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Abstract

In Prediction Error Identi�cation, the consistency of the identi�ed parameter vector is
only guaranteed if the data are informative enough i.e. if the excitation signal is su�ciently
rich. For single-input single-output systems, one can verify whether a given excitation is
su�ciently rich for a system based on the number of frequencies at which its power spectrum
is nonzero. The extension of this criterion to multivariate systems is not straightforward.
In the literature, one has proposed criteria based on the number of frequencies at which the
power spectrum matrix of the excitation signal is strictly positive de�nite. However, this
criterion is too restrictive as it does not cover the case of multisine excitations, while it is well
known that such excitation signals can lead to consistent estimates. This paper proposes
less restrictive conditions for the consistency of the identi�ed parameter vector when FIR
multiple-inputs single-output systems have to be identi�ed with multisine signals in the open
loop con�guration.
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2 PREDICTION ERROR OF MISO FIR SYSTEM

1 Introduction

In System Identi�cation, there are two main conditions to get a consistent estimate of the param-
eter vector: the identi�ability of the model structure and the data informativity with respect to
(w.r.t.) this model structure [1]. These concepts have been well studied for single-input single-
output (SISO) model structures both in the open loop and the closed loop con�gurations [2]. In
the open loop case, the data informativity is linked to the input richness. In [1] and [3], there is a
simple criterion to evaluate the input richness: it is the number of frequencies at which its power
spectrum is nonzero. For the multivariate case, the richness de�nition of an input vector can be
extended by considering the number of frequencies at which the input power spectrum matrix
is positive de�nite [3]. However, this criterion does not cover the multisine case as the input
power spectrum matrix degenerates at all frequencies. In this paper, we propose less restrictive
conditions for multiple-inputs single-output (MISO) �nite impulse response (FIR) systems in
open loop with multisine inputs.

For MISO FIR structure, the identi�ability is veri�ed: the data informativity w.r.t. this
model structure is equivalent to the consistency of the estimate [2]. In open loop, the data
informativity is equivalent to the persistency of the input regressor derived from the MISO FIR
model structure [2]. Thus, the problem considered in this paper is the development of necessary
and su�cient conditions on the input vector such that the input regressor derived from the MISO
FIR structure is persistently exciting. A necessary and su�cient condition for the regressor
persistency is the linearly independence of the signals of this regressor [2]. Our research problem
becomes the following one: �nding su�cient conditions on the input vector such that the signals
in this regressor are linearly independent. For multisine inputs, the linearly independence of the
signals of the input regressor is equivalent to the left invertibility of a particular matrix which
depends, on one hand, on the chosen amplitudes, phase-shifts and frequencies of the multisine
and, on the other hand, on the FIR model orders. This simple matrix criterion answers our
research problem with multisine inputs.

However this matrix criterion is not enough explicit on how to e�ectively make a choice of the
amplitudes, of the phase-shifts and of the sinusoid number such that this matrix is left invertible
or full-column rank (a posteriori criterion). Therefore, we propose additional conditions on the
number of sinusoids to use and on the amplitude and phase-shift choices. These conditions
are only necessary, but they guide the user in its multisine choices. Finally, we propose two
particular multisine choices which always lead to the regressor persistency (and so the estimation
consistency) regardless of the amplitude and phase-shift choices.

Notations: For a complex-valued matrix A, AT denotes its transpose and A∗ its complex
conjugate. The notation diag(a1, · · · , an) denotes the diagonal matrix whose diagonal elements
are a1, · · · , an (scalars or matrices). The notation j is the complex number such that j2 = −1.
For all nonzero integers m, the set J1,mK is the set of consecutive integers between 1 and m, i.e.
{1, 2, · · · ,m}. We denote x(•) the function describing the time-domain signal x(t) ∀t.

