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Vanishing of the anchored isoperimetric profile in bond percolation at p c

. We extend adequately the definition for p = pc, in finite boxes. We prove a partial result which implies that, if the limit defining the anchored isoperimetric profile at pc exists, it has to vanish.

Introduction

The most well-known open question in percolation theory is to prove that the percolation probability vanishes at p c in dimension three. In fact, the interesting quantities associated to the model are very difficult to study at the critical point or in its vicinity. We study here a very modest intermediate question. We consider the anchored isoperimetric profile of the infinite open cluster, defined for p > p c , whose existence has been recently proved in [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF]. We extend adequately the definition for p = p c , in finite boxes. We prove a partial result which implies that, if the limit defining the anchored isoperimetric profile at p c exists, it has to vanish. The Cheeger constant. For a graph G with vertex set V and edge set E, we define the edge boundary ∂ G A of a subset A of V as

∂ G A = e = x, y ∈ E : x ∈ A, y / ∈ A .
We denote by |B| the cardinal of the finite set B. The Cheeger constant of the graph G is defined as

ϕ G = min |∂ G A| |A| : A ⊂ V, 0 < |A| ≤ |V | 2 .
This constant was introduced by Cheeger in his thesis [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the laplacian[END_REF] in order to obtain a lower bound for the smallest eigenvalue of the Laplacian.

The anchored isoperimetric profile ϕ n (p). Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Z d , every edge is open with a probability p > p c (d), where p c (d) denotes the critical parameter for this percolation. We know that there exists almost surely a unique infinite open cluster C ∞ [START_REF] Grimmett | Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften[END_REF]. We say that H is a valid subgraph of C ∞ if H is connected and 0 ∈ H ⊂ C ∞ . We define the anchored isoperimetric profile ϕ n (p) of C ∞ as follows. We condition on the event {0 ∈ C ∞ } and we set

ϕ n (p) = min |∂ C∞ H| |H| : H valid subgraph of C ∞ , 0 < |H| ≤ n d .
The following theorem from [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF] asserts the existence of the limit of nϕ n (p) when p > p c (d). We wish to study how this limit behaves when p is getting closer to p c . To do so, we need to extend the definition of the anchored isoperimetric profile so that it is well defined at p c (d). We say that H is a valid subgraph of C(0), the open cluster of 0, if H is connected and 0 ∈ H ⊂ C(0). We define ϕ n (p) for every p ∈ [0, 1] as

ϕ n (p) = min |∂ C(0) H| |H| : H valid subgraph of C(0), 0 < |H| ≤ n d .
In 

(p) = θ(p)δ ϕ(p) + (1 -θ(p))δ 0 ,
where θ(p) is the probability that 0 belongs to an infinite open cluster. The techniques of [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF] to prove the existence of this limit rely on coarse-graining estimates which can be employed only in the supercritical regime. Therefore we are not able so far to extend the above convergence at the critical point p c . Naturally, we expect that n ϕ n (p c ) converges towards 0 as n goes to infinity, unfortunately we are only able to prove a weaker statement.

Theorem 1.2. With probability one, we have

lim inf n→∞ n ϕ n (p c ) = 0 .
We shall prove this theorem by contradiction. We first define an exploration process of the cluster of 0 that remains inside the box [-n, n] d . If the statement of the theorem does not hold, then the cluster of 0 satisfies a d-dimensional anchored isoperimetric inequality. It follows that the number of sites that are revealed in the exploration of the cluster of 0 will grow fast enough of order n d-1 . Then, we can prove that the intersection of the cluster that we have explored with the boundary of the box [-n, n] d is of order n d-1 . Using the fact that there is no percolation in a half-space, we obtain a contradiction. Before starting the precise proof, we recall some results from [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF] on the meaning of the limiting value ϕ(p).

The Wulff theorem. We denote by L d the d-dimensional Lebesgue measure and by H d-1 denotes the (d -1)-Hausdorff measure in dimension d. Given a norm τ on R d and a subset E of R d having a regular enough boundary, we define I τ (E), the surface tension of E for the norm τ , as

I τ (E) = ∂E τ (n E (x))H d-1 (dx) .
We consider the anisotropic isoperimetric problem associated with the norm τ :

minimize I τ (E) L d (E) subject to L d (E) ≤ 1 . (1) 
The famous Wulff construction provides a minimizer for this anisotropic isoperimetric problem. We define the set W τ as

W τ = v∈S d-1 x ∈ R d : x • v ≤ τ (v) ,
where • denotes the standard scalar product and S d-1 is the unit sphere of R d . Up to translation and Lebesgue negligible sets, the set

1 L d ( W τ ) 1/d W τ
is the unique solution to the problem (1).

Representation of ϕ(p).

