the optimal value of the convex program KPp is achieved for ηΦ̂(1, a) = 1/4 where
Φ̂ ∈ Kp is an optimal solution to the convex program KPp. Since p(1) = 1/4, the stationary policy
ϕΦ̂ induced by Φ̂ is given by ϕΦ̂({a}|1) = ϕΦ̂({b}|1) = 1/2 and ϕΦ̂({a}|∆) = ϕΦ̂({a}|x) = 1 for
x ∈ Z \ {1}. This optimal policy corresponds to π∗ as determined above.

The case where θ∗1 = 1/2. We have for this value of the constraint limit,

sup
{
Jν(r, π) : π ∈ Π and Jν(c1, π) ≥ θ∗1

}
= Jν(r, π∗) = 1/4

where π∗ is the stationary randomized policy given by π∗({a}|1) = 0, π∗({b}|1) = 1, π∗({a}|x) = 1
for x ∈ Z \ {1}.

However, we cannot apply the results of the present paper because in this case the Slater
condition is not satisfied. Indeed, for any π ∈ Π, Jν(c1, π) ≤ 1/2. But, the values of the original
control problem and the convex program KPp still agree since

sup
{
ηΦ(r) : Φ ∈ Kp and ηΦ(c1) ≥ θ∗1

}
= sup{(3/10) ηΦ(1, a) + 1/4 : ηΦ(1, a) ∈ [0, 1/2] and (1/2− ηΦ(1, a)) ≥ 1/2}
= 1/4.

A Appendix

In this appendix, let m be an integer in N∗. Consider the functions h ∈ M(K) and gi ∈ M(K)
for i ∈ Nm. We will first present a slightly different version of a result derived by M. Schäl in
[17, Theorem 1]. The only difference is that, we consider here the expected total reward criterion
while in [17], Schäl deals with the conditional version of that performance criterion. We will use
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it repeatedly in this paper. In this section we will also establish a technical result that is used
in section 4.2 to show that in the framework of control problems with constraints, the supremum
of the expected total rewards over the set of randomized policies is equal to the supremum of the
expected total rewards over the set of stationary randomized policies.

To use Theorem 1 in [17], we need to introduce the following two sets of conditions:

(S1) For any x ∈ X, A(x) is compact.

(S2) For any x ∈ X and Λ ∈B(X), Q(Λ|x, ·) is continuous on A(x).

(S3) For any x ∈ X, h(x, ·) is upper-semicontinuous on A(x).

(S4) For any x ∈ X, gi(x, ·) for i ∈ Nm are upper-semicontinuous on A(x).

or

(W1) For any x ∈ X, the action set A(x) is compact and the multifunction from X to A defined
by x→ A(x) is upper-semicontinuous.

(W2) For any f ∈ C(X), Qf is continuous on K.

(W3) The function h is upper-semicontinuous on K.

(W4) The functions gi for i ∈ Nm are upper-semicontinuous on K.

Theorem A.1 Suppose µ(h+) < +∞ or µ(h−) < +∞ for any µ ∈ O and either conditions
(S1)-(S3) or (W1)-(W3) are satisfied. Then

sup
{
µ(h) : µ ∈ O

}
= sup

{
µ(h) : µ ∈ Os

}
. (29)

Proof: The proof of this result is essentially the same as Theorem 1 in [17]. The only difference
is that, we consider here the expected total reward criterion while in [17], Schäl deals with the
conditional version of that performance criterion. By adapting the arguments developed in [17],
we obtain easily the result. 2

Proposition A.2 Consider θ̃ ∈ Rm. Assume sup
{
µ(h+ + g+

i ) : µ ∈ O∪{ηΦ : Φ ∈ Kp}
}
< +∞;

µ(h−) < +∞ and µ(g−i ) < +∞ for µ ∈ O∪{ηΦ : Φ ∈ Kp}. Suppose also that Assumption A and
either conditions (S1)-(S4) or (W1)-(W4) are satisfied. If there exists µ̃ ∈ Os satisfying θ̃i < µ̃(gi)
for any i ∈ Nm then

sup
{
µ(h) : µ ∈ O and µ(gi) ≥ θ̃i for i ∈ Nm

}
= sup

{
µ(h) : µ ∈ Os and µ(gi) ≥ θ̃i for i ∈ Nm

}
. (30)

Proof: Let R be either O or {ηΦ : Φ ∈ Kp}. Clearly βµ1 + (1 − β)µ2 ∈ R for any µ1, µ2 in R

and β ∈ [0, 1]. Let us define C = ∪
µ∈R
{θ ∈ Rp : µ(gi) ≥ θi for i ∈ Nm}. C is clearly a non-empty

convex subset of Rp. Define the function V on C by

V(θ) := sup{µ(h) : µ ∈R and µ(gi) ≥ θi for i ∈ Nm}.