2 Prediction error of MISO FIR system

Let S be a MISO FIR system with p inputs and one output:

S : y(t) = G0(z)u(t) + e(t) (2.1)
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2 PREDICTION ERROR OF MISO FIR SYSTEM

where z is the forward-shift operator, G0(z) =
(
G01(z), · · · , G0p(z)

)
is the transfer function

matrix, u(t) = (u1(t) · · · up(t))T is the input vector of size p × 1, y(t) is the scalar output and
e(t) is a white noise with variance σ20. We assume that each ui(t) is a quasistationary process [1]
independent of e(t). For the sake of simplicity, all G0i(z) are FIR systems with the the same
order m and have a delay equal to 1: G0i(z) = βi1z

−1 + · · ·+ βimz
−m. The system S in (2.1) is

identi�ed within a model structure denoted M(θ) = G(z, θ), parametrized by a vector θ ∈ Rpm,
where G(z, θ) = (G1(z, θ) · · · Gp(z, θ)) and:

Gi(z, θ) = bi1z
−1 + · · ·+ bimz

−m (2.2)

All bik with i ∈ J1, pK and k ∈ J1,mK are the parameters to be identi�ed. We will denote
θi = (bi1 · · · bim)T . Therefore we have θT =

(
θT1 · · · θTp

)
.

We will assume that the model structureM(θ) is full-order, i.e. ∃θ0 ∈ Rpm such that G(z, θ0) =
G0(z). From M(θ), we de�ne the one-step ahead predictor as follows:

ŷ(t, θ) = G(z, θ)u(t) =

p∑
i=1

φTui(t)θi (2.3)

where φTui(t) = (ui(t− 1) · · · ui(t−m)) is a regressor of the scalar input ui(t). We will call

φu(t) =

φu1(t)
...

φup(t)

 (2.4)

the input regressor derived from M(θ). Then (2.3) becomes:

ŷ(t, θ) = φTu (t)θ (2.5)

We de�ne from (2.5) the prediction error:

ε(t, θ) = y(t)− ŷ(t, θ) = y(t)− φTu (t)θ (2.6)

With N input-output data generated from S, we compute the optimal θ, denoted θ̂N such that
it minimizes a least-square cost-function on the prediction error:

θ̂N = arg min
θ
VN (θ) (2.7)

VN (θ) =
1

N

N∑
t=1

ε(t, θ)2 (2.8)

If M(θ) is full-order and under reasonable conditions (see below), then θ̂N will be a consistent
estimate of θ0 [1]. In other words, the asymptotic identi�cation criterion, i.e. arg min

θ
Ē[ε(t, θ)2]

where the operator Ē[x(t)] = lim
N→+∞

1
N

∑N
t=1E[x(t)] is de�ned for quasistationary signals x(t) [1]

and E[x(t)] is the expectation of x(t), has an unique solution and is equal to θ0. The �rst
condition is the global identi�ability of M(θ), veri�ed for MISO FIR structure [1]. Therefore,
the consistency is equivalent to the second condition which is the data informativity w.r.t. M(θ).
This second condition will be studied in the next section for the considered model structure, i.e.
MISO FIR in open loop.
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3 DATA INFORMATIVITY FOR MISO FIR SYSTEMS

3 Data informativity for MISO FIR systems

For MISO FIR systems in open-loop, the predictor in (2.5) only depends on the input u(t). Then
the data informativity de�ned in [2] is equivalent to the input informativity.

De�nition 3.1

(Informative input for MISO FIR in open loop) The input vector u(t) is said infor-
mative w.r.t. M(θ) if, for any θ′ and θ′′ in Rpm, we have:

Ē
{

[G(z, θ′)−G(z, θ′′)]u(t)
}2

= 0⇒ θ′ = θ′′ (3.1)

Using (2.5), we have that

Ē
{

[G(z, θ′)−G(z, θ′′)]u(t)
}2

= 0

⇔ ∆θT Ē
[
φu(t)φTu (t)

]︸ ︷︷ ︸
Ru

∆θ = 0 (3.2)

where ∆θ = θ′ − θ′′. Thus, we have the following theorem:

Theorem 3.1

The input vector u(t) is informative with respect toM(θ), if and only if, Ru is strictly positive
de�nite.

