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 1 

Abstract 2 

 3 

In this paper, the multimodal nonlinear elastic behavior of concrete, which is representative of 4 

a consolidated granular material, is modeled numerically. Starting from a local three-5 

dimensional softening law, the initial stiffness properties are re-estimated according to the local 6 

strain field. The experiments deal with samples of thermally damaged concrete blocks 7 

successively excited around their first three modes of vibration. The geometry of these samples 8 

cannot be described by a one-dimensional approximation in these experiments where 9 

compressional and shear motions are strongly coupled. Despite this added complexity, the 10 

nonlinear behavior for the three modes of vibration of the samples is well captured by the 11 

simulations using a single scalar nonlinear parameter appropriately integrated into the elasticity 12 

equations. It is shown that without sufficient attention payed to the latter, the conclusions would 13 

have brought erroneous statements such as nonlinearity dispersion or strain type dependence.  14 
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I. Introduction 1 

 2 

Geomaterials exhibit mechanical softening under dynamic loading, usually combined with 3 

hysteresis and slow-dynamics effects (Johnson et al., 1996; TenCate et al., 2000). These effects 4 

are reversible and deterministic. From a micro-structure standpoint, a recent study has 5 

established a correlation between micro-crack density and softening effects (Payan et al., 6 

2014a,b). From an energy balance point of view, it means that some potential energy disappears 7 

when the material is loaded dynamically and is slowly recovered when the material is at rest. 8 

These properties are relevant to various natural processes and industrial applications including 9 

the onset of earthquake and avalanches in geophysics (Johnson and Jia, 2005), the aging of civil 10 

infrastructure (Eiras et al., 2016; Payan et al., 2007; Vu et al., 2016), the design of acoustic 11 

meta-materials with extreme stiffness (Diani et al., 2009; Wang and Lakes, 2004), or the 12 

assessment of bone fragility in the medical field (Haupert et al., 2014).  13 

 14 

The dynamic response of these materials has been first modeled by Guyer et al. (1995) using 15 

the Preisach formalism, which is a phenomenological description borrowed from the field of 16 

electromagnetics. This model has then been refined to include slow-dynamics effects through 17 

thermally activated random transitions between the open and closed states of the hysteretic 18 

elements of the Preisach system (Delsanto and Scalerandi, 2003; Nobili and Scalerandi, 2004). 19 

More recently, Pecorari (2015) proposed a hysteretic model sharing some features with the 20 

Jiles-Atherton model (also borrowed from the field of electromagnetics), which he enhanced to 21 

capture the slow-dynamics effects. It is also worth mentioning the soft-ratchet model of slow-22 

dynamics originally proposed by Vakhnenko et al. (2004) and recently modified by Favrie et 23 

al. (2015) to include classical nonlinearity and viscoelasticity. All these models, however, have 24 

been derived in the one-dimensional (1D). Three-dimensional (3D) effects are an essential part 25 

of the dynamic response observed in geomaterials and cannot be ignored (Egle and Bray, 1976; 26 

Payan et al., 2007, 2009; Tournat et al., 2004). Lyakhovsky et al. (2009) proposed a two-27 

dimensional continuum damage rheology model capturing hysteretic nonlinearity and some of 28 

the features observed in nonlinear resonance experiments. A similar model was used by Hamiel 29 

et al. (2009) to describe stress-induced anisotropy in damaged geomaterials. Note that in these 30 

models, damage is not recoverable and slow-dynamics effects are not considered. The recent 31 

modeling work of Berjamin et al. (2017) includes slow-dynamics effects, but although it can 32 

be naturally extended to 3D analysis, the simulations are carried out only for a 1D case. 33 
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 1 

Attempting to develop a predictive tool to link the microstructural properties of the material to 2 

the nonlinear elastic response observed experimentally is a challenging task. Despite a high 3 

sensitivity to microstructures, amorphous condensed matter arrangement, and environmental 4 

conditions (e.g., temperature, pressure) (Lott et al., 2016; Payan et al., 2009; TenCate et al., 5 