By hypothesis, V takes values in R for any θ ∈ C. Observe that V is a proper concave on C. Indeed,
consider θ1 = (θ1,1, . . . , θ1,m) and θ2 = (θ2,1, . . . , θ2,m) in C and α ∈ [0, 1]. For any ε > 0, there
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exist µj,ε ∈ R for j = 1, 2 satisfying µj,ε(gi) ≥ θj,i and µj,ε(h) ≥ V(θj) − ε/2 for i ∈ Nm. Clearly,
we have

(
βµ1,ε + (1− β)µ2,ε

)
(gi) ≥ βθ1,i + (1− β)θ2,i for any i ∈ Nm. Therefore,

V(βθ1 + (1− β)θ2) ≥
(
βµ1,ε + (1− β)µ2,ε

)
(h) ≥ βV(θ1) + (1− β)V(θ2)− ε,

showing that V is a proper concave function on C. Now, θ̃ is in the interior of C, and so V is
continuous at θ̃ by Proposition 2.17 in [3] and therefore, we can apply Proposition 2.36 in [3] to
claim the existence of λ̃ ∈ Rm such that, for all θ ∈ C,

V(θ) ≤ V(θ̃) + 〈λ̃, θ − θ̃〉.

Remark that λ̃ ≤ 0m since V(θ) ≥ V(θ̃) for all θ ≤ θ̃. Now, fix an arbitrary µ ∈ R. Then
(µ(g1), · · · , µ(gp)) ∈ C and so,

V(θ̃) ≥ µ
(
h− 〈λ̃, g〉

)
+ 〈λ̃, θ̃〉.

Therefore,
V(θ̃) ≥ sup{µ

(
h− 〈λ̃, g〉

)
: µ ∈R}+ 〈λ̃, θ̃〉. (31)

For any ε > 0, there exists µε ∈ R with µε(gi) ≥ θ̃i for any i ∈ Nm such that µε(h) ≥ V(θ̃) − ε
implying

sup{µ
(
h− 〈λ̃, g〉

)
: µ ∈R}+ 〈λ̃, θ̃〉 ≥ µε(h)− µε

(
〈λ̃, g〉

)
+ 〈λ̃, θ̃〉 ≥ µε(h) ≥ V(θ̃)− ε

since λ̃ ≤ 0m. Together with (31), this shows

sup{µ(h) : µ ∈R and µ(gi) ≥ θ̃i for i ∈ Nm} = sup{µ
(
h− 〈λ̃, g〉

)
: µ ∈R}+ 〈λ̃, θ̃〉. (32)

Now, we have for λ ≤ 0m,

sup
{
µ
(
h− 〈λ, g〉

)
: µ ∈R

}
+ 〈λ, θ̃〉
≥ sup

{
µ
(
h− 〈λ, g〉

)
: µ ∈R and µ(gi) ≥ θ̃i for i ∈ Nm

}
+ 〈λ, θ̃〉

≥ sup
{
µ(h) : µ ∈R and µ(gi) ≥ θ̃i for i ∈ Nm

}
,

implying

inf
{

sup
{
µ
(
h− 〈λ, g〉

)
: µ ∈R

}
+ 〈λ, θ̃〉 : λ ≤ 0m

}
≥ sup

{
µ(h) : µ ∈R and µ(gi) ≥ θ̃i for i ∈ Nm

}
,

and so with (32) we obtain

inf
{

sup
{
µ
(
h− 〈λ, g〉

)
: µ ∈R

}
+ 〈λ, θ̃〉 : λ ≤ 0m

}
= sup

{
µ(h) : µ ∈R and µ(gi) ≥ θ̃i for i ∈ Nm

}
.

Therefore, with R = O

inf
{

sup
{
µ
(
h− 〈λ, g〉

)
: µ ∈ O

}
+ 〈λ, θ̃〉 : λ ≤ 0m

}
= sup

{
µ(h) : µ ∈ O and µ(gi) ≥ θ̃i for i ∈ Nm

}
, (33)
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and with R = {ηΦ : Φ ∈ Kp}

inf
{

sup
{
ηΦ
(
h− 〈λ, g〉

)
: Φ ∈ Kp

}
+ 〈λ, θ̃〉 : λ ≤ 0m

}
= sup

{
ηΦ(h) : Φ ∈ Kp and ηΦ(gi) ≥ θ̃i for i ∈ Nm

}
. (34)

Now, for λ ≤ 0m we have sup
{
ηΦ
((
h− 〈λ, g〉

)+)
: Φ ∈ Kp

}
< +∞ by hypothesis and we obtain

from Lemma 4.2 and Theorem 4.3 that

sup
{
ηΦ
(
h− 〈λ, g〉

)
: Φ ∈ Kp

}
= sup{µ

(
h− 〈λ, g〉

)
: µ ∈ Os} (35)

and also,

sup
{
ηΦ(h) : Φ ∈ Kp and ηΦ(gi) ≥ θ̃i for i ∈ Nm

}
= sup

{
µ(h) : µ ∈ Os and µ(gi) ≥ θ̃i for i ∈ Nm

}
. (36)

Therefore, combining equations (34)-(36) we obtain that

inf
{

sup
{
µ
(
h− 〈λ, g〉

)
: µ ∈ Os

}
+ 〈λ, θ̃〉 : λ ≤ 0m

}
= sup

{
µ(h) : µ ∈ Os and µ(gi) ≥ θ̃i for i ∈ Nm

}
, (37)

Moreover, Theorem A.1 can be applied to show that

sup{µ
(
h− 〈λ, g〉

)
: µ ∈ O} = sup{µ

(
h− 〈λ, g〉

)
: µ ∈ Os}. (38)

Combining equations (33), (37) and (38), we obtain the result. 2
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