Proof : The matrix Ru = Ē
[
φu(t)φTu (t)

]
is at least semi-de�nite positive. Therefore the proof is

straightforward by combining De�nition 3.1 and the equivalence (3.2).

A regressor φ(t) satisfying Ē
[
φ(t)φT (t)

]
> 0 is called persistently exciting (PE) or we say

that we have the persistency of this regressor. Therefore, in this case, the persistency of φu(t)
is equivalent to the consistency of θ̂N . Thus, we will develop conditions on u(t) to obtain the
persistency of φu(t) (and so the consistency). Then, the problem considered in this paper is the
following one:

Problem 3.1

Find necessary and su�cient conditions on u(t) such that the regressor φu(t) in (2.4) is PE.

For scalar input (p = 1), there are simple necessary and su�cient conditions for the persistency
of φu(t) [2].

Lemma 3.1

Consider the MISO FIR structure of the same order m in (2.2) in open-loop with p = 1. The
regressor in (2.4) is PE if and only if there are at least m di�erent frequencies in the interval
]− π, π] at which the PSD of u(t) is nonzero.

Proof : See [2] for the detailed proof.

For MISO FIR model structure, the Toeplitz matrix Ru in (3.2) is constructed as follows

Ru = (Ruiuf )(i,f)∈J1,pK2 with Ruiuf = Ē[φui(t)φuf (t)T ]
if i=f

= Rui .
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3 DATA INFORMATIVITY FOR MISO FIR SYSTEMS

From this matrix construction, we can extract �rst conditions on each scalar input for the
persistency of φu(t) as described in the next theorem:

Theorem 3.2

Consider the MISO FIR structure of the same order m in (2.2) in open-loop and its derived
regressor φu(t) in (2.4). If the matrix Ru = Ē

[
φu(t)φTu (t)

]
is strictly positive de�nite, then for

each scalar signal ui(t), there are m di�erent frequencies in the interval ] − π, π] at which its
PSD is nonzero.

Proof : Assume that Ru in (3.2) is strictly positive de�nite. Hence, all square block matrices Rui

must be strictly positive de�nite. Since Rui
= Ē[φui

(t)φui
(t)T ], all regressors φui

(t) must be PE.
The proof is obtained by using Lemma 3.1 for i = 1, · · · , p.

Theorem 3.2 gives a necessary condition on each scalar input ui(t): there must be m di�erent
frequencies in the interval ]− π, π] at which its power spectrum density (PSD) is nonzero. Con-
trary to the SISO case [2], this richness condition is not su�cient for the persistency. Indeed,
linear dependency between the regressors φui(t) could yield to a singular Ru. Theorem 3.2 does
not answer Problem 3.1, but it gives a �rst constraint for the choice of u(t).

A necessary and su�cient condition for the persistency of (2.4) is the positive-de�niteness of
the matrix Ru in (3.2), answering Problem 3.1. However this criterion becomes highly complex
to verify by hands when the number of inputs and parameters per transfer function increase. Let
us therefore �nd a more e�ective condition. For this purpose, we will from now onwards consider
the case of multisine excitation.

When φu(t) is PE, for any α ∈ Rpm, we have Ē[φu(t)Tα]2 = 0 ⇔ α = 0. However the
quantity Ē[φu(t)Tα]2 is the power of the multisine signal φu(t)Tα. Therefore, as the power of
the multisine is equal to 0 if and only if this signal is identically equal to 0, we have Ē[φu(t)Tα]2 =
0 ⇔ φu(t)Tα = 0 ∀t. Therefore φu(t) is PE if and only if φu(t)Tα = 0 ∀t ⇔ α = 0. Denote
U the set formed by all signals of φu, i.e. the set U = {u1(• − 1), · · · , u1(• − m), · · · , up(• −
1), · · · , up(• −m)}.