In [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF], we build an appropriate norm β p for our problem that is directly related to the open edge boundary. We define the Wulff crystal W p as the dilate of W βp such that L d (W p ) = 1/θ(p), where θ(p) = P(0 ∈ C ∞ ). We denote by I p the surface tension associated with the norm β p . In [START_REF] Dembin | Existence of the anchored isoperimetric profile in supercritical bond percolation in dimension two and higher[END_REF], we prove that

∀p > p c (d) ϕ(p) = I p (W p ) .

Proofs

We prove next the following lemma, which is based on two important results due to Zhang [START_REF] Zhang | Critical behavior for maximal flows on the cubic lattice[END_REF] and Rossignol and Théret [START_REF] Rossignol | Existence and continuity of the flow constant in first passage percolation[END_REF]. To alleviate the notation, the critical point p c (d) is denoted simply by p c . Let B be a subset of R d having a regular boundary and such that L d (B) = 1/δ. As the map p → θ(p) is non-decreasing and L d (W p ) = 1/θ(p), we have

∀p > p c L d (W p ) ≤ L d (B) .
Moreover as W p is the dilate of the minimizer associated to the isoperimetric problem (1), we have

∀p > p c I p (W p ) ≤ I p (B) .
In [START_REF] Zhang | Critical behavior for maximal flows on the cubic lattice[END_REF], Zhang proved that β pc = 0. In [START_REF] Rossignol | Existence and continuity of the flow constant in first passage percolation[END_REF], Rossignol and Théret proved the continuity of the flow constant. Combining these two results, we get that lim p→pc p>pc β p = β pc = 0 and so lim p→pc p>pc

I p (B) = 0 .
Finally, we obtain lim p→pc p>pc

I p (W p ) = 0 .
This yields the result.

Proof of theorem 1.2. We assume by contradiction that

P lim inf n→∞ n ϕ n (p c ) = 0 < 1 .
Therefore there exist positive constants c and δ such that

P lim inf n→∞ n ϕ n (p c ) > c = lim n→∞ P inf k≥n k ϕ k (p c ) > c = δ . (2) 
Therefore, there exists a positive integer n 0 such that

P inf k≥n0 k ϕ k (p c ) > c ≥ δ 2 . (3) 
In what follows, we condition on the event

inf k≥n0 k ϕ k (p c ) > c .
Note that on this event, 0 is connected to infinity by a p c -open path. For H a subgraph of Z d , we define

∂ o H = e ∈ ∂H, e is open . Note that if H ⊂ C ∞ , then ∂ C∞ H = ∂ o H. Moreover, if H is equal to C(0), the open cluster of 0, then ∂ C(0) H = ∂ o H = ∅.
We define next an exploration process of the cluster of 0. We set C 0 = {0}, A 0 = ∅. Let us assume that C 0 , . . . , C l and A 0 , . . . , A l are already constructed. We define

A l+1 = x ∈ Z d : ∃y ∈ C l x, y ∈ ∂ o C l and C l+1 = C l ∪ A l+1 .
We have

∂ o C l ⊂ { x, y ∈ E d : x ∈ A l+1 } so that |∂ o C l | ≤ 2d|A l+1 |.
Since A l+1 and C l are disjoint, we have

|C l+1 | = |C l | + |A l+1 | ≥ |C l | + |∂ o C l | 2d . ( 4 
)
Let us set α = 1/n d 0 so that |C 0 | = αn d 0 . Let k be the smallest integer greater than 2 d+1 d/c. We recall that c and n 0 were defined in ( 2) and ( 3). Let us prove by induction on n that