2000), the elastic nonlinear parameters seem to depend on the choice of the experimental setup 6 

in much of the previous work reported in the literature. For instance, Renaud et al. (2013) 7 

showed that material softening effects in Berea sandstone may vary by up to an order of 8 

magnitude depending on the probing direction while the material is isotropic. In the work of 9 

Payan et al. (2014a,b) on concrete, two techniques were used to estimate a parameter of 10 

nonlinearity. The two techniques showed the same trends but the magnitudes of the measured 11 

parameter differ by an order of magnitude. These experimental data where derived using the 12 

most common 1D approximation. However, a complex strain field leads to a 3D problem from 13 

a mechanical point of view and using a 1D approximation to describe this problem may lead to 14 

erroneous conclusions.   15 

 16 

Recently, Lott et al. (2016, 2017) show that conditioning can be properly accounted in 3D using 17 

a single scalar nonlinear parameter into the appropriate set of elasticity equations using 18 

uncoupled single mode resonance type of experiments, i.e., shear and compressional. The aim 19 

of this paper is to study the validity of this model to nonlinear resonance experiments, involving 20 

strong coupling between shear and compressional motion types. Numerical simulations are 21 

compared to experimental data from nonlinear resonances in gradually thermally damaged 22 

concrete blocks. Using a single scalar nonlinear parameter appropriately introduced in elasticity 23 

equations, the validity of the model is demonstrated and discussed. 24 

 25 

II. Theoretical framework 26 

 27 

In continuum mechanics, the parameters needed to compute the linear dynamic response of an 28 

elastic body are the mass density, the linear elastic tensor, and the damping parameters. If the 29 

geometry of the sample is complex and/or the material is heterogeneous, numerical techniques 30 

(e.g., finite-element method) should be used and the distribution of these parameters should be 31 

known for all computation cells discretizing the sample. In this paper, we study consolidated 32 

granular materials, which may be described as a disordered network of mesoscopic-sized “hard” 33 
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elements (e.g., grains with characteristic lengths ranging from tens to hundreds of microns) 1 

cemented together by a “soft” bond system (e.g., amorphous silica, calcite) (Guyer and Johnson, 2 

1999). Despite the complexity of the structure, the linear elastic response of these materials at 3 

macroscopic scale is well captured by the model of a continuum. This continuum may have 4 

heterogeneous properties under dynamic loading as a combined result of the complex spatio-5 

temporal distribution of the strain field in the sample and the strain-induced material softening 6 

(Payan et al., 2007; Remillieux et al., 2015; Renaud et al., 2013). Material softening is thought 7 

to originate from the microscopic-sized defects (e.g., micro-cracks) in the “soft” subsystem and 8 

at the interfaces between the “hard” and “soft” subsystems (Payan et al., 2014a). To incorporate 9 

these defects in the macroscopic continuum model, we consider a volume dV that is small 10 

enough to satisfy the requirements of the numerical schemes but large enough to ensure a 11 

constant micro-crack density from one volume to the next. Furthermore, we assume that the 12 

defects are randomly distributed and oriented within the volume dV, with a length-scale much 13 

smaller than the typical acoustic wavelengths used in this study. With dV being on the order of 14 

1mm3, the above criteria are satisfied.    15 

 16 

The approach used in this paper is similar to the one used by Zubelewicz (1990) in transient 17 

numerical simulations of rock fractures. Each contact within the medium brings softening 18 

effects through nonlinear cohesive mechanisms. These effects are then integrated over an 19 

elementary volume dV and used for a mesoscopic mechanical implementation within a 20 

continuum with possible heterogeneous properties.   21 

 22 

Recently, the authors (Lott et al., 2016, 2017) proposed a general formulation to include 23 

material-softening effects in the equations of elasticity. This formulation is an extension of that 24 

proposed by Hughes and Kelly (Hughes and Kelly, 1953). The tensorial product between the 25 