De�nition 3.2

[4] A set of real-valued signals {x1, · · · , xn} is said to be linearly independent in the signal
space if, for all (λ1, · · · , λn) ∈ Rn, we have

λ1x1(t) + · · ·+ λnxn(t) = 0 ∀t⇔ λ1 = · · · = λn = 0

Therefore, in the MISO FIR case in open loop, a necessary and su�cient condition to get the
persistency of φu(t) is the linear independence of the signal set U as shown above. Problem 3.1
can be therefore reformulated as follows:

Problem 3.2

Find su�cient conditions on u(t) such that U is linearly independent in the signal space, i.e.
for all real scalars λik, the following statement is true:

m∑
k=1

p∑
i=1

λikui(t− k) = 0 ∀t⇔ all λik = 0 (3.3)
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4 PERSISTENCY FOR THE MULTISINE CASE

For further references, let us order the scalars λik in two di�erent ways:

Λ =

Λ1
...

Λm

 with Λk =

λ1k...
λpk

 (3.4)

and

L =

L1
...
Lp

 with Li =

λi1
...

λim

 (3.5)

4 Persistency for the multisine case

In the sequel, the index i ∈ J1, pK describes the scalar inputs ui(t), k ∈ J1,mK the delays z−k and
h ∈ J1, nK the sinusoid frequencies ωh.

4.1 General framework for the multisine case

As already mentioned, we consider the case where all ui(t) are multisine. We have deduced one
necessary condition on all ui(t) in Theorem 3.2. As a sinusoid has 2 frequencies in its PSD, this
condition becomes: each ui(t) must contain at least m/2 sinusoids at di�erent frequencies. This
will be assumed true in the sequel.

Consider n ≥ m/2 sinusoids at di�erent frequencies, denoted ω1, · · · , ωh, · · · , ωn with h ∈
J1, nK. For the sake of simplicity, we will exclude the frequencies dπ with d an integer. The
number n is the total number of sinusoids at di�erent frequencies in the input vector u(t). Then,
each input ui(t) is in the following form

ui(t) =
n∑
h=1

aih cos(ωht+ ψih) (4.1)

where all aih are amplitudes and all ψih are phase shifts. If ui(t) is not excited by the sinusoid
at ωh, then aih = 0. With Euler formula, (4.1) can be written in the complex form:

ui(t) =
1

2

(
n∑
h=1

Aihe
jωht +

n∑
h=1

A
∗
ihe
−jωht

)
(4.2)

where Aih = aihe
jψih is a phasor. By injecting (4.2) in the left hand side (lhs) of (3.3), we get:

n∑
h=1

Υhe
jωht +

n∑
h=1

Υ∗he
−jωht = 0 ∀t (4.3)

with Υh =
∑m

k=1

∑p
i=1 λikAihe

−jkωh .

For each complex scalar Υh, denote Υh = αh + jβh where αh and βh are real scalars. The
equality (4.3) leads to

n∑
h=1

αh cos(ωht)−
n∑
h=1

βh sin(ωht) = 0 ∀t (4.4)
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4 PERSISTENCY FOR THE MULTISINE CASE

As all frequencies ωh are di�erent between them and di�erent from 0, π and −π, it is well known
that the signal set {cos(ω1•), · · · , cos(ωn•)}∪{sin(ω1•), · · · , sin(ωn•)} is linearly independent in
the signal space [5]. Therefore, from De�nition 3.2 applied to (4.4), all αh = 0 and all βh = 0.
Then, for the lhs of (3.3) to hold, we need all Υh = 0 and Υ∗h = 0. Regrouping all the equations
Υh = 0 and Υ∗h = 0 in an equation system leads to

m∑
k=1



∑p
i=1 λikAi1e

−jkω1∑p
i=1 λikA

∗
i1e

jkω1

...∑p
i=1 λikAine

−jkωn∑p
i=1 λikA

∗
ine

jkωn


︸ ︷︷ ︸

Wk

=


0
0
...
0
0

 (4.5)

For each term Wk of (4.5), all λik of (4.5) can be isolated:

Wk =


A11e

−jkω1 · · · Ap1e
−jkω1

A
∗
11e

jkω1 · · · A
∗
p1e

jkω1

...
...

