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iterative solver with p-robust behavior∗

Ani Miraçi†‡ Jan Papež†‡ Martin Vohraĺık†‡

July 22, 2019

Abstract

In this work, we consider conforming finite element discretizations of arbitrary polynomial degree
p ≥ 1 of the Poisson problem. We propose a multilevel a posteriori estimator of the algebraic error.
We prove that this estimator is reliable and efficient (represents a two-sided bound of the error), with
a constant independent of the degree p. We next design a multilevel iterative algebraic solver from
our estimator and we show that this solver contracts the algebraic error on each iteration by a factor
bounded independently of p. Actually, we show that these two results are equivalent. The p-robustness
results rely on the work of Schöberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1–24] for one given mesh.
We combine this with the design of an algebraic residual lifting constructed over a hierarchy of nested
unstructured simplicial meshes. This includes a global coarse-level lowest-order solve together with local
contributions from the subsequent mesh levels. These contributions, highest-order on the finest mesh,
are given as solutions of mutually independent Dirichlet problems posed over patches of elements around
vertices. This residual lifting is the core of our a posteriori estimator. It also determines the descent
direction for the next iteration of our multilevel solver, which we consider with optimal step size. Its
construction can be seen as one geometric V-cycle multigrid step with zero pre- and one post-smoothing
by (damped) additive Schwarz. Numerical tests are presented to illustrate the theoretical findings.

Key words: finite element method, stable decomposition, multilevel method, Schwarz method, a posteriori
estimate, p-robustness

1 Introduction

The finite element method (FEM) is a widespread approach for discretizing problems given in the form of
partial differential equations, and has been used in engineering for more than fifty years. For a thorough
overview on the topic, we refer to e.g. Ciarlet [17], Ern and Guermond [19], or Brenner and Scott [14]. Many
iterative methods have been suggested to treat the linear systems arising from finite element discretizations,
see e.g. Bramble et al. [11] and [12], Hackbusch [24], Bank et al. [6], Brandt et al. [13], Oswald [35], or
Zhang [48], and the references therein. A systematic description of iterative solvers is given by Xu in [46].
For convergence results on unstructured and graded meshes, we refer to e.g. Wu and Chen [45], Hiptmair
et al. [25], Chen et al. [16], and Xu et al. [47]. The convergence of these methods is typically robust with
respect to the size of the mesh (h-robustness). In fact, this is one of the key advantages of multigrid methods.
For the conjugate gradient method on the other hand, h-robustness is not intrinsic; this problem can be
bypassed with the development of appropriate preconditioners.

If we are to consider methods of arbitrary polynomial degree, an additional question arises: how does
the polynomial degree p affect the performance of the method? In this regard, results for p-version FEM
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include Foresti et al. [21] for two-dimensional domains, Mandel [32] for three-dimensional domains, and
Babuška et al. [5] for two-dimensional domains. For the latter, the condition number of the preconditioned
system grows at most by 1+log2(p), and a generalization of this work is given for hp-FEM by Ainsworth [1],
where the p-dependence is still present. An early version of a polynomial-degree robust (p-robust) solver
was introduced by Quarteroni and Sacchi Landriani [39] for a specific domain configuration (decomposable
into rectangles without internal cross points). Notable development on p-robustness was later made by
Pavarino [38] for quadrilateral/hexahedral meshes, where the author introduced a p-robust additive Schwarz
method. The generalization of this result for triangular/tetrahedral meshes was achieved by Schöberl
et al. [40], once more by introducing an additive Schwarz preconditioner. More recent works were carried
based on these approaches. In Antonietti et al. [3] (see also the references therein), the p-robust approach for
rectangular/hexahedral meshes was used for high-order discontinuous Galerkin (DG) methods; moreover the
spectral bounds of the preconditioner are also robust with respect to the method’s penalization coefficient.
We also mention the introduction of multilevel preconditioners yielded by block Gauss–Seidel smoothers in
Kanschat [28] for rectangular/hexahedral meshes and DG discretizatons. Further multilevel approaches for
rectangular/hexahedral meshes using overlapping or non-overlapping Schwarz smoothers can be found in
e.g. Janssen and Kanschat [26] and Lucero Lorca and Kanschat [31]. For a study on more general meshes,
see e.g. Antonietti and Pennesi [2], where a multigrid approach behaves p-robustly under the condition that
the number of smoothing steps (depending on p) is chosen big enough. Another notable contribution is the
design of algebraic multigrid methods (AMG) via aggregation techniques, see e.g. Notay and Napov [34],
Bastian et al. [7], and the references therein. The numerical results of the latter give a satisfactory indication
of p-robustness.

An associated topic is the development of estimates on the algebraic error. In this regard, a posteriori
tools have primarily been used to estimate the algebraic error for existing solvers. One particular goal is
the development of reliable stopping criteria, allowing to avoid unnecessary iterations. This is achieved
with a combination of a posteriori error estimators for the discretization error. Some contributions on
this matter (see also references therein) include Becker et al. [8] where adaptive error control is achieved
for a multigrid solver, Bornemann and Deuflhard [9] where a one-way multigrid method is presented by
integrating an adaptive stopping criteria based on a posteriori tools. Further developments were made in
Meidner et al. [33], where goal-oriented error estimates are used in the framework of the dual weighted
residual (DWR) method. In Jiránek et al. [27] and later in Papež et al. [37], upper and lower bounds for
both the algebraic and total errors are computed, which allow to derive guaranteed upper and lower bounds
on the discretization error, and consecutively construct safe stopping criteria for iterative algebraic solvers.
Arioli et al. [4] propose practical stopping criteria which guarantee that the considered inexact adaptive
FEM algorithm converges, for inexact solvers of the Krylov subspace type. To the best of the authors’
knowledge, though, dedicated proofs of efficiency of a posteriori estimators of the algebraic error have not
been presented so far.

In this work, we present an a posteriori algebraic error estimator and a multilevel iterative solver asso-
ciated to it. The cornerstone of their definitions lies in the multilevel construction of a residual algebraic
lifting, motivated partly by the approach of Papež et al. [36]. The lifting can be seen as an approximation
of the algebraic error by piecewise polynomials of degree p, obtained by a V-cycle multigrid method with
no pre-smoothing step and a single post-smoothing step. The coarse correction is given by a lowest-order
(piecewise affine) function. Our smoothing is chosen in the family of damped additive Schwarz (block Ja-
cobi) methods applied to overlapping subdomains composed of patches of elements (two options for defining
the patches will be given in due time). Note that additive Schwarz-type smoothing allows for a parallelizable
implementation at each level of the mesh hierarchy. Once this lifting is built, the a posteriori estimator is
easily derived as a natural guaranteed lower bound on the algebraic error, following [36]. As our first main
result, we show that up to a p-robust constant, the estimator is also an upper bound on the error.

Our solver is then defined as a linear iterative method. Because we have at hand the residual lifting,
which approximates the algebraic error, we use it as a descent direction (the asymmetric approach in defining
the lifting, because no pre-smoothing is used, will not be a problem for the analysis). The step size is then
chosen by a line search in the direction of the lifting. Our choice presents a resemblance with the conjugate
gradient method, in that we choose the step size that ensures the best error contraction in the energy norm
at the next iteration. As our second main result, we prove that this solver contracts the error at each
iteration by a p-robust constant. Actually, we also show that the p-robust efficiency of the estimator is
equivalent to the p-robust convergence of the solver. All these results are defined for a general hierarchy
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of nested, unstructured, possibly highly refined matching simplicial meshes, and no assumption beyond
u ∈ H1

0 (Ω) is imposed on the weak solution.
The work is structured as follows. In Section 2, we introduce the setting in which we will be working

as well as the notations employed throughout the paper. Then, we introduce our multilevel residual lifting
construction in Section 3 following Papež et al. [36]. In Section 4, we present the a posteriori estimator on
the algebraic error and the corresponding multilevel solver based on the residual lifting. Our main results are
presented in the form of two theorems in Section 5, together with a corollary establishing their equivalence.
We provide numerical experiments in Section 6, focusing mainly on showcasing p-robustness, in agreement
with our theoretical results, and on a comparison with several existing approaches as well as a weighted
restricted additive Schwarz variant of our solver. The proofs of our main results are given in Section 7. In
particular, for the stable decomposition estimate, the p-robust result introduced by Schöberl et al. [40] is
crucial. Finally, Section 8 brings forth our conclusions and outlook for future work.

2 Setting

We will consider in this work the Poisson problem defined over Ω⊂Rd, 1 ≤ d ≤ 3, an open bounded polytope
with a Lipschitz-continuous boundary. Let there be given a hierarchy of nested matching simplicial meshes
of Ω, {Tj}0≤j≤J . This means that the intersection of two distinct elements of each mesh Tj is either an
empty set or a common vertex, edge, or face, and that Tj is a refinement of Tj−1, 1 ≤ j ≤ J . Two further
assumptions are given below.

2.1 Model problem

Let f ∈ L2(Ω) be the source term. We consider the following problem: find u : Ω→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω.
(2.1)

In the weak formulation, we search for u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω), (2.2)

where (·, ·) is the L2(Ω) or [L2(Ω)]d scalar product. The existence and uniqueness of the solution of (2.2)
follows from the Riesz representation theorem.

2.2 Finite element discretization

Fixing an integer p ≥ 1, we introduce the finite element space of continuous piecewise p-degree polynomials

V p
J := Pp(TJ) ∩H1

0 (Ω), (2.3)

where Pp(TJ) := {vJ ∈ L2(Ω), vJ ∈ Pp(K) ∀K ∈ TJ}. We set NJ := dim(V p
J ). The discrete problem

consists in finding uJ ∈ V p
J such that

(∇uJ ,∇vJ) = (f, vJ) ∀vJ ∈ V p
J . (2.4)

2.3 Algebraic system, approximate solution, and algebraic residual

If one introduces ψl
J , 1 ≤ l ≤ NJ , a basis of V p

J , then problem (2.4) is equivalent to solving a system of linear
algebraic equations. Denoting by (AJ)lm := (∇ψm

J ,∇ψl
J) the symmetric, positive definite (stiffness) matrix,

(FJ)l := (f, ψl
J) the right-hand side (load) vector, one obtains uJ =

∑NJ

m=1(UJ)mψ
m
J , where UJ ∈ RNJ is

the solution of
AJUJ = FJ .