strain and stress vector bases, δij=ni
stress⊗nj

strain, is the natural basis for the elastic tensor and 26 

should now include softening effects as, 27 

 28 

Λ𝑖𝑗 = 𝛿𝑖𝑗(1 − αΔ𝜀𝑖𝑗
∗ ),  (1) 29 

 30 

or equivalently in matrix form as, 31 

 32 

𝚲 = 𝑰3 − 𝛼𝜺∗,  (2) 33 
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 1 

where ni is the principal strain direction, Δεij
* the strain amplitude, the star symbol denotes the 2 

basis formed by the principal strain axes, and α is a scalar quantifying the softening effect. The 3 

stiffness tensor is then expressed as, 4 

 5 

𝐶𝑖𝑗𝑘𝑙
∗ = [𝜆 + 2(𝑙 − 𝜆 − 𝑚)𝑇𝑟(𝜀) + 2(𝜆 + 𝑚)(𝜀𝑖

∗ + 𝜀𝑘
∗) − 2𝜇𝜀𝑖]Λ𝑖𝑗Λ𝑘𝑙 + 7 

[𝜇 + (𝜆 + 𝑚 − 𝜇)𝑇𝑟(𝜀) + 2𝜇(𝜀𝑖 + 𝜀𝑗 + 𝜀𝑙)](Λ𝑖𝑘Λ𝑗𝑙 + Λ𝑖𝑙Λ𝑗𝑘) 8 

+
1

2
𝑛 ∑ (Λ𝑗𝑣𝑘

𝑖𝑣𝑙 + Λ𝑗𝑣𝑙
𝑖𝑣𝑘)𝜀𝑣𝑣   (3) 6 

 9 

where λ and μ are the Lamé constants and l, m, n are the Murnaghan constants (Murnaghan, 10 

1937). Practically, the material-softening law is applied in the basis formed by the principal 11 

strain axes. This basis is obtained from an eigen decomposition of the strain field ε measured 12 

in the geometric basis. This decomposition, ε = P ε*P-1, is always possible because the strain 13 

tensor is always real and symmetric. Once the softening law has been applied to the stiffness 14 

tensor in the basis formed by the principal strain axes, the following transformation is used to 15 

express the conditioned stiffness tensor in the geometric basis: Cijkl = PirPjsPktPluC*
rstu. This 16 

result is equivalent to classical acoustoelasticity theory when the term quantifying softening is 17 

equal to the identity matrix. 18 

 19 

In this study, the validity of the model will be assessed using nonlinear resonance experiments 20 

or more commonly referred to in the literature as nonlinear resonant ultrasound spectroscopy 21 

(NRUS). In these experiments, a sample is subjected to sequences of periodic signals at various 22 

frequencies around a resonance frequency and at increasing amplitudes while, for each periodic 23 

signal, data are recorded when the sample vibrates at or near a steady state. Under these 24 

conditions, the effects of the first-order term of nonlinearity in the classical description, i.e., 25 

terms involving β in 1D and (l, m, n) in 3D, average to zero over one cycle of the harmonic 26 

excitation. This is not the case with the second-order term of nonlinearity δ but the proposed 27 

model does not go beyond the first order. As a result, Eq. (3) can be simplified by removing the 28 

terms involving third-order elastic constants (i.e., only the linear version of the elastic tensor is 29 

used to apply the softening law), 30 

 31 

𝐶𝑖𝑗𝑘𝑙
∗ =  𝜆Λ𝑖𝑗Λ𝑘𝑙 +  𝜇 (Λ𝑖𝑘Λ𝑗𝑙 + Λ𝑖𝑙Λ𝑖𝑗𝑗𝑘). (4) 32 

 33 
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Finally, each cell (dV) of the sample can be conditioned by the strain amplitude at that cell. This 1 

means that the stiffness tensor is no longer uniform over the volume of the sample but depends 2 

on the local strain tensor. The sample experiences softening with a complex distribution (i.e., 3 

that of the strain field), which in turns lowers its resonance frequencies. Because of the 4 

heterogeneity, the resonance frequencies have to be computed numerically. 5 

 6 

 7 

III. Numerical application to experimental data 8 

 9 

The validity of the model is examined against experimental data collected during resonance 10 

experiments. The samples are those described by Payan et al. (2014b). The three samples used 11 

in this study consist of concrete blocks with dimensions 6 × 10 × 10 cm3. One sample is kept 12 

intact and used as a reference. The other two samples are thermally damaged at 120 and at 13 