...

A1ne
−jkωn · · · Apne

−jkωn

A
∗
1ne

jkωn · · · A
∗
pne

jkωn


︸ ︷︷ ︸

Lk

Λk (4.6)

where Λk is de�ned in (3.4).

Therefore with (4.6) ∀k ∈ J1,mK, the system (4.5) can be written in the following row-block
matrix equation: (

L1 · · · Lm
)︸ ︷︷ ︸

L

Λ = 0 (4.7)

where L is a 2n × pm row-block matrix. We can therefore deduce the following necessary and
su�cient condition to solve Problem 3.2 with multisine excitation:

Theorem 4.1

The regressor in (2.4) is PE, if and only if, the matrix L in (4.7) is full-column rank. �

Proof : The regressor in (2.4) is PE if and only if the signals in U are linearly independent. Since the
lhs of (3.3) can be rewritten as in (4.7), the latter holds if and only if Λ = 0 is the only solution of
the linear matrix equality (4.7) and a necessary and su�cient condition for this is indeed that L is
full column rank.

We have deduced a simple necessary and su�cient condition for the persistency of φu(t) for
multisine excitation. This criterion is easy to verify and only depends on the chosen amplitudes,
frequencies, phase shifts and on the orders of the FIR �lters Gi(z, θ). But Theorem 4.1 does not
allow us to directly choose the multisine number n, the amplitudes and the phase shifts which
ensure that L is full-column rank. In other words, our multisine choice can only be validated
a posteriori, with the rank veri�cation of L. It would be interesting to know some additional
conditions for this choice before computing the matrix L. For that, each Lk in (4.6) can be
written as follows:

Lk = EkA (4.8)
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4 PERSISTENCY FOR THE MULTISINE CASE

where E = diag(e−ω1 , eω1 , · · · , e−ωn , eωn) is a 2n× 2n diagonal matrix, Ek = E × · · · × E︸ ︷︷ ︸
k times

and A

is:

A =


A11 · · · Ap1
A
∗
11 · · · A

∗
p1

...
...

...

A1n · · · Apn
A
∗
1n · · · A

∗
pn

 (4.9)

The matrix A in (4.9) is called the phasor matrix. Therefore, with (4.8), the matrix L becomes:

L =
(
EA · · · EmA

)
(4.10)

One can remark that L is constructed such that each block is a delayed version of the phasors
of all ui(t) and the blocks are put in ascending order of delays. The matrix L can be written in
the following block-form:

L = (E · · · Em)︸ ︷︷ ︸
E

diag(A, · · · , A)︸ ︷︷ ︸
A

(4.11)

where E is a 2n× 2nm row block matrix and A is a 2nm×mp diagonal block matrix composed
of m matrices A. From L = EA in (4.11), we can deduce additional conditions on the sinusoid
number n and the choices of the multisine amplitudes and phase shifts (or the phasor matrix),
given in the next theorem

Theorem 4.2

If the matrix L is full-column rank, then it is necessary that:

• (i) A in (4.9) is full-column rank.

• (ii) n ≥ pm/2.

Proof : Point (ii) : Since L is full-column rank, its number of rows must be greater or equal to its
number of columns. Therefore 2n ≥ pm, i.e. n ≥ pm/2.

Point (i) : Assume that L = EA is full-column rank. Therefore the matrix A is full-column rank. It
is a block-diagonal matrix composed by m matrices A. Then due to its construction, A is full-column
rank, if and only if, A is full-column rank. Therefore A must be full-column rank.