For any approximation Ui
J ∈ RNJ of UJ given by an arbitrary algebraic solver at iteration step i ≥ 0, the

associated continuous piecewise polynomial of degree p is uiJ =
∑NJ

m=1 (Ui
J)m ψm

J ∈ V p
J . The associated

algebraic residual vector is given by
Ri

J := FJ −AJUi
J .
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Note, however, that Ri
J depends on the choice of the basis functions ψl

J , 1 ≤ l ≤ NJ . To avoid this
dependence, we work instead with a residual functional on V p

J given by

vJ 7→ (f, vJ)− (∇uiJ ,∇vJ) ∈ R, vJ ∈ V p
J . (2.5)

We emphasize that the forthcoming results are independent of the choice of the basis.

2.4 A hierarchy of meshes and spaces

We introduced in the beginning of this section our mesh hierarchy {Tj}0≤j≤J . For any element K ∈ Tj , we
denote hK := diam(K). Hereafter, we assume that the hierarchy of meshes is such that the size of each
parent element K ∈ Tj is comparable to the size of each of its children, and shape regularity:

Assumption 2.1 (Strength of refinement). For any j ∈ {1, . . . , J} and for all K ∈ Tj−1 and K∗ ∈ Tj such
that K∗ ⊂ K, we have

CrefhK ≤ hK∗ ≤ hK , (2.6)

with Cref ≤ 1 a fixed positive real number.

Assumption 2.2 (Shape regularity). There exists κT > 0 such that

max
K∈Tj

hK

ρK
≤ κT for all 0 ≤ j ≤ J, (2.7)

where ρK denotes the diameter of the largest ball inscribed in K.

Remark 2.3 (Mesh hierarchy). Note that no quasi-uniformity assumption is introduced for the meshes:
each Tj can possibly be highly graded. Moreover, we do not make any specific assumption on the hierarchy
of meshes. They merely need to be nested, in particular some mesh elements may not be refined at all.

In the following, we will need to introduce a hierarchy of finite element spaces associated to the mesh
hierarchy. For this purpose, let p′ ∈ {1, . . . , p} be a polynomial degree between 1 and p that we employ for
the intermediate levels. In particular, let:

for 1 ≤ j ≤ J − 1 : V p′

j := Pp′(Tj) ∩H1
0 (Ω) (p′-th order spaces), (2.8a)

for j = 0 : V0 := P1(T0) ∩H1
0 (Ω) (lowest-order space), (2.8b)

where Pp′(Tj) := {vj ∈L2(Ω), vj ∈ Pp′(K) ∀K ∈ Tj}. Note that V0 ⊂V p′

1 ⊂ . . .⊂V
p′

J−1⊂V
p
J . Let Vj be the

set of vertices of the mesh Tj , which we decompose into the sets of boundary vertices and interior vertices
denoted by Vext

j and V int
j , respectively. We denote by ψa

j the standard hat function associated to the vertex
a ∈ Vj , 0 ≤ j ≤ J . This is the piecewise affine function with respect to the mesh Tj , that takes value 1 in
the vertex a and 0 in all other j-th level vertices of Vj .

2.5 Two types of patches

For the following, we need to define two types of patches of elements. In order to facilitate the work with
both, we introduce a switching parameter s ∈ {0, 1}. Given a vertex a∈ Vj−s, j ∈ {1, . . . , J}, we denote
the patch related to a by T a

j,s, the corresponding open patch subdomain by ωa
j,s, and the associated local

space V a
j,s. Let VK be the set of vertices of element K. Then

T a
j,s :={K ∈ Tj−s,a ∈ VK}, (2.9)

V a
j,s :=Pp′(Tj) ∩H1

0 (ωa
j,s), j ∈ {1, . . . , J−1} and V a

J,s := Pp(TJ) ∩H1
0 (ωa

J,s). (2.10)

Consider a “finer” (s = 0) vertex b ∈ Vj , and “coarser” (s = 1) one a ∈ Vj−1 ⊂ Vj . For simplicity,
we refer to T b

j,0 as a “small” patch, whereas we refer to T a
j,1 as a “big” patch. An illustration is given in

Figure 1.
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Figure 1: Illustration of degrees of freedom (p′ = p = 2) for the space V b
j,0 associated to the “small” patch

T b
j,0 (left) and for V a

j,1 associated to the “big” patch T a
j,1 (right). The mesh Tj−1 and its refinement Tj are

defined in bold and dotted lines, respectively.

3 Multilevel lifting of the algebraic residual

In the spirit of Papež et al. [36], we design a multilevel lifting of the algebraic residual given by (2.5). This
lifting will lead to the construction of an a posteriori error estimator, it will also serve as a descent direction
for the solver we introduce in the next section.

3.1 Coarse solve

The first step of our construction is to solve a global lowest-order problem on the coarsest mesh. Let uiJ ∈ V
p
J

be given. Define ρi0 ∈ V0 by

(∇ρi0,∇v0) = (f, v0)− (∇uiJ ,∇v0) ∀v0 ∈ V0. (3.1)

3.2 Motivation

Let use first motivate our multilevel construction. Consider, for a given uiJ ∈ V
p
J , the following (infeasible

in practice but illustrative) hierarchical construction ρ̃iJ,alg ∈ V
p
J

ρ̃iJ,alg := ρi0 +

J∑
j=1

ρ̃ij , (3.2)

where ρi0 is given by (3.1), and for all j = {1, . . . , J − 1}, ρ̃ij ∈ V
p′

j as well as ρ̃iJ ∈ V
p
J are the solutions of

(∇ρ̃ij ,∇vj) = (f, vj)− (∇uiJ ,∇vj)−
j−1∑
k=0

(∇ρ̃ik,∇vj) ∀vj ∈ V p′

j , (3.3a)

(∇ρ̃iJ ,∇vJ) = (f, vJ)− (∇uiJ ,∇vJ)−
J−1∑
k=0

(∇ρ̃ik,∇vJ) ∀vJ ∈ V p
J . (3.3b)

Here, ρ̃i0 := ρi0 by convention. This construction (see also [36]) returns the algebraic error, i.e. we actually
have ρ̃iJ,alg = uJ − uiJ . This, in turn, means that ρ̃iJ,alg satifies (∇ρ̃iJ,alg,∇vJ) = (f, vJ) − (∇uiJ ,∇vJ) for

all vJ ∈ V p
J . Moreover, there holds (∇ρ̃ij ,∇ρ̃ik) = 0, 0 ≤ k, j ≤ J ; j 6= k. These observations in particular

lead to the orthogonal decomposition

‖∇(uJ − uiJ)‖2 = ‖∇ρ̃iJ,alg‖2 =

J∑
j=0

‖∇ρ̃ij‖2. (3.4)

3.3 Multilevel algebraic residual lifting

Let us now introduce our construction that mimics (3.2)–(3.3) in a local way and produces ρiJ,alg ∈ V p
J

that is hopefully close to ρ̃iJ,alg. The construction relies on the use of coarse solution of (3.1) and on local
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contributions arising from all the finer mesh levels. These local contributions are defined on patches of
elements. Since we consider two definitions of patches with switching parameter s∈{0, 1} (see Section 2.5),
two constructions of ρiJ,algare implied.

Definition 3.1 (Construction of the algebraic residual lifting). Let uiJ ∈ V
p
J be arbitrary. We introduce

ρiJ,alg ∈ V
p
J by

ρiJ,alg := ρi0 +

J∑
j=1

ρij , (3.5)

where ρi0 ∈ V0 solves (3.1) and ρij ∈ V
p′

j , for j ∈ {1, . . . , J − 1}, and ρiJ ∈ V
p
J are given by

ρij :=
1

J(d+ 1)

∑
a∈Vj−s

ρij,a, 1 ≤ j ≤ J, (3.6)

with the local contributions ρij,a ∈ V a
j,s given by patch problems, for all vj,a∈V a

j,s

(∇ρij,a,∇vj,a)ωa
j,s

= (f, vj,a)ωa
j,s
− (∇uiJ ,∇vj,a)ωa

j,s
−

j−1∑
k=0

(∇ρik,∇vj,a)ωa
j,s
. (3.7)

Remark 3.2 (Construction of ρiJ,alg). The construction (3.5)–(3.7) of ρiJ,alg can be seen as an approx-

imation of ρ̃iJ,alg from (3.2)–(3.3) by one iteration of a V-cycle multigrid, with no pre-smoothing and a
single post-smoothing step, corresponding to a “damped” additive Schwarz iteration, with the damping fac-
tor 1/(J(d+ 1)). The subdomains of this Schwarz iteration correspond to the patch domains where the
local problems in (3.7) are defined. Two patch options of Figure 1 are considered. In particular, for p = 1
and “small” patches (Figure 1, left), this corresponds to one-step Jacobi (diagonal) smoother, whereas
when p′ = p > 1, the smoother is block Jacobi. The construction of Definition 3.1 differs from that of
Papež et al. [36, Definition 6.5] by replacing the weightings via hat functions therein by the damping factor
1/(J(d+ 1)); we will test numerically the weighted variant in Section 6.

Remark 3.3 (Value of the damping parameter). The value 1/(J(d+ 1)) of the damping in (3.6) is based on
the proofs in Section 7 below, where it seems curcial. This is what also seems to be needed in our approach
numerically. On the other hand, other options for the weights are theoretically possible, including a second
damping factor of the form 1/w2 for the third term on the right-hand side of (3.7), where w2 → +∞ is
allowed.