250°C using a slow increase then decrease in temperature to prevent from eventual mechanical 14 

damage induced by thermal gradients. Thermal damage allows the density of micro-cracking 15 

within the concrete samples to be increased as needed. Below 300° C, microcracks are 16 

essentially caused by drying as well as differential thermal dilatation between cement paste and 17 

aggregates. In concrete the most brittle zone is the interface between the aggregates and the 18 

cement paste. This zone, commonly referred to as Interfacial Transition Zone (ITZ), is the most 19 

porous and crystallized region. It is thus quite natural to assume that most of the thermal damage 20 

will occur in the ITZ. With an arbitrary grain distribution, thermal damage of concrete can 21 

reasonably be considered as isotropic. 22 

 23 

A. Experimental protocol and results 24 

 25 

The samples are excited with an ultrasonic cleaning transducer (Ultrasonics World, DE, USA) 26 

powered by a function generator (National Instrument PXI-5406 function generator) coupled 27 

to a voltage amplifier (TEGAM 2350). The vibrational responses of the samples are recorded 28 

by a Polytec laser vibrometer (OFV 5000, 1.5 MHz bandwidth) using a digitizer (National 29 

Instrument PXI-5122). Both generation and acquisition lines are managed by the NRUS module 30 

of the Resonance Inspection Techniques and Analysis (RITA) software designed and 31 

implemented by T. J. Ulrich and Pierre-Yves Le Bas at Los Alamos National Laboratory. More 32 
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details about the signal processing for these experiments may be found in the paper of Payan et 1 

al. (2014b). 2 

 3 

Three resonant modes are then considered for NRUS. The mode shapes, source, and receiver 4 

positions are shown in Fig.1 for the sample thermally damaged at 120°C. Two of the modes are 5 

dominated by a bending motion and require the source and receiver to be located near the 6 

corners of the sample, where the amplitude is the highest, to enhance the signal to noise ratio. 7 

The third mode studied here consists of a “bulk/breathing” motion which is excited by placing 8 

the source transducer at the center of one large face and recorded by pointing the laser beam at 9 

the center of the opposite face. 10 

 11 

 12 

 13 

FIG. 1. (Color online) Experimental (a) first, (b) second and (c) third NRUS curves for the 14 

120°C damaged sample. Insets are the corresponding modal shapes. 15 

 16 

B. Numerical protocol 17 

 18 

The relatively large mass added by the transducer is accounted for in the model by an aluminum 19 

cylinder with a perfect contact between the transducer and the sample. The following protocol 20 

is applied (Fig.2) to describe the numerical process. The simulations are carried out using the 21 

“Structural Mechanics” module of the commercial finite-element software package Comsol® 22 

Multiphysics. 23 

• Step 1 : A first eigenvalue problem is solved to compute the resonance frequencies of the 24 

samples with linear elastic properties (before the material-softening law is applied), which 25 

were already measured by Payan et al. (2014b) in previous work. The predicted and 26 

measured resonance frequencies of the systems with linear elastic properties that are 27 

reported in Table. I are in excellent agreement. Having a representative and accurate linear 28 

model is essential to the numerical protocol in this problem because the maximum values 29 
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of strain amplitudes in the samples are recovered from the linear model, based on the laser 1 

measurement at a single point.  2 

• Step 2 : In the second step of the numerical protocol, a frequency-domain simulation is 3 

conducted by imposing a normal force on the free flat surface where the transducer is 4 