Remark 4.1

The conditions (i) and (ii) of Theorem 4.2 are not su�cient for Theorem 4.1. However they
give more insight into the multisine choice that has to be done to get the persistency.

Remark 4.2

Combining Theorem 3.2 with the point (ii) of Theorem 4.2 gives the least necessary sinusoid
number for the informativity, i.e. we just need that number of sinusoids. Then, the matrix
criterion of Theorem 4.1 only depends on the FIR orders, the frequencies and the phasors.

We are going to study particular multisine choices which always provide the persistency of
φu(t). By permuting the variables in Λ and the columns of the matrix equation L, the matrix

8



4 PERSISTENCY FOR THE MULTISINE CASE

system in (4.7) is equivalent to the following one:(
Q1P · · · QpP

)︸ ︷︷ ︸
Q

L = 0 (4.12)

with Qi = diag(Ai1, A
∗
i1, · · · , Ain, A

∗
in)

and P =


e−jω1 · · · e−jmω1

ejω1 · · · ejmω1

... · · ·
...

e−jωn · · · e−jmωn

ejωn · · · ejmωn


where L is de�ned in (3.5) and Q is a 2n×mp row-block matrix. Remark that Q is constructed
such that each block contains all delayed versions of the phasors of one input ui(t) and the blocks
are put in ascending order of inputs.

Corollary 4.1

The regressor in (2.4) is PE, if and only if, the matrix Q in (4.12) is full-column rank.

Proof : Straightforward by observing that L and Q are equivalent and by using Theorem 4.1.

The form in (4.12) will be useful for the next paragraph, dealing with particular cases of
multisine excitation. But before that, we give an useful lemma for the sequel.

Lemma 4.1

If ui contains at least m/2 sinusoids of distinct frequencies (not equal to dπ, d integer), then
QiP is full-column rank.

Proof : Straightforward consequence of Lemma 3.1 and Corollary 4.1 since Q reduces to QiP when
u = ui (SISO case).

4.2 Particular and practical results for the multisine case

In the two next corollaries, we present particular multisine choices, where φu(t) is PE.

Corollary 4.2

If, in the choices of the sinusoids,

• (a) u1(t) is excited by at least m/2 di�erent sinusoids,

• (b) ∀i ∈ J2, pK, ui(t) contains the the same sinusoids as ui−1(t) (the same frequencies)
but also contains at least m/2 more sinusoid w.r.t. ui−1(t),

then the regressor φu(t) is PE.

Proof : We will prove that Q is full-column rank (see Corollary 4.1). Denote ri the total number of
sinusoids in ui(t) and ni the additional number of sinusoids in ui(t) w.r.t. ui−1(t), i.e. ri = ni + ri−1,
∀i ∈ J2, pK. From (a) and (b), we have ri ≥ m/2 ∀i ∈ J1, pK and ni ≥ m/2 ∀i ∈ J2, pK.

9



4 PERSISTENCY FOR THE MULTISINE CASE

With this input choice, each input ui(t) is expressed as in (4.1) with aih 6= 0 ∀h ≤ ri and aih = 0
∀h > ri. Thus we have the same properties on the phasors: Aih 6= 0 ∀h ≤ ri and Aih = 0 ∀h > ri
in (4.9). Hence, the matrix Q has an block-upper-triangular form given by

Q =


Q11 Q12 · · · Q1p

021 Q22 · · · Q2p

...
...

. . .
...

0p1 0p2 · · · Qpp


where 0si is the 2ns ×m zero matrix with s ∈ Ji + 1, p − 1K and Q has a size 2ni ×m. The matrix
Q is full-column rank if and only if all Qii are all full-column rank which is the case as Q reduces to
Qii when u = ui (SISO case) and each ui is su�ciently rich (since ni ≥ m/2 ∀i ∈ J1, pK).

Remark 4.3

In Corollary 4.2, we consider u1(t) for condition (a) and the other inputs in ascending order
for (b). This result is still true by considering any input ui(t) for (a) and the other inputs in
any order for (b).