4 An a posteriori estimator on the the algebraic error and a mul-
tilevel solver

We present below how the residual lifting ρiJ,alg of Definition 3.1 can be used to define an a posteriori
estimator as well as a multilevel solver.

4.1 A posteriori estimate on the algebraic error

We begin by introducing ηialg, an a posteriori estimator defined using the residual lifting ρiJ,alg.

Definition 4.1 (Lower bound algebraic error estimator). Let uiJ ∈ V
p
J be arbitrary, and let ρiJ,alg be the

algebraic residual lifting given by Definition 3.1. If ρiJ,alg = 0, we define the lower bound algebraic error

estimator ηialg :=0. Otherwise, set

ηialg :=
(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)

‖∇ρiJ,alg‖
. (4.1)

Following Papež et al. [36, Theorem 5.3], the estimator ηialg is immediately a guaranteed lower bound on
the algebraic error.
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Lemma 4.2 (Guaranteed lower bound on the algebraic error). There holds:

‖∇(uJ − uiJ)‖ ≥ ηialg. (4.2)

Proof. Note that if ρiJ,alg = 0, then ‖∇(uJ − uiJ)‖ ≥ 0 = ηialg. Otherwise

‖∇(uJ − uiJ)‖ = max
vJ∈V p

J ,
‖∇vJ‖6=0

(∇(uJ − uiJ),∇vJ)

‖∇vJ‖
≥

(∇(uJ − uiJ),∇ρiJ,alg)

‖∇ρiJ,alg‖

(2.4)
(4.1)
= ηialg.

4.2 Multilevel solver

We will now reuse the construction of ρiJ,alg, given in Definition 3.1 to obtain an approximation of uJ on

a next step, in view of constructing a multilevel solver. Note that for any uiJ ∈ V p
J , the lifting ρiJ,alg is

built to approximate the algebraic error ρ̃iJ,alg given in (3.2), where recall, uJ = uiJ + ρ̃iJ,alg. Thus, it seems
reasonable to consider a linear iterative solver of the form

ui+1
J = uiJ + λρiJ,alg (4.3)

where λ∈R is a real parameter. The optimal choice of λ is given in the following lemma.

Lemma 4.3 (Optimal step size). Consider a solver of the general form (4.3) and suppose ρiJ,alg 6= 0. Then

the choice λ := [(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)]/‖∇ρiJ,alg‖2 leads to minimal algebraic error with respect to the
energy norm.

Proof. We write the algebraic error of the next iteration as a function of λ

‖∇(uJ − ui+1
J )‖2 = ‖∇(uJ − uiJ)‖2 − 2λ(∇(uJ − uiJ),∇ρiJ,alg) + λ2‖∇ρiJ,alg‖2,

and realize that this function has a minimum at

λmin =
(∇(uJ − uiJ),∇ρiJ,alg)

‖∇ρiJ,alg‖2
(2.4)
=

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)

‖∇ρiJ,alg‖2
.

We are now ready to define our multilevel solver.

Definition 4.4 (Multilevel solver).

1. Initialize u0
J ∈ V0 as the solution of (∇u0

J ,∇v0) = (f, v0) ∀v0 ∈ V0.

2. Let i ≥ 0 be the iteration number, and let ρiJ,alg be constructed from uiJ following Definition 3.1.

If ρiJ,alg = 0, we define ui+1
J := uiJ . Otherwise, let

ui+1
J := uiJ +

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)

‖∇ρiJ,alg‖2
ρiJ,alg. (4.4)

Remark 4.5 (Multilevel solver). Note that the solver of Definition 4.4 is not initialized randomly but via a
coarse solve. The descent direction is the residual lifting ρiJ,alg, constructed via no pre-smoothing, one post-
smoothing V-cycle step. This minimalist and asymmetrical procedure will not be an issue for the forthcoming
analysis.
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5 Main results

In this section, we present the main results concerning our a posteriori estimator ηialg of Definition 4.1 and
our multilevel solver of Definition 4.4. We shall also see how these two main results are related. For the
estimator it holds

Theorem 5.1 (p-robust reliable and efficient bound on the algebraic error). Let uJ ∈ V p
J be the (unknown)

solution of (2.4) and let uiJ ∈ V
p
J be arbitrary, i ≥ 0. Let ηialg be given by Definition 4.1. Then, in addition

to ‖∇(uJ − uiJ)‖ ≥ ηialg of (4.2), there holds

ηialg ≥ β‖∇(uJ − uiJ)‖, (5.1)

where 0 < β < 1 only depends on the space dimension d, the mesh shape regularity parameter κT , and the
number of mesh levels J .

The theorem allows to write ηialg as a two-sided bound of the algebraic error (up to the generic constant
β for the upper bound), meaning that the estimator is robustly efficient with respect to the polynomial
degree p. For the solver, in turn, we have:

Theorem 5.2 (p-robust error contraction of the multilevel solver). Let uJ ∈ V p
J be the (unknown) solution

of (2.4) and let uiJ ∈ V
p
J be arbitrary, i ≥ 0. Take ui+1

J to be constructed from uiJ using one step of the
multilevel solver of Definition 4.4, by (4.4). Then there holds

‖∇(uJ − ui+1
J )‖ ≤ α‖∇(uJ − uiJ)‖, (5.2)

where 0 < α < 1 only depends on the space dimension d, the mesh shape regularity parameter κT , and the
number of mesh levels J .

In the above theorem, α represents an estimation of the algebraic error contraction factor at each step i.
As α only depends on d, κT , and J , this means that the solver of Definition 4.4 contracts the algebraic
error at each iteration step in a robust way both with respect to the number of mesh elements in TJ (to the
mesh size h) and with respect to the polynomial degree p. Theorems 5.1 and 5.2 are connected as follows

Corollary 5.3 (Equivalence of the p-robust estimator efficiency and p-robust solver contraction). Let
the assumptions of Theorems 5.1 and 5.2 be satisfied. Then (5.1) holds if and only if (5.2) holds, and
β =
√

1− α2.

Proof. Let uJ ∈ V p
J be the solution of (2.4), let uiJ ∈ V

p
J be arbitrary, and let ui+1

J ∈ V p
J be constructed

from uiJ by our multilevel solver of Definition 4.4.
Case ρiJ,alg = 0. By Definitions 4.4 and 4.1, we have ui+1

J = uiJ and ηialg = 0. In particular, this

means that ‖∇(uJ −ui+1
J )‖ = ‖∇(uJ −uiJ)‖. These observations allow us to write, starting from (5.2) with

0 < α < 1,

‖∇(uJ − ui+1
J )‖2 ≤ α2‖∇(uJ − uiJ)‖2 ⇔ ‖∇(uJ − uiJ)‖2 ≤ α2‖∇(uJ − uiJ)‖2

⇔ ‖∇(uJ − uiJ)‖2(1− α2) ≤ 0⇔ ‖∇(uJ − uiJ)‖2(1− α2) ≤ (ηialg)2

Case ρiJ,alg 6= 0. First, note that by the construction of the lifting given in Definition 3.1 and by (2.4),

we have [uJ = uiJ ⇒ ρiJ,alg = 0]. Thus [ρiJ,alg 6= 0 ⇒ uJ 6= uiJ ]. This ensures that neither ‖∇ρiJ,alg‖ nor

‖∇(uJ − uiJ)‖ is zero, and we can therefore use them in the denominators below. We write the relation
between the algebraic errors associated to ui+1

J and uiJ

‖∇(uJ − ui+1
J )‖2

(4.4)
(2.4)
=

∥∥∥∥∥∇(uJ − uiJ)−
(∇(uJ − uiJ),∇ρiJ,alg)

‖∇ρiJ,alg‖2
∇ρiJ,alg

∥∥∥∥∥
2

= ‖∇(uJ − uiJ)‖2 − 2
(∇(uJ − uiJ),∇ρiJ,alg)2

‖∇ρiJ,alg‖2
+

(∇(uJ − uiJ),∇ρiJ,alg)2

‖∇ρiJ,alg‖4
‖∇ρiJ,alg‖2

(4.1)
= ‖∇(uJ − uiJ)‖2

(
1−

(ηialg)
2

‖∇(uJ − uiJ)‖2

)
.
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This means that

‖∇(uJ − ui+1
J )‖ ≤ α‖∇(uJ − uiJ)‖ ⇔

(
1−

(ηialg)
2

‖∇(uJ − uiJ)‖2

) 1
2

≤ α

⇔ ηialg ≥
√

1− α2‖∇(uJ − uiJ)‖.

In view of Corollary 5.3, we will prove in Section 7 only Theorem 5.1.

6 Numerical experiments

In this section we report some numerical illustrations of the theoretical results of Section 5. In particular, we
focus on the p-robustness. In the following tests, we consider the model problem (2.1) with three different
choices of the domain Ω ⊂ R2 and of the exact solution u:

Sine: u(x, y) := sin(2πx) sin(2πy), Ω := (−1, 1)2, (6.1)

Peak: u(x, y) := x(x− 1)y(y − 1)e−100((x−0.5)2−(y−0.117)2), Ω := (0, 1)2, (6.2)

L-shape: u(r, θ) := r2/3 sin(2θ/3), Ω := (−1, 1)2 \([0, 1]× [−1, 0]). (6.3)

For the L-shape problem (6.3), we impose an inhomogeneous Dirichlet boundary condition corresponding
to the exact solution, which is expressed here in polar coordinates. For each of the test cases, we start with
an initial Delaunay triangulation of Ω. Then, we consider J uniform refinements where all triangles are
decomposed into four congruent subtriangles. Implementation-wise, we opt for Lagrange basis functions
with non-uniformly distributed nodes because of their better behavior with respect to high-order methods,
see Warburton [44]. Recall that this choice has no influence on the theoretical results of Section 5 as well as
presented numerical results (in exact arithmetics). Though it is not the focus of this work, we also remark
that the solver can be implemented in a matrix-free way and can also be parallelized.