mounted. The amplitude of the normal force is tuned to match the particle velocity at the 5 

measured position on the sample.  6 

• Step 3 (Fig.2) : The strain tensor is extracted at all nodes of the mesh discretizing the sample 7 

and used for the conditioning step. As the media is initially considered isotropic and 8 

homogeneous, the initial local stiffness is independent of the choice of basis and usually 9 

written Cijkl = λ δijδkl + μ (δikδjk + δilδjk). Using Eq. (1) and Eq. (4), the material softening 10 

effect is applied to the stiffness tensor Cijkl
* trough the tensors Λij in the eigen basis. 11 

• Step 4 (Fig.2) : The conditioned elastic tensor is then transposed back to the “geometrical” 12 

basis. After this numerical procedure, the sample, initially homogeneous and isotropic, 13 

becomes heterogeneous and anisotropic. 14 

• Step 5 : A final eigenvalue problem is solved to compute the resonance frequencies of the 15 

samples with conditioned elastic properties. Steps 2 to 5 are repeated for several amplitudes 16 

to provide a curve of the relative shift of the resonance frequency. 17 

 18 

 19 

FIG. 2. Scheme of the numerical and experimental protocols. 20 

 21 

Resonance frequencies f0 (kHz) 

Sample Mode 1 Mode 2 Mode 3 

 Exp Num Exp Num Exp Num 

Ref 10.16 10.09 (-0.7%) 17.33 17.36 (+0.2%) 24.02 24.43(+1.7%) 
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120°C 9.95 9.96 (+0.1%) 16.86 16.81 (-0.3%) 23.30 23.79 (+2.1%) 

250°C 9.43 9.53 (+1%) 15.97 14.739 (-7.7%) 22.31 22.30 (-0.1%) 

Table. I. Resonance frequencies obtained experimentally and numerically with linear RUS. 1 

 2 

IV. Results and discussion 3 

 4 

Predicted and measured material softening in NRUS are shown in Fig.3 for the three samples. 5 

The values of α0 used in the simulations to match the experimental data are reported in Table. 6 

II.  7 

 8 

Sample α0 

Reference 300 

120°C 520 

250°C 1000 

Table. II. Values of the parameter α0 used in the NRUS simulations for the three concrete 9 

samples. 10 

 11 

Note that this value increases by more than 300% between the reference sample and the most 12 

damaged sample, which seems to be consistent with the evolutions of the nonlinear parameters 13 

reported in the literature. To highlight the efficiency of the present model, the “apparent” 14 

nonlinear parameters are measured by linear regression of the relative frequency shift as a 15 

function of the strain amplitude for the three modes studied. This apparent nonlinear parameter 16 

changes with the mode order and the type of strain (e.g., volumetric and deviatoric) used in the 17 

analysis. For each mode and each sample, the apparent nonlinear parameters obtained with 18 

volumetric and deviatoric strains are reported in Fig.4. Tying this apparent nonlinear parameter 19 

to a 1D description will lead to erroneous conclusions including that the nonlinearity is 20 

dispersive (i.e., depends on the order of the mode) or is dependent on the type of strain involved 21 

(e.g., shear or compressional components). It is important to stress that the nonclassical 22 

nonlinearity should be handled by a local parameter appropriately integrated within the 23 

elasticity equations. 24 

 25 

Numerical simulations using a single scalar parameter α0 reproduce well the experimental 26 

observations, independently from the type of strain used or the mode order employed in the 27 
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nonlinear analysis. There are some discrepancies between numerical simulation and 1 

experiments for some cases, but it does not seem to be consistent with the type of mode or a 2 

particular sample. Discrepancies are most likely due to the complexity of the experiment and 3 

the presence of a large transducer mounted at various positions on the sample to excite the 4 

various modes. Also, the sample do not have the perfect parallelepiped geometry used in the 5 

model. Even if the sample size was precisely measured using a caliper, parallelisms deviations 6 

are not accounted for in the simulations. 7 

 8 

For the third mode, all the frequency shifts flatten a little bit at increasing amplitude (Fig.3). 9 