Corollary 4.3

If each input ui(t) is excited with at least m/2 di�erent sinusoids which are di�erent from
the ones of the other inputs (no common excitation frequencies between the inputs), then the
regressor φu(t) is PE.

Proof : Same proof as Corollary 4.2, as the obtained matrix Q here is block-diagonal.

The experiment choice of Corollary 4.3 is the most simple one, as it considers the least number
of frequencies to use for each scalar input, but not necessarily the optimal one for all identi�cation
problems. For optimal experiment design [6], with multisine as in [7] and [8], it might be wise
to consider the general framework in section 4.1, as we will have more �exibility for the optimal
input design than an experiment choice like the one in Corollary 4.3.

4.3 Synthesis of the multisine excitation results

In this section, we have developed a su�cient condition for the consistency of the identi�cation
of MISO FIR structure in open loop with multisine: Theorem 4.1. It can be used, before the
experiment, to check if the chosen multisine input will lead to a consistent identi�cation, by
simply checking the rank of L in (4.7). However, with Theorem 4.1 we cannot make an accurate
decision in the input choice which ensures that L is full-column rank. One idea is to choose
randomly the amplitudes and phase shifts. For some random draws, L will be full-column rank,
but this approach is not wise.

That is why we have developed also additional conditions to guide better the user in its choices
of amplitudes, phase shifts and sinusoid number. They are described in Theorems 3.2 and 4.2.
Theorem 3.2 combined with (ii) of Theorem 4.2 gives an useful condition on the total number
of sinusoids (n) and per input (number of nonzero phasors/amplitudes per input). The point (i)
can be used as a �rst veri�cation step (rank veri�cation of A) before verifying the rank of L. As
they are not su�cient, it is not possible to avoid the rank veri�cation of L in the general case.
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This is the reason why we studied two particular cases in Corollaries 4.2 and 4.3. Indeed these
particular cases lead to the persistency of the regressor φu(t) regardless of the choices of the
phase shifts and the amplitudes. Note that there is no needed rank veri�cation in both cases.

5 Numerical example

We consider a MISO FIR system S described in (2.1) with p = 2 inputs, m = 2 parameters per
G0i :

G01(z) = 0.22z−1 − 0.63z−2 and G02(z) = z−1 + 0.95z−2

For the inputs, we choose:{
u1(t) = a11 cos(ω1t+ φ11) + a12 cos(ω2t+ φ12)
u2(t) = a21 cos(ω1t+ φ21) + a22 cos(ω2t+ φ22)

with ω1 = 0.1 and ω2 = 0.25. We will propose several input choices to test the conditions
developed in Section 4.1. For each choice, we identify G(z, θ) with N input-output data from S
and we compute the rank of L in (4.7) and A in (4.9).

In case of consistency, rank(A) = 2 and rank(L) = 4. For FIR systems, the modeling error
θ̂N − θ0 of the computed parameters is normally distributed around 0 [1]. Thus the relative
error (θ̂N − θ0)/θ0 is normally distributed around 0%. We consider N = 10000 and σ20 = 0.001
for small variance of the relative error to facilitate the consistency veri�cation. The notation
err(bik) refers to the relative error between the computed parameter bik and the true parameter
βik. The results of the simulation for each case are given in Table 1.

First we verify that both conditions developed in Theorem 4.2 are necessary by considering 2
cases when each of both conditions is not satis�ed.

Case 1: We consider a case where A degenerates. Consider the amplitudes and phase-shifts
such that u1 = 2u2:

• a11 = 2, a12 = 2, a21 = 1, a22 = 1

• φ11 = 0, φ12 = 0, φ21 = 0, φ22 = 0

With these values, rank(A) = 1 (not full-column rank, linear dependency of the phasors) and
rank(L) = 2 (not full-column rank). The non-consistency is veri�ed in simulation, in the Table 1,
as the relative errors are not close to 0%.