6.1 A weighted restrictive additive Schwarz construction of the residual lift-
ing ρiJ,alg

A crucial component in the definition of our a posteriori estimator and multilevel solver is the construction
of the residual lifting ρiJ,alg of Definition 3.1, where we have used damped additive Schwarz to cope with
overlapping. In practice, hat functions weighting via a restrictive additive Schwarz often performs better,
cf. Cai and Sarkis [15], Efstathiou and Gander [18], or Loisel et al. [30]. Thus, in addition to the damped
additive Schwarz construction (3.6) of ρiJ,alg, i.e.,

dAS ρij :=
1

J(d+ 1)

∑
a∈Vj−s

ρij,a, 1 ≤ j ≤ J, (6.4)

we also consider the weighted restricted additive Schwarz

wRAS ρij :=
∑

a∈Vj−s

Ipj (ψa
j−sρ

i
j,a), 1 ≤ j ≤ J, (6.5)

where Ipj is the Pp Lagrange interpolation operator on the mesh level j. Here the local contributions

ρij,a ∈ V a
j,s remain unchanged, defined by (3.7), and we once more build the residual lifting as ρiJ,alg :=

∑J
j=0 ρ

i
j

by (3.5).
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6.2 Testing for p-robustness

As stated in Corollary 5.3, the contraction factor of the solver on each step i ‖∇(uJ − ui+1
J )‖/‖∇(uJ − uiJ)‖

reveals the efficiency of the a posteriori estimator ηialg of Definition 4.1. Keeping this in mind, we only focus
on the contraction factor.

We will follow a common choice for the stopping criterion

‖FJ −AJU
istop
J ‖

‖FJ‖
≤ 10−5 ‖FJ −AJU0

J‖
‖FJ‖

. (6.6)

We also introduce the average error contraction factor

ᾱ :=
1

istop

istop−1∑
i=0

‖∇(uJ − ui+1
J )‖

‖∇(uJ − uiJ)‖
. (6.7)

We expect a p-robust solver to converge in a similar number of iterations and have similar error contraction
factors at all iterations for different polynomial degrees p.

We summarize the results obtained for each of the problems (6.1)–(6.3) in Figures 2–4 and in Tables 1–3.
The tests cover different number of mesh levels J = 3, 4, 5, polynomial degrees p = 1, 3, 6, 9, both construc-
tions dAS (6.4) and wRAS (6.5) of the lifting, and the use of the “small” as well as of the “big” patches
of Figure 1. We focus on the choice p′ = p in (2.8a); the choice p′ = 1 is tested in Section 6.3 below.
For each of the cases, we also give the condition number of the matrix AJ approximated using the Matlab
function condest. Finally, in the last two columns of the tables, we present a comparison with two standard
smoothers for multigrid, namely the Jacobi and the Gauss–Seidel ones. Here, we employ no pre-smoothing
step, one post-smoothing step, and a coarse solve with polynomials of order 1 as in (3.1) to compare with
our approach.

The results confirm the expected independence of the polynomial degree p for our multilevel solver
which uses the construction dAS (6.4) of the lifting. We observe an inferior quality of the contraction
factors for the case of p = 1 and the use of “small” patches. This behavior, though, improves considerably
for the “big” patches, whose price is still very reasonable for p = 1. This is in line with some precedents in
literature, where numerically p-robust solvers also perform worse for order 1 approximations; we mention,
for example, Griebel et al. [23, Table 1] and Kronbichler and Wall [29, Table 1]. Recall that we consider no
pre-smoothing and only one post-smoothing step; an important drop of the number of iterations appears
if more smoothing steps are employed (not presented since we want to promote the extremely cheap and
parameter-free (0,1) case). Another observation is that the number of iterations depends on the number of
mesh levels J , in accordance with the theoretical result of Section 7, though in a rather mild way. Moreover,
the results for the modified solver, defined using the wRAS (6.5) construction of the lifting, indicate an
improvement in the error contraction factors and, moreover, complete independence of J . In contrast to
these results, we see that the multigrid with standard smoothers degrades violently with respect to p. Note
also that for p = 1, the only difference between wRAS of (6.5) with small patches and standard Jacobi
lies in the optimally chosen step size of Lemma 4.3. This allows for a spectacular gain in the number of
iterations, and as we see in Tables 1– 3, and often makes the method convergent when the standard Jacobi
fails.
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Figure 2: Sine problem (6.1): results of the multilevel solver (4.4) for p′ = p in (2.8a), “small” (left) and “big”
(right) patches, and stopping criterion (6.6); top: error contraction factors ‖∇(uJ − ui+1

J )‖/‖∇(uJ − uiJ)‖;
bottom: relative algebraic error ‖∇(uJ − uiJ)‖/‖∇uJ‖.
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Figure 3: Peak problem (6.2): results of the multilevel solver (4.4) for p′ = p in (2.8a),
“small” (left) and “big” (right) patches, and stopping criterion (6.6); top: error contraction factors
‖∇(uJ − ui+1

J )‖/‖∇(uJ − uiJ)‖; bottom: relative algebraic error ‖∇(uJ − uiJ)‖/‖∇uJ‖.
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“small” patches “big” patches MG(0,1)

dAS (6.4) wRAS (6.5) dAS (6.4) wRAS (6.5) Jacobi GS

J p DoF cond(AJ) istop ᾱ istop ᾱ istop ᾱ istop ᾱ istop istop

3 1 4625 3.35 × 103 48 0.79 21 0.57 34 0.70 9 0.27 - 10

3 42 289 6.28 × 104 23 0.63 15 0.44 24 0.59 6 0.13 - 81

6 169 825 7.05 × 105 23 0.63 13 0.40 22 0.55 6 0.13 - 470

9 382 609 6.72 × 106 23 0.63 13 0.40 19 0.50 6 0.12 - +600

4 1 18 721 1.34 × 104 52 0.80 23 0.60 40 0.74 9 0.28 - 11

3 169 825 2.51 × 105 27 0.68 15 0.43 26 0.60 6 0.13 - 81

6 680 641 2.82 × 106 26 0.66 13 0.39 24 0.57 6 0.13 - 468

9 1 532 449 2.69 × 107 26 0.67 13 0.39 21 0.53 5 0.13 - +600

5 1 75 329 5.35 × 104 56 0.81 22 0.59 43 0.75 9 0.27 - 11

3 680 641 1.00 × 106 32 0.73 15 0.43 28 0.61 6 0.13 - 81

6 2 725 249 1.13 × 107 29 0.71 13 0.39 26 0.58 6 0.12 - 470

9 6 133 825 1.07 × 108 29 0.71 13 0.39 24 0.56 5 0.13 - +600

Table 1: Sine problem (6.1): comparison of the solver of Definition 4.4 with the constructions dAS (6.4)
and wRAS (6.5) for p′ = p in (2.8a), “small” and “big” patches. istop: the number of iterations needed to
reach the stopping criterion (6.6); ᾱ: average error contraction factor given by (6.7). Last two columns:
comparison with standard multigrid method with piecewise affine (lowest-order) coarse grid correction (3.1),
initialized by the coarse grid solution (3.1), no pre-smoothing, one post-smoothing step.

“small” patches “big” patches MG(0,1)

dAS (6.4) wRAS (6.5) dAS (6.4) wRAS (6.5) Jacobi GS

J p DoF cond(AJ) istop ᾱ istop ᾱ istop ᾱ istop ᾱ istop istop

3 1 4625 3.01 × 103 87 0.88 19 0.52 36 0.72 9 0.25 68 8

3 42 289 5.80 × 104 39 0.75 15 0.43 28 0.63 6 0.12 - 70

6 169 825 6.52 × 105 39 0.75 14 0.41 26 0.60 6 0.11 - 462

9 382 609 6.22 × 106 39 0.75 14 0.40 20 0.55 5 0.12 - +600

4 1 18 721 1.20 × 104 109 0.90 20 0.54 48 0.77 9 0.25 - 10

3 169 825 2.32 × 105 43 0.77 15 0.42 34 0.68 5 0.12 - 79

6 680 641 2.61 × 106 43 0.78 14 0.40 31 0.64 5 0.12 - 460

9 1 532 449 2.49 × 107 43 0.78 14 0.40 25 0.61 5 0.12 - +600

5 1 75 329 4.81 × 104 122 0.91 20 0.53 57 0.80 9 0.24 - 11

3 680 641 9.28 × 105 47 0.79 15 0.42 38 0.70 5 0.12 - 80

6 2 725 249 1.04 × 107 47 0.79 14 0.39 36 0.68 5 0.12 - 461

9 6 133 825 9.95 × 107 45 0.79 13 0.39 29 0.65 5 0.12 - +600

Table 2: Peak problem (6.2): comparison of the solver of Definition 4.4 with the constructions dAS (6.4)
and wRAS (6.5) for p′ = p in (2.8a), “small” and “big” patches. istop: the number of iterations needed to
reach the stopping criterion (6.6); ᾱ: average error contraction factor given by (6.7). Last two columns:
comparison with standard multigrid method with piecewise affine (lowest-order) coarse grid correction (3.1),
initialized by the coarse grid solution (3.1), no pre-smoothing, one post-smoothing step.
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Figure 4: L-shape problem (6.3): results of the multilevel solver (4.4) for p′ = p in (2.8a),
“small” (left) and “big” (right) patches, and stopping criterion (6.6); top: error contraction factors
‖∇(uJ − ui+1

J )‖/‖∇(uJ − uiJ)‖; bottom: relative algebraic error ‖∇(uJ − uiJ)‖/‖∇uJ‖.