This behavior may be induced by some hidden resonant peaks which could appear at high 10 

amplitude. This can happen especially at “high” frequency when the resonance frequency 11 

density becomes high. Even if the location of the transducer was chosen so as to favor a given 12 

mode shape, other nearby resonances may alter these curves. 13 

 14 

More importantly, the simulation results indicate that, in the case of concrete the nonlinear 15 

behavior of the material for both compressional and torsional motions is well captured by a 16 

single local scalar parameter. These results are in agreement with the fact that the distribution 17 

of defects in the thermally damaged concrete samples is isotropic. 18 
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 1 

FIG. 3. (Color online) Experimental and numerically predicted resonances curves for the whole 2 

set of samples and modal shapes. 3 

 4 
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 1 

FIG. 4. (Color online) Experimental and numerically derived apparent nonlinear parameters. α0 2 

is also reported for comparison. 3 

 4 

V. Conclusion 5 

 6 

A tensorial interpretation of the softening effects under dynamic stress was integrated in a 7 

numerical scheme using a single scalar parameter. The key feature of the model relies on locally 8 

applying a softening law to the elastic tensor in the eigenbasis of the strain field and 9 

transforming this tensor back to the geometrical basis once the softening has been applied. 10 

Numerical simulation results were compared to nonlinear multi-modal resonance experiments 11 

on thermally damaged concrete samples. In these samples, it was well adapted to predicting 12 

nonlinear behavior of their complex mode shapes involving coupling between shear and 13 

compressional components. This is in good agreement with the fact that an isotropic distribution 14 

of defects is expected in these materials.  15 

 16 

It also shown that without accounting for these issues, the derived apparent nonlinear parameter 17 

can lead to erroneous interpretations. In this study, one could conclude to frequency dispersion 18 



Lott, JASA 

14 
 

or strain type dependences of nonlinearity. However, none of these statements are supported by 1 

the appropriate description of nonlinearity in the elasticity equations. 2 

 3 

Future improvements of the model will aim at accounting for textured type of microcracking 4 

using the more general framework of a vectorial nonlinear parameter. Indeed, experimental data 5 

reported in the literature (Remillieux et al. 2016; Lott et al. 2017) show that many sedimentary 6 

rocks (e.g., Berea sandstone) exhibiting preferred oriented micro cracking features would 7 

require such a description. 8 

 9 
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TABLES 1 

 2 

 3 

Resonance frequencies f0 (kHz) 

Sample Mode 1 Mode 2 Mode 3 

 Exp Num Exp Num Exp Num 

Ref 10.16 10.09 (-0.7%) 17.33 17.36 (+0.2%) 24.02 24.43(+1.7%) 

120°C 9.95 9.96 (+0.1%) 16.86 16.81 (-0.3%) 23.30 23.79 (+2.1%) 

250°C 9.43 9.53 (+1%) 15.97 14.739 (-7.7%) 22.31 22.30 (-0.1%) 

Table. I. Resonance frequencies obtained experimentally and numerically with linear RUS. 4 

 5 

 6 

Sample α0 

Reference 300 

120°C 520 

250°C 1000 

Table. II. Values of the parameter α0 used in the NRUS simulations for the three concrete 7 

samples. 8 
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FIGURE CAPTION 1 

 2 

FIG. 1. (Color online) Experimental (a) first, (b) second and (c) third NRUS curves for the 3 

120°C damaged sample. Insets are the corresponding modal shapes. 4 

 5 

FIG. 2. Scheme of the numerical and experimental protocols. 6 

 7 

FIG. 3. (Color online) Experimental and numerically predicted resonances curves for the whole 8 

set of samples and modal shapes. 9 

 10 

FIG. 4. (Color online) Experimental and numerically derived apparent nonlinear parameters. α0 11 

is also reported for comparison. 12 