∀n ≥ n 0 |C (n-n0)k | ≥ αn d . (5) 
This is true for n = n 0 . Let us assume that this inequality is true for some integer

n ≥ n 0 . If |C (n+1-n0)k | ≥ n d , then we are done. Suppose that |C (n+1-n0)k | < n d .
In this case, for any integer l ≤ k, we have also |C (n-n0)k+l | < n d , and since C (n-n0)k+l is a valid subgraph of C(0) and ϕ n (p c ) > c/n, we conclude that

|∂ o C (n-n0)k+l | |C (n-n0)k+l | ≥ c n and so |∂ o C (n-n0)k+l | ≥ αcn d-1
. Thanks to inequality (4) applied k times, we have

|C (n+1-n0)k | ≥ α n d + ck 2d n d-1 .
As k ≥ 2 d+1 d/c, we get

|C (n+1-n0)k | ≥ α(n d + 2 d n d-1 ) ≥ α(n + 1) d .
This concludes the induction. Let η > 0 be a constant that we will choose later. In [START_REF] Barsky | Percolation in half-spaces: equality of critical densities and continuity of the percolation probability[END_REF], Barsky, Grimmett and Newman proved that there is no percolation in a half-space at criticality. An important consequence of the result of Grimmett and Marstrand [START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF] is that the critical value for bond percolation in a half-space equals to the critical parameter p c (d) of bond percolation in the whole space, i.e., we have P(0 is connected to infinity by a p c -open path in N × Z d-1 ) = 0 , so that for n large enough,

P(∃γ a p c -open path starting from 0 in N × Z d-1 such that |γ| ≥ n) ≤ η .
In what follows, we will consider an integer n such that the above inequality holds. By construction the set C n is inside the box [-n, n] d . Starting from this cluster, we are going to resume our exploration but with the constraint that we do not explore anything outside the box [-n, n] d . We set C 0 = C n and A 0 = ∅. Let us assume C 0 , . . . , C l and A 0 , . . . , A l are already constructed. We define

A l+1 = x ∈ [-n, n] d : ∃y ∈ C l x, y ∈ ∂ o C l and C l+1 = C l ∪ A l+1 .
We stop the process when A l+1 = ∅. As the number of vertices in the box [-n, n] d is finite, this process of exploration will eventually stop for some integer l. We have that |C l | ≤ n d and n φk (p c ) > c so that

|∂ o C l | ≥ c n |C l | ≥ c n |C n | .
Moreover, for n ≥ kn 0 , we have, thanks to inequality (5),

|C n | ≥ C n k k ≥ C ( n k -n0)k ≥ α n k d .
We suppose that n is large enough so that n ≥ kn 0 and n k ≥ n/2k. Combining the two previous display inequalities, we conclude that

|∂ o C l | ≥ cα 2 d k d n d-1 .
Therefore, for n large enough, there exists one face of [-n, n] d such that there are at least cαn 

Moreover, we have

E(X n ) ≥ cα 2d2 d k d n d-1 P X n > cα 2d2 d k d n d-1 . (8) 
Finally, combining inequalities ( 7) and (8), we get

P X n > cα 2d2 d k d n d-1 ≤ 2dη3 d-1 2 d k d cα .
Therefore, we can choose η small enough such that This contradicts inequality [START_REF] Rossignol | Existence and continuity of the flow constant in first passage percolation[END_REF] and yields the result.

P X n > cα 2d2 d k d n d-1 ≤ δ 10d

Lemma 2 . 1 .

 21 We have lim p→pc p>pc θ(p)δ Ip(Wp) + (1 -θ(p))δ 0 = δ 0 . Proof. If lim p→pc θ(p) = 0, then the result is clear. Otherwise, let us assume that lim p→pc p>pc θ(p) = δ > 0 .

≥ δ 2 . ( 6 )

 26 d-1 /(2 d k d 2d) vertices that are connected to 0 by a p c -open path that remains inside the box [-n, n] d and so P   there exists one face of [-n, n] d with at least cαn d-1 /(2 d k d 2d) vertices that are connected to 0 by a p c -open path that remains inside the box [-n, n] d   Let us denote by X n the number of vertices in the face {-n} × [-n, n] d-1 that are connected to 0 by a p c -open path inside the box [-n, n] d . We have E(X n ) ≤ ({-n} × [-n, n] d-1 ) ∩ Z d P   ∃γ a p c -open path starting from 0 in N × Z d-1 such that |γ| ≥ n   ≤ (2n + 1) d-1 η .

  and so using the symmetry of the lattice P   there exists one face of [-n, n] d such there are at least cαn d-1 /(2 d k d 2d) vertices that are connected to 0 by a p c -open path that remains inside the box [-n, n] d   ≤ 2d P X n > cα 2d2 d k d n d-1 ≤ δ 5.