“small” patches “big” patches MG(0,1)

dAS (6.4) wRAS (6.5) dAS (6.4) wRAS (6.5) Jacobi GS

J p DoF cond(AJ ) istop ᾱ istop ᾱ istop ᾱ istop ᾱ istop istop

3 1 5057 2.26× 103 76 0.87 17 0.50 32 0.72 8 0.22 44 9

3 46 273 4.40× 104 26 0.68 12 0.41 27 0.63 5 0.09 - 49

6 185 857 4.95× 105 23 0.69 10 0.36 22 0.60 5 0.08 - 228

9 418 753 4.72× 106 21 0.68 10 0.35 18 0.55 5 0.07 - 586

4 1 20 481 9.04× 103 95 0.89 18 0.52 40 0.77 8 0.22 - 9

3 185 857 1.76× 105 29 0.71 12 0.41 35 0.68 5 0.09 - 42

6 744 961 1.98× 106 27 0.73 10 0.36 29 0.64 5 0.08 - 186

9 1 677 313 1.89× 107 25 0.72 9 0.33 24 0.61 5 0.07 - 454

5 1 82 433 3.62× 104 112 0.91 17 0.51 48 0.80 8 0.22 - 8

3 744 961 7.05× 105 32 0.75 12 0.40 43 0.70 5 0.09 - 35

6 2 982 913 7.92× 106 31 0.77 9 0.34 36 0.68 5 0.08 - 147

9 6 713 857 7.55× 107 28 0.76 8 0.31 31 0.71 4 0.07 - 333

Table 3: L-shape problem (6.3): comparison of the solver of Definition 4.4 with the constructions dAS (6.4)
and wRAS (6.5) for p′ = p in (2.8a), “small” and “big” patches. istop: the number of iterations needed to
reach the stopping criterion (6.6); ᾱ: average error contraction factor given by (6.7). Last two columns:
comparison with standard multigrid method with piecewise affine (lowest-order) coarse grid correction (3.1),
initialized by the coarse grid solution (3.1), no pre-smoothing, one post-smoothing step.

6.3 Comparison with other multilevel solvers

Some recent comparisons of state-of-the-art solvers for Poisson problems with multigrid methods in the
high-order setting include Gholami et al. [22], Sundar et al. [42], and Kronbichler and Wall [29]. In Sundar
et al. [42], it was in particular reported that none of the methods considered behaves fully independently of
the polynomial degree. In this subsection, we compare our developments with 4 well-established options. We
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focus on the number of iterations, but we also indicate CPU times of our vectorized Matlab implementation1,
trusting the reader to understand the trickiness inherent to such implementation- and machine-dependent
measurement. The timings below involve the solution time only; i.e. they do not include the assembly time
of the matrices. The methods we consider for the comparison are:

wRAS (∼MG(0,1)-bJ): cf. Definition 4.4 with small patches, p′=p in (2.8a) (to illustrate the associated
space hierachy, we use the notation “1, p→ p”), and wRAS construction (6.5).

wRAS1 (∼MG(0,1)-bJ): cf. Definition 4.4 with small patches, p′=1 in (2.8a) (to illustrate the associated
space hierachy, we use the notation “1→ 1, p”), and wRAS construction (6.5).

PCG(MG(3,3)-bJ): Preconditioned CG solver; the preconditioner is multigrid V-cycle(3,3) with weighted
block Jacobi smoother associated to small patches; the space hierarchy relies on order p discretization,
including the coarsest space (we use the notation “p→ p”); the iterations start with the zero vector.
This choice of the solver is motivated by Antonietti and Pennesi [2], adapted to the conforming finite
elements setting.

MG(1,1)-PCG(iChol): Multigrid solver V-cycle(1,1); the smoother is PCG with incomplete zero level
fill-in Cholesky preconditioner; the space hierarchy is of increasing order: from order 1 for coarsest
level to order p for the finest level (“1↗ p”); the iterations start with the zero vector. This choice of
the solver is motivated by Botti et al. [10], adapted for a symmetric setting.

MG(0,1)-bGS: Multigrid solver V-cycle(0,1); the smoother is block Gauss–Seidel associated to small
patches; the space hierarchy consists of order 1 for all levels except the finest level, which is of order p
(“1 → 1, p”), i.e., as in (2.8a) with p′=1; the iterations start with the zero vector. This choice of
the solver is motivated by NGSolve [41], however, the multigrid is used here as a solver instead of a
preconditioner.

MG(3,3)-GS: Multigrid solver V-cycle(3,3); the smoother is a standard Gauss–Seidel; the space hierarchy
is of increasing order: from order 1 for coarse level to order p for the finest level (“1 ↗ p”); the
iterations start with the zero vector.

Table 4: Comparison of various multilevel solvers (described in Section 6.3) for the L-shape case (6.3),
istop: the number of iterations to reach the stopping criterion (6.6).

PCG(MG MG(1,1)- MG(0,1)- MG(3,3)-

wRAS wRAS1 (3,3)-bJ) PCG(iChol) bGS GS

1, p→ p 1→ 1, p p→ p 1↗ p 1→ 1, p 1↗ p

J p DoF istop time istop time istop time istop time istop time istop time

3 1 5057 17 0.0 s 17 0.0 s 7 0.0 s 4 0.1 s 9 0.0 s 3 0.0 s

3 46 273 12 0.2 s 18 0.2 s 3 0.2 s 14 0.5 s 8 1.0 s 4 0.1 s

6 185 857 10 1.5 s 15 1.7 s 2 2.0 s 21 7.6 s 7 2.4 s 9 1.6 s

9 418 753 10 7.2 s 14 7.7 s 2 10.5 s 63 1.2m 6 7.4 s 9 4.3 s

4 1 20 481 18 0.0 s 18 0.0 s 8 0.1 s 7 0.1 s 9 0.0 s 3 0.0 s

3 185 857 12 1.0 s 18 1.0 s 3 0.8 s 29 4.1 s 8 4.3 s 4 0.3 s

6 744 961 10 8.4 s 15 7.5 s 3 11.4 s 49 58.9 s 7 11.9 s 5 2.9 s

9 1 677 313 9 29.7 s 13 36.1 s 2 30.3 s 167 12.5m 6 29.2 s 8 16.0 s

5 1 82 433 17 0.2 s 17 0.2 s 8 0.3 s 19 0.8 s 8 0.1 s 3 0.1 s

3 744 961 12 3.4 s 17 3.6 s 3 3.6 s 77 57.7 s 8 16.1 s 4 1.5 s

6 2 982 913 9 24.3 s 14 26.8 s 3 38.9 s 129 11.6m 7 44.5 s 4 10.0 s

9 6 713 857 8 2.2m 12 2.2m 2 3.5m +200 +1.0 h 6 2.1m 8 1.2m

The presented methods split into two groups: numerically p-robust (wRAS, wRAS1, PCG(MG(3,3)-
bJ), MG(0,1)-bGS) and not (MG(1,1)-PCG(iChol), MG(3,3)-GS). Note that the present choice of

1The codes were prepared to benefit as much as possible from Matlab’s fast operations on matrices and vectors. The
experiments were run on one Dell C6220 dual-Xeon E5-2650 node of Inria Sophia Antipolis - Méditerranée “NEF” computation
cluster, however, in a sequential Matlab script.
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3 pre- and 3 post-smoothing steps makes every iteration of PCG(MG(3,3)-bJ) and MG(3,3)-GS consid-
erably more expensive than those of the methods wRAS, wRAS1, MG(0,1)-bGS, where the minimalist
(0,1) choice is sufficient. In PCG(MG(3,3)-bJ), in addition, the coarse grid correction is more expensive
as it uses order p approximations. The inversion of the Jacobi blocks in PCG(MG(3,3)-bJ) on the finest
level J , corresponds to solving the patch problems of order p as in (3.7), so that its cost is the same as for
the local problems of wRAS1. As for MG(1,1)-PCG(iChol), we find the method to be quite satisfactory
for lower-order approximations, but as soon as p and J increase, the number of iterations degrades consid-
erably. MG(0,1)-bGS, like wRAS1, only employs one post-smoothing step per iteration and it uses the
same polynomial degree distribution over the levels. In contrast to wRAS1 however, MG(0,1)-bGS is a
multiplicative Schwarz method, and is thus less suitable for parallelization. The classical MG(3,3)-GS is a
combination of h- and p-multigrid and gives the best timings in our experiments. The numbers of pre- and
post-smoothing steps, however, remain parameters, and their tuning might not be straightforward in order
to get an efficient and numerically robust multigrid solver in general (cf. the poor results of the very similar,
up to a different number of pre- and post-smoothing steps and a stronger hierarchy, MG(0,1)-GS version in
Tables 1–3). The Gauss–Seidel smoother used therein again makes the method harder to parallelize.

7 Proof of Theorem 5.1

As shown in Corollary 5.3, the results of Theorem 5.1 and Theorem 5.2 are equivalent. Therefore it suffices
to prove the first one. Our approach to proving Theorem 5.1 consists in studying the uncomputable exact
residual lifting ρ̃iJ,alg given by (3.2) and its approximation ρiJ,alg given by Definition 3.1. In particular,

we will estimate p-robustly the quantities ‖∇ρ̃iJ,alg‖, ‖∇ρiJ,alg‖, and (f, ρiJ,alg) − (∇uiJ ,∇ρiJ,alg) by local

contributions ρij,a of (3.7) used to construct ρiJ,alg. This will allow us to prove the claim of the theorem:

ηialg ≥ β‖∇(uJ − uiJ)‖, with ηialg our a posteriori estimator of Definition 4.1 and β a p-independent constant.
Actually, due to (3.4) and Definition 4.1, this is equivalent to showing

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)

‖∇ρiJ,alg‖
≥ β‖∇ρ̃iJ,alg‖ when ρiJ,alg 6= 0,

‖∇ρ̃iJ,alg‖ = 0 when ρiJ,alg = 0.

