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ABSTRACT: Elastic network models (ENMs) are valuable tools for investigating collective motions of proteins, and a rich variety of simple
models have been proposed over the past decade. A good representation of the collective motions requires a good approximation of the
covariances between the fluctuations of the individual atoms. Nevertheless, most studies have validated such models only by the
magnitudes of the single-atom fluctuations they predict. In the present study, we have quantified the agreement between the
covariancestructure predicted by molecular dynamics (MD) simulations and those predicted by a representative selection of proposed
coarse-grained ENMs. We then contrast this approach with the comparison to MD-predicted atomic fluctuations and comparison to
crystallographic B-factors. While all the ENMs yield approximations to the MD-predicted covariance structure, we report large and
consistent differences between proposed models. We also find that the ability of the ENMs to predict atomic fluctuations is correlated
with their ability to capture the covariance structure. In contrast, we find that the models that agree best with B-factors model

collective motions less reliably and recommend against using B-factors as a benchmark.

INTRODUCTION

Elastic network models (ENMs) provide a greatly simplified
perspective on collective protein motions, and ever since Tirion’s
pioneering work' a variety of different models have been
suggested. The success of coarse-grained ENMs has to some
extent been surprising, and their simplicity has provided novel
insights into diverse protein mechanisms. Among many
applications we find: characterization of the mechanics of large
allosteric transitions and of motor proteins,” > studies of
Brownian dynamics,® characterization of structural response in
evolution,”'* and applications in structural alignment (e.g, Zen
etal.)."" The simplicity of their parametrization and the relatively
low computational cost of ENMs make them convenient
compared to traditional molecular mechanics approaches and
often enable analyses that would otherwise not be feasible due to
constraints on computational resources. ENMs have also been
adopted for the study of fundamental physical properties of
proteins (e.g, Reuveni et al.)'>"® for which it is not clear that
more detailed models offer any advantages.

Tirion computed thermodynamical statistics for proteins using
an intrinsic dynamics model with a greatly simplified harmonic
potential." The potential was constructed to have its minimum at
the equilibrium coordinates reported from experimentally
determined structures. This work demonstrated the feasibility
of predicting collective motions from ENMs, and how
computationally expensive structure minimization can be

avoided. In the subsequent decade, several researchers
incorporated this finding into ENMs developed for normal-
mode analysis, adding further simplifications such as coarse-
graining at the residue level.'*'> Later, refinements to these
initial coarse-grained models were suggested, e.g., approximate
side-chain models'® and refined backbone modeling.'”'®
Simplifications in the degrees of freedom have also been
suggested. Bahar et al.” proposed an isotropic model employing
a potential which restrains angular deviations of contacts."
Lately, coarse-grained models in torsional angle space have been
proposed.”®*" These models have completely rigid bonds
between C, atoms adjacent in sequence, thereby reducing the
dimensionality by ignoring these degrees of freedom and
essentially preserving the form of the potential.

Experimental validation of ENMs has been done by analysis of
proteins trapped in different conformations, e.g., comparing the
transition between apo- and holo-structures of liganded proteins
to the low-energy normal modes.”*'~>* Comparisons to
crystallographic B-factors and conformational variability in
NMR ensembles also serve as rough validations of the atomic
fluctuations predicted by ENMs. Several studies have validated
and benchmarked ENMs against these experimental stand-
ards.**"*° Computationally, validation has been done by



comparison with molecular dynamics (MD) simulations of more
detailed, anharmonic potentials that have been parametrized
semiempirically.'®*"** To guide practitioners in choosing
between models and parametrizations and aid in further model
development, we find it important to benchmark suggested
ENMs and evaluate the effect of the suggested model
refinements. Some effort has already been made in this regard.
For example, Micheletti et al.'® and Rueda et al.*' each compare a
small selection of ENMs against MD simulations, while Riccardi
et al>*** treat a selection of models focusing on crystalline
structures. Recently, Romo and Grossfield*® and Leioatts et al.*®
have compared different ENM formalisms to each other, using
MD simulations as a benchmarking standard.

In the present work we aim to do a comprehensive comparison
of proposed parametrizations for different ENMs applied to
isolated (noncrystalline) structures. We prefer benchmarking
against more detailed computational models for two reasons.
First, ENMs are motivated by the statistical properties of
interaction averages in collective motions," and we find it
important to use methods that can compare the inter-residue
positional covariances describing this collectivity, rather than just
single-atom variances. Second, B-factors are dominated by
contributions from crystal defects rather than thermal fluctua-
tions,”™” and the variability in NMR ensembles is due to
incomplete experimental data as well as thermodynamic effects.
This makes both these experimental sources for atomic
fluctuation data too unreliable for benchmarking.

In the following, we compare a selection of six types of ENMs
with fixed parameters by calculating the agreement of MD-
predicted and ENM-predicted covariance matrices. To this end
we use MD trajectories of seven solvated proteins of different size
and oligomerization. We then contrast our approach with
benchmarks comparing B-factors and ENM-predicted atomic
fluctuations. To disentangle the quality of the benchmark from
the sensitivity of the measure used for comparison, we also
benchmark ENMs by comparing with MD-predicted atomic
fluctuations, using the same measure of similarity that we use for
comparing with B-factors. The results obtained allow us to
comment on the different relevance of the proposed ENMs for
protein modeling and identify some factors that are important to
consider for these kinds of models. We also provide results that
demonstrate shortcomings of the common approach to
validation against B-factors.

MATERIALS AND METHODS

Crystal Structures. To compare predictions of covariance
structures from ENMs and MD data, we selected seven
structures of varying size, secondary structure and domain
compositions, and oligomerization. The investigated structures
are tabulated in Table 1. For the GroEL subunit, chain A of the
listed structure was used, although this crystal is obtained for the
entire 14-mer complex.

Elastic Network Models. The ENMs considered in this
study model the protein as a network of nodes located at the
positions of representative atoms of each residue, typically one
node for each C, position. In all the models these nodes are
interacting through a harmonic pair potential that is minimal
when the nodes are both at their equilibrium positions. The
potential used in all but one ENM can be generalized as
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Table 1. Proteins Used for Benchmarking

PDB code  residues  oligomerization
human prion protein