Case 2: Now, we consider a case where the condition (ii) of Theorem 4.2 is not respected by
using only one sinusoid per input:

• a11 = 1, a12 = 0, a21 = 1, a22 = 0

• φ11 = 0.5, φ12 = 0, φ21 = −0.7, φ22 = 0

We have rank(A) = 2 (full-column rank) and rank(L) = 2 (not full-column rank). Indeed, here
both inputs are excited with one sinusoid at the the same frequency ω1, i.e. n = 1: the necessary
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condition (ii) of Theorem 4.2 is violated as pm/2 = 2 and n = 1. Therefore L degenerates
illustrated with the high relative error in the Table 1.

However the conditions in Theorem 4.2 are not su�cient. We can construct cases when they
are both satis�ed while the matrix L in (4.7) degenerates:

Case 3: Consider these following values:

• a11 = 1, a12 = 1, a21 = 3, a22 = 3

• φ11 = −ω1, φ12 = −ω2, φ21 = 0, φ22 = 0

With these values, rank(A) = 2 (full-column rank) and n = 2 = pm/2. Therefore, both
conditions in Theorem 4.2 are respected. However we have rank(L) = 3 (not full-column rank).
This highlights that (i) and (ii) are not su�cient.

Indeed, by looking at the chosen phase shifts, we have u2(t−2) = 3u1(t−1) for all t. Therefore
the consistency is not reached for b11 and b22. As u1(• − 2) and u2(• − 1) are not correlated
with another signal in φu, then the consistency is obtained for b12 and b21. The results from
simulation in the Table 1 meet our remarks.

Sometimes, with proper values of amplitudes and phase-shifts, the consistency is obtained.

Case 4: For instance with the following values

• a11 = 1, a12 = 1, a21 = 1, a22 = 1

• φ11 = −0.4, φ12 = 0.3, φ21 = 0, φ22 = −0.7

we have rank(L) = 4 (full-column rank). Therefore, from Theorem 4.1, the consistency is reached,
as illustrated by the values of simulation in Table 1. This case is interesting as it shows that we
can identify S by using the the same frequencies in all scalar inputs.

But our choice validation is still veri�ed a posteriori. For some particular cases, the consistency
will always be reached regardless of the amplitude and phase shift choices. This is the case of
experiment choice respecting Corollary 4.2 or Corollary 4.3, illustrated for Corollary 4.2 in the
next case.

Case 5: The experiment choice is the following one:

• a11 = 1, a12 = 0, a21 = 1, a22 = 1

• φ11 = −0.4, φ12 = 0.3, φ21 = 0, φ22 = −0.7

Here, rank(L) = 4 (full-column rank). Indeed we are in the case of Corollary 4.2, veri�ed in
simulation in Table 1.
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Table 1: Parameter relative errors for all cases.
err(b11) err(b12) err(b21) err(b22)

Case 1 188.37% 82.29% 74.53% 109.35%

Case 2 182.71% 71.32% 28.17% 26.97%

Case 3 192.41% 0.89% 0.42% 15.80%

Case 4 0.9% 0.32% 0.19% 0.22%

Case 5 1.22% 0.05% 0.09% 1.04%

6 Conclusions

This paper considers the problem of data informativity for MISO FIR systems in open-loop. In
this case, the informativity is equivalent to the persistency of the regressor derived form the MISO
FIR model structure. This persistency is equivalent to the linear independence of the signals
composing this regressor. Based on this consideration, we developed a simple necessary and
su�cient condition to for the regressor persistency (and so for the consistency of the parameter
vector estimation). We also give necessary conditions and particular cases to guide the reader in
its input vector choice. A numerical example has been proposed to verify several results developed
in this paper. A lot of perspectives are ongoing. We want to extend this study in closed-loop
and also for other model structures such as Box-Jenkins, ARMAX, ARX and Ouput-Error.
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