Hereafter, we will use the notation x1 . x2 when there exists c, a positive real constant only depending
on the mesh shape regularity parameter κT and the space dimension d such that x1 ≤ cx2. Similarly,
x1 & x2 means x2 . x1 and x1 ≈ x2 means that x1 . x2 and x2 . x1 simultaneously. If these constants
additionally depend on the number of mesh levels J , we use the notations .J , &J , and ≈J , respectively.

7.1 Upper bound on ‖∇ρiJ,alg‖ by patchwise contributions from all mesh levels

We present here properties of the constructed residual lifting ρiJ,alg and its level-wise components ρij , where
1 ≤ j ≤ J .

Lemma 7.1 (Estimating ‖∇ρiJ,alg‖ and ‖∇ρij‖ by local contributions). Let ρiJ,alg and ρij be given by
Definition 3.1, for j ∈ {1, . . . , J}. There holds

‖∇ρij‖2 ≤
1

J2(d+ 1)

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s
, (7.2)

‖∇ρiJ,alg‖2 ≤ 2

(
‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

)
. (7.3)
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Proof. Definition 3.1 and the inequality |
∑d+1

k=1 ak|2 ≤ (d+ 1)
∑d+1

k=1 |ak|2 lead to

‖∇ρij‖2 =
∑

K∈Tj−s

‖∇ρij‖2K =
∑

K∈Tj−s

∥∥∥∥ 1

J(d+ 1)

∑
a∈VK

∇ρij,a
∥∥∥∥2

K

≤
d+ 1

J2(d+ 1)2

∑
K∈Tj−s

∑
a∈VK

‖∇ρij,a‖2K =
1

J2(d+ 1)

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s
.

Note that this allows us to write

∥∥∥∥ J∑
j=1

∇ρij
∥∥∥∥2

≤ J
J∑

j=1

‖∇ρij‖2 ≤
J

J2(d+ 1)

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s
. (7.4)

This property facilitates the writing of the sought estimate for ρiJ,alg,

‖∇ρiJ,alg‖2 =

∥∥∥∥∇ρi0 +

J∑
j=1

∇ρij
∥∥∥∥2

≤ 2‖∇ρi0‖2 + 2

∥∥∥∥ J∑
j=1

∇ρij
∥∥∥∥2

(7.4)

≤ 2‖∇ρi0‖2 +
2

J(d+ 1)

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

≤ 2

(
‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

)
.

7.2 Lower bound on (f, ρiJ,alg) − (∇uiJ ,∇ρiJ,alg) by patchwise contributions from
all mesh levels

While studying (f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg), the interaction of different level contributions of the lifting ρiJ,alg

arises naturally. In order to estimate these terms, the damping J(d + 1) used in the construction (3.6) of
our lifting proves to be of the essence.

Lemma 7.2 (p-robust estimate on (f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg) from below by patchwise contributions). Let

ρiJ,alg be given by Defintion 3.1. Then

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg) &J ‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s
. (7.5)

Proof. We begin by using the construction of ρiJ,alg given in Definition 3.1 to write

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg) = (f, ρi0)− (∇uiJ ,∇ρi0) +

J∑
j=1

(
(f, ρij)− (∇uiJ ,∇ρij)

)
(3.1)
(3.6)
= ‖∇ρi0‖2 +

1

J(d+ 1)

J∑
j=1

∑
a∈Vj−s

(
(f, ρij,a)ωa

j,s
− (∇uiJ ,∇ρij,a)ωa

j,s

)
(3.7)
= ‖∇ρi0‖2 +

1

J(d+ 1)

J∑
j=1

∑
a∈Vj−s

(
‖∇ρij,a‖2ωa

j,s
+

j−1∑
k=0

(∇ρik,∇ρij,a)ωa
j,s

)

= ‖∇ρi0‖2 +
1

J(d+ 1)

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

+

J∑
j=1

j−1∑
k=0

(∇ρik,∇ρij).
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The first two terms above are of the right form to prove the result, one needs to be a bit more careful with
the third one, however. We estimate it using Young’s inequality, where the parameter is chosen in function
of the damping factor 1/(J(d+ 1)), and the sum interchange

∑J
j=2

∑j−1
k=1 =

∑J−1
k=1

∑J
j=k+1

J∑
j=1

j−1∑
k=0

(∇ρik,∇ρij) =

J∑
j=2

j−1∑
k=1

(∇ρik,∇ρij) +

J∑
j=1

(∇ρi0,∇ρij)

≥
J∑

j=2

j−1∑
k=1

(
−

1

2
‖∇ρik‖2 −

1

2
‖∇ρij‖2

)
+

J∑
j=1

(
−

1

2 2J
3

‖∇ρi0‖2 −
2J
3

2
‖∇ρij‖2

)

= −
1

2

J−1∑
k=1

(J − k)‖∇ρik‖2 −
1

2

J∑
j=2

(j − 1)‖∇ρij‖2 −
3

4J
J‖∇ρi0‖2 −

J

3

J∑
j=1

‖∇ρij‖2

= −
1

2

J∑
j=1

(J − j)‖∇ρij‖2 −
1

2

J∑
j=1

(j − 1)‖∇ρij‖2 −
3

4
‖∇ρi0‖2 −

J

3

J∑
j=1

‖∇ρij‖2,

where we added the terms in the sum corresponding to k = J and j = 1 since they are zero, and then
renamed the summation index when there is no confusion. A few more manipulations on the right-hand
side and the use of (7.2), give us

J∑
j=1

j−1∑
k=0

(∇ρik,∇ρij) ≥ −
3

4
‖∇ρi0‖2 −

5J

6

1

J2(d+ 1)

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s
.

Returning to the main estimate, we obtain the desired result

(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg) ≥
1

6J(d+ 1)

‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

 . (7.6)

7.3 Upper bound on ‖∇ρ̃iJ,alg‖ by patchwise contributions from all mesh levels

Recall that ρ̃iJ,alg, introduced in (3.2), is the unknown exact algebraic error. We estimate here ‖∇ρ̃iJ,alg‖
from above. First, we summarize for our setting the remarkable result of Schöberl et al. [40], stating the
existence of a p-robust stable decomposition for a fixed mesh. Then, we adapt this result to the multilevel
case. This, together with inter-level and local properties of ρ̃iJ,alg introduced hereafter, allows to obtain a
p-robust estimate on the algebraic error.

7.3.1 Polynomial-degree-robust stable decomposition on a fixed mesh level j

We begin by presenting in the form of a lemma the p-robust stable decomposition result of Schöberl et al.
[40, Proof of Theorem 2.1]. This decomposition of any function on a given level into a continuous piecewise
affine part and a sum of local continuous piecewise polynomials of degree p will be particularly important
in the following. We also use the local spaces V a

j,s introduced in (2.10).

Lemma 7.3 (One-level p-robust stable decomposition). Let 1 ≤j≤J and vj ∈V p′

j when 1 ≤ j ≤ J − 1, or

vJ ∈ V p
J be arbitrary. Suppose vj = v#

j + v[j , with v#
j ∈ V 1

j such that

‖∇v#
j ‖

2 + ‖∇(vj − v#
j )‖2 +

∑
K∈Tj

h−1
K ‖(vj − v

#
j )‖2K ≤ CLO‖∇vj‖2, (7.7)

for a positive constant CLO only depending on mesh shape regularity parameter κT and space dimension d.
Then, there are vb ∈ V b

j,0, b ∈ Vj, such that vj = v#
j +

∑
b∈Vj v

b
j , and this decomposition is stable in the

sense
∃CSD > 0 such that ‖∇v#

j ‖
2 +

∑
b∈Vj

‖∇vbj ‖2ωb
j,0
≤ CSD‖∇vj‖2, (7.8)
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where CSD only depends on the constant CLO, mesh shape regularity parameter κT , and space dimension d.
Additionally, we can assume that CSD > 1 (otherwise, we work with C̃SD := max(1, CSD) which still
satisfies (7.8)).

Remark 7.4. Note that this decomposition is straightforward for vj ∈ V 1
j and 1 ≤ j ≤ J − 1, i.e., for the

choice p′ = 1.

7.3.2 Polynomial-degree-robust stable decomposition on a hierarchy of meshes

Because we intend to obtain a decomposition similar to Lemma 7.3 in a multilevel setting, we will work
with v# ∈ V0. For this purpose, we first define a coarse space interpolator.

Lemma 7.5 (Coarse space interpolation). For v ∈ H1
0 (Ω), define the vertex values

(C0v)(a) :=
1

|T a
0,0|

∑
K∈T a

0,0

vK for a ∈ V int
0 , where vK :=

(v, 1)K

|K|
,

(C0v)(a) := 0 for a ∈ Vext
0 .

where T a
0,0 is the patch of elements sharing the vertex a, cf. (2.9). The operator C0 : H1

0 (Ω)→ V0, given by
C0(v) :=

∑
a∈V0 C0v(a)ψa

0 , satisfies for all v ∈ H1
0 (Ω)

‖∇C0(v)‖2 + ‖∇(v − C0(v))‖2 +
∑
K∈T0

h−1
K ‖(v − C0(v))‖2K ≤ C̃LO‖∇v‖2. (7.9)

Proof. We start by estimating the first term in (7.9). Consider v ∈ H1
0 (Ω), K ∈ T0. Note that the hat

functions form a partition of unity:
∑

a∈V0 ψ
a
0 = 1. Then

‖∇C0(v)‖K = ‖∇C0(v)− vK∇1‖K =

∥∥∥∥∥∇
( ∑

a∈VK

(C0v)(a)ψa
0

)
− vK∇

( ∑
a∈VK

ψa
0

)∥∥∥∥∥
K

=

∥∥∥∥∥ ∑
a∈VK

{((C0v)(a)− vK)∇ψa
0}

∥∥∥∥∥
K

≤
∑
a∈VK

{|(C0v)(a)− vK |‖∇ψa
0‖K}

. h−1
K |K|

1
2

( ∑
a∈VK∩Vint

0

|T a
0,0|−1

∑
K∗∈T a

0,0

|vK∗ − vK |+
∑

a∈VK∩Vext
0

|T a
0,0|−1

∑
K∗∈T a

0,0

|vK |
)
,

where |T a
0,0| is uniformly bounded by the mesh shape regularity parameter κT and space dimension d. We

distinguish two cases.
Case a ∈ VK ∩V int

0 . There are two possibilities: either K∗ and K share an interface F1, or there is a path

of elements in the neighborhood of K connecting K and K∗ such that |vK∗ − vK | ≤
∑L1−1

l=0 |vKl+1
− vKl

|
by the triangle inequality, where KL1

= K∗ and K0 = K, and L1 only depends on the mesh shape
regularity parameter κT and space dimension d. Thus, we need only treat the case where K∗ and
K share an interface F1. Note that, since v ∈ H1

0 (Ω), its trace is well defined, and we can intro-
duce the notation vF1

:= (v, 1)F1
/|F1| ∈ R. Using interpolation estimates for simplices shown in, e.g.,

Eymard et al. [20, Lemma 2], Vohraĺık [43, Lemma 4.1], we write

|vK∗ − vK | = |vK∗ − vF1
+ vF1

− vK | ≤ |vK∗ − vF1
|+ |vF1

− vK |

. max
K#∈{K,K∗}

(hK# |K#|− 1
2 ) (‖∇v‖K∗ + ‖∇v‖K)

≤ max
K#∈{K,K∗}

(hK# |K#|− 1
2 )‖∇v‖ωK

,

(7.10)

where ωK := ∪a∈VKωa
0,0.

Case a ∈ VK∩Vext
0 . There are again two possibilities: either the intersection of K with ∂Ω is an interface

F2, or it is the vertex a. For the latter, there is again a path connecting K with K̃, such that the intersection
of K̃ and ∂Ω is a face. Similarly to the first case, we can write |vK | ≤ |vK̃ |+

∑L2−1
l=0 |vKl

− vKl+1
|, where
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KL2
= K̃ and K0 = K, and L2 only depends on the mesh shape regularity parameter κT and space

dimension d. Note that the terms in the sum can be treated as in (7.10). Thus, it is sufficient to consider
|vK | when K ∩ ∂Ω = F2, a face of K. Since v ∈ H1

0 (Ω), we have vF2 := (v, 1)F2/|F2| = 0,

|vK | = |vK − vF2
| . hK |K|−

1
2 ‖∇v‖K .

In view of the mesh regularity Assumption 2.7, this leads to the desired estimate for the first term in (7.9)

‖∇C0(v)‖ . ‖∇v‖. (7.11)

As for the second term, we use the triangle inequality and (7.11).
It remains to estimate the third term. We have

‖v − C0(v)‖K ≤ ‖v − vK1‖K + ‖vK1− C0(v)‖K
Poincaré

. hK‖∇v‖K +

∥∥∥∥∥ ∑
a∈VK

(vK − (C0v)(a))ψa
0

∥∥∥∥∥
K

≤ hK‖∇v‖K +
∑
a∈VK

|vK − (C0v)(a)|‖ψa
0‖K

≤ hK‖∇v‖K + |K| 12
( ∑

a∈VK∩Vint
0

|T a
0,0|−1

∑
K∗∈T a

0,0

|vK − vK∗ |+
∑

a∈VK∩Vext
0

|vK |
)
.

The last two terms in this estimate can be treated similarly to (7.10), allowing us to obtain the inequality
‖v − C0(v)‖K . hK‖∇v‖ωK

. Finally, putting the three estimations together, we obtain the desired result.

We define C̃LO the constant obtained after these estimations; it only depends on the mesh shape regularity
parameter κT and space dimension d.

Lemma 7.6 (Multilevel p-robust stable decomposition). For any 1 ≤ j ≤ J and vj ∈ V p′

j when 1 ≤ j ≤J−1,
or vJ ∈ V p

J , there exists a constant CSD,J only depending on the mesh shape regularity parameter κT , space
dimension d, and the number of mesh levels J , such that

vj= C0(vj)+
∑
b∈Vj

vbj , v
b
j ∈ V b

j,0; ‖∇C0(vj)‖2 +
∑
b∈Vj

‖∇vbj ‖2ωb
j,0
≤ CSD,J‖∇vj‖2. (7.12)

Proof. By Lemma 7.5, and since hK ≈J hK∗ for all K ∈ T0 and all K∗ ∈ Tj , K∗ ⊂ K by Assumption 2.6,
there holds

‖∇C0(vj)‖2 + ‖∇(vj − C0(vj))‖2 +
∑
K∈Tj

h−1
K ‖(vj − C0(vj))‖2K .J ‖∇vj‖2,

where the constant in the estimate above depends on C̃LO of (7.9) and the number of mesh levels J . Thus, we
have C0(vj) ∈ V0 ⊂ V 1

j which satisfies (7.7). Using the result of Schöberl et al. [40] described in Lemma 7.3,

we obtain vbj ∈ V b
j,0, for b ∈ Vj such that (7.12) holds with a constant CSD,J only depending on the mesh

shape regularity parameter κT , space dimension d, and number of mesh levels J .

7.3.3 Orthogonality of ρ̃ij, local links between ρ̃ij and ρij,a

Two other important components will serve in estimating ‖∇ρ̃iJ,alg‖. First, the relations of orthogonality

of a given mesh error contribution ρ̃ij , j ∈ {1, . . . , J}, with respect to previous mesh level functions. And

secondly, the local properties of ρ̃ij with respect to local functions of the same mesh. In particular, the local

properties will allow the transition from the uncomputable ρ̃ij to the available local contributions of ρij .

Lemma 7.7 (Inter-level properties of ρ̃ij). Consider the hierarchical construction of the error ρ̃iJ,alg given
in (3.2). For j∈{1, . . . ,J} and k∈{0, . . . ,j−1}, there holds

(∇ρ̃ij ,∇vk) = 0 ∀vk ∈ V p
k . (7.13)
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Proof. Take vk ∈ V p′

k . Note that since k ≤ j − 1, we have vk ∈ V p′

j−1. If j∈{1, . . . ,J − 1}, V p′

j−1 ⊂ V p′

j , and

if j = J , V p′

J−1 ⊂ V
p
J . The definition given in (3.3) applied to ρ̃ij and ρ̃ij−1 allows us to write

(∇ρ̃ij ,∇vk) = (f, vk)− (∇uiJ ,∇vk)−
j−2∑
l=0

(∇ρ̃il,∇vk)− (∇ρ̃ij−1,∇vk)

= (∇ρ̃ij−1,∇vk)− (∇ρ̃ij−1,∇vk) = 0.

Below, we present the relation between ρ̃ij and ρij locally on patches, more precisely when tested against
functions of the local spaces V a

j,s given by (2.10).

Lemma 7.8 (Local relation between ρ̃ij and ρij,a). Let j ∈ {1, . . . , J}. Let ρ̃ij, ρij be given by (3.3), (3.6),
respectively. For all a∈Vj−s and all vj,a∈V a

j,s, we have

(∇ρ̃ij ,∇vj,a)ωa
j,s

= (∇ρij,a,∇vj,a)ωa
j,s
−

j−1∑
k=1

(∇(ρ̃ik − ρik),∇vj,a)ωa
j,s
, (7.14)

where ρij,a ∈ V a
j,s is defined as solution of a local problem by (3.7). We use the convention that the sum in

the relation above is zero when j = 1.

Proof. We take vj,a ∈ V a
j,s. This implies that vj,a is zero on the boundary of the patch domain ωa

j,s. Since

vj,a ∈ V p′

j when j∈{1, . . . , J − 1} and vJ,a ∈ V p
J otherwise, we can use it as a test function in the definition

of ρ̃ij in (3.3) as well as in the definition of ρij,a in (3.7). We conclude by subtracting the two following

identities once we take into account ρ̃i0 = ρi0

(∇ρ̃ij ,∇vj,a)ωa
j,s

= (f, vj,a)ωa
j,s
− (∇uiJ ,∇vj,a)ωa

j,s
−

j−1∑
k=0

(∇ρ̃ik,∇vj,a)ωa
j,s
,

(∇ρij,a,∇vj,a)ωa
j,s

= (f, vj,a)ωa
j,s
− (∇uiJ ,∇vj,a)ωa

j,s
−

j−1∑
k=0

(∇ρik,∇vj,a)ωa
j,s
.

7.3.4 Estimating the error on a hierarchy of meshes

The previous results allowed to establish a useful p-robust stable decomposition for a hierarchy of meshes,
and summarize the inter-level and local properties of the error ρ̃iJ,alg. These properties will be useful in the

forthcoming lemma in order to give an upper bound to algebraic error ‖∇ρ̃iJ,alg‖ by the local constructed

contributions ρij,a of the hierarchy of meshes.

Lemma 7.9 (p-robust error estimation). Let ρ̃iJ,alg and ρiJ,alg be defined by (3.2) and Definition 3.1, re-
spectively. There holds

‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

&J ‖∇ρ̃iJ,alg‖2. (7.15)

Proof. We begin by estimating ‖∇ρ̃ij‖, where ρ̃ij ∈ V
p
j solves (3.3) for 1 ≤ j ≤ J . From Lemma 7.6, using

the stable decomposition result applied to ρ̃ij ,

ρ̃ij = C0(ρ̃ij) +
∑
b∈Vj

ρ̃ij,b, ρ̃ij,b ∈ V b
j,0, (7.16a)

‖∇C0(ρ̃ij)‖2 +
∑
b∈Vj

‖∇ρ̃ij,b‖2ωb
j,0
≤ CSD,J‖∇ρ̃ij‖2. (7.16b)

20



In the case s = 1, i.e. of “big” patches of Figure 1 (right), note that for b ∈ Vj , we can pick a vertex ab ∈ Vj−s
such that ωb

j,0 ⊂ ω
ab
j,s, and we can extend ρ̃ij,b by zero to ωab

j,s, so that it can be used as test function in the
local problems (7.14). There is no need for extension in the case s = 0 of “small” patches of Figure 1 (left),
where we can take ab = b ∈ Vj−s and ωab

j,s = ωb
j,0. We introduce qj,s := max

a∈Vj−s

#{b ∈ Vj |ωb
j,0 ⊂ ωa

j,s}. Note

that qj,s ≥ 1 when s = 1 and qj,s = 1 for s = 0. We have

‖∇ρ̃ij‖2
(7.16a)

= (∇ρ̃ij ,∇C0(ρ̃ij)) + (∇ρ̃ij ,
∑
b∈Vj

∇ρ̃ij,b)
(7.13)

= 0 +
∑
b∈Vj

(∇ρ̃ij ,∇ρ̃ij,b)ωb
j,0

(7.14)
=

∑
b∈Vj

(∇ρij,ab
,∇ρ̃ij,b)ωab

j,s
−
∑
b∈Vj

j−1∑
k=0

(∇(ρ̃ik − ρik),∇ρ̃ij,b)ωab
j,s

=
∑
b∈Vj

(√
2CSD,J∇ρij,ab

,
∇ρ̃ij,b√
2CSD,J

)
ω

ab
j,s

−
j−1∑
k=1

(
∇(ρ̃ik − ρik),

∑
b∈Vj

∇ρ̃ij,b
)

≤ CSD,J

∑
b∈Vj

‖∇ρij,ab
‖2
ω

ab
j,s

+

∑
b∈Vj ‖∇ρ̃

i
j,b‖2ωab

j,s

4CSD,J
−

j−1∑
k=1

(
∇(ρ̃ik −ρik),

∑
b∈Vj

∇ρ̃ij,b
)

(7.16b)

≤ CSD,J

∑
a∈Vj−s

∑
b∈Vj

ωb
j,0⊂ω

a
j,s

‖∇ρij,a‖2ωa
j,s

+
‖∇ρ̃ij‖2

4
−

j−1∑
k=1

(
∇(ρ̃ik − ρik),

∑
b∈Vj

∇ρ̃ij,b
)

≤ qj,sCSD,J

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

+
1

4
‖∇ρ̃ij‖2 −

j−1∑
k=1

(
∇(ρ̃ik − ρik),

∑
b∈Vj

∇ρ̃ij,b
)
. (7.17)

For the special case of j = 1, the third term is not present since ρ̃i0 = ρi0. This leads to

‖∇ρ̃i1‖2 ≤
4

3
q1,s CSD,1

∑
a∈V1−s

‖∇ρi1,a‖2ωa
1,s
≤ 2 q1,s CSD,1

∑
a∈V1−s

‖∇ρi1,a‖2ωa
1,s
. (7.18)

This would be enough to conclude the proof if J = 1, since

‖∇ρ̃iJ,alg‖2
(3.4)
= ‖∇ρi0‖2 + ‖∇ρ̃i1‖2

(7.18)

≤ 2q1,sCSD,1

(
‖∇ρi0‖2 +

∑
a∈V1−s

‖∇ρi1,a‖2ωa
j,s

)
.

When J > 1, we continue below the estimation for the third term in (7.17) for j ∈ {2, . . . , J}. The
inter-level properties of ρ̃iJ,alg presented in (7.13) are crucial here:

−
j−1∑
k=1

(
∇(ρ̃ik − ρik),

∑
b∈Vj

∇ρ̃ij,b
)
(7.16a)

= −
j−1∑
k=1

((
∇ρ̃ik,∇(ρ̃ij − C0(ρ̃ij))

)
−
(
∇ρik,

∑
b∈Vj

∇ρ̃ij,b
))

(7.13)
= 0 + 0 +

j−1∑
k=1

(√
2CSD,JJ(d+ 1)∇ρik,

1√
2CSD,JJ(d+ 1)

∑
b∈Vj

∇ρ̃ij,b
)

≤ CSD,JJ(d+ 1)

j−1∑
k=1

‖∇ρik‖2 +
1

4CSD,JJ(d+ 1)

j−1∑
k=1

∥∥∥ ∑
b∈Vj

∇ρ̃ij,b
∥∥∥2

(7.2)
(7.16b)

≤
CSD,J

J

j−1∑
k=1

∑
a∈Vk−s

‖∇ρik,a‖2ωa
k,s

+
1

4
‖∇ρ̃ij‖2.
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Returning to (7.17), we obtain for all j ∈ {2, . . . , J}

‖∇ρ̃ij‖2 ≤ 2qj,sCSD,J

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

+
2CSD,J

J

j−1∑
k=1

∑
a∈Vk−s

‖∇ρik,a‖2ωa
k,s
. (7.19)

We achieve the result by summing these estimates on different levels. We denote by q := max
j∈{1,...,J}

qj,s.

Then

‖∇ρ̃iJ,alg‖2
(3.4)
= ‖∇ρi0‖2+ ‖∇ρ̃i1‖2 +

J∑
j=2

‖∇ρ̃ij‖2

(7.18)
(7.19)

≤ ‖∇ρi0‖2+2qCSD,J

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

+
2CSD,J

J

J∑
j=2

j−1∑
k=1

∑
a∈Vk−s

‖∇ρik,a‖2ωa
k,s

≤ ‖∇ρi0‖2+ 2qCSD,J

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

+ 2CSD,J

J∑
k=1

∑
a∈Vk−s

‖∇ρik,a‖2ωa
k,s

≤ 4qCSD,J

‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

 . (7.20)

7.4 Proof of Theorem 5.1

The results of the previous subsections allow us to give a concise proof of Theorem 5.1.

Proof of Theorem 5.1. Case ρiJ,alg = 0. By Definition 4.1 this means ηialg = 0, so that it suffices to show

that uJ = uiJ . We do this by using Lemma 7.2 and 7.9 which lead to

‖∇(uJ − uiJ)‖2 (3.4)
= ‖∇ρ̃iJ,alg‖2

(7.15)

.J ‖∇ρi0‖2 +

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

(7.5)

.J (f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg) = 0.

Case ρiJ,alg 6= 0. In this case, we combine the results of Lemmas 7.1, 7.2, and 7.9

ηialg=
(f, ρiJ,alg)− (∇uiJ ,∇ρiJ,alg)

‖∇ρiJ,alg‖

(7.3)
(7.6)

≥
1

6J(d+ 1)
√

2

‖∇ρi0‖2+

J∑
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

 1
2

(7.20)

≥
1

12J(d+ 1)
√

2qCSD,J

‖∇ρ̃iJ,alg‖
(3.4)
= β‖∇(uJ − uiJ)‖,

for β :=
1

12J(d+ 1)
√

2qCSD,J

> 0, depending only on the mesh shape regularity parameter κT , the space

dimension d, and the number of levels J .

8 Conclusions and outlook

In this work, we presented a hierarchical construction of the algebraic residual lifting in the spirit of Papež
et al. [36]. This lifting approximates the algebraic error by one iteration of a V-cycle multigrid with no
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pre-smoothing steps, a single damped additive Schwarz post-smoothing step, and a coarse solve of lowest
polynomial degree. The lifting leads us to an a posteriori estimator on the algebraic error and to a linear
iterative solver. We showed that two following results are equivalent: the (reliable) a posteriori estima-
tor is p-robustly efficient, and the solver contracts p-robustly the error at each iteration. The provided
numerical tests agree with these theoretical findings. Moreover, we also presented numerical results for a
modified solver corresponding to a weighted restricted additive Schwarz smoothing. In accordance with
the literature, this modified solver is a further speed-up compared to the damped Schwarz smoothing.
Although we currently cannot show that our p-robust theoretical result also applies to this construction,
the use of high degree polynomials does not seem to cause a degradation of the solver. Thus far, our
theory involves estimates depending on the number of mesh levels J , which we do not observe in the nu-
merical results for the weighted restricted variant. Further work would explore this dependence and seek
a theoretical improvement. In forthcoming works, we plan to develop adaptivity based on the property
‖∇(uJ − uiJ)‖2 ≈ ‖∇ρi0‖2+

∑J
j=1

∑
a∈Vj−s

‖∇ρij,a‖2ωa
j,s

shown in Section 7, i.e., a computable splitting equiv-

alent to the error and localized not only level-wise but also patch-wise. Applications to more involved
problems are also on our work list.
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[20] R. Eymard, T. Gallouët, and R. Herbin, Convergence of finite volume schemes for semilinear
convection diffusion equations, Numer. Math., 82 (1999), pp. 91–116.

[21] S. Foresti, G. Brussino, S. Hassanzadeh, and V. Sonnad, Multilevel solution method for the
p-version of finite elements, Computer Physics Communications, 53 (1989), pp. 349 – 355.

[22] A. Gholami, D. Malhotra, H. Sundar, and G. Biros, FFT, FMM, or multigrid? A comparative
study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube, SIAM J.
Sci. Comput., 38 (2016), pp. C280–C306.

[23] M. Griebel, P. Oswald, and M. A. Schweitzer, A particle-partition of unity method. VI. A p-
robust multilevel solver, in Meshfree methods for partial differential equations II, vol. 43 of Lect. Notes
Comput. Sci. Eng., Springer, Berlin, 2005, pp. 71–92.

[24] W. Hackbusch, Multi-grid methods and applications, vol. 4 of Springer Series in Computational
Mathematics, Springer, Berlin, 2003.

[25] R. Hiptmair, H. Wu, and W. Zheng, Uniform convergence of adaptive multigrid methods for elliptic
problems and Maxwell’s equations, Numer. Math. Theory Methods Appl., 5 (2012), pp. 297–332.

[26] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-
conforming high order finite element methods, SIAM J. Sci. Comput., 33 (2011), pp. 2095–2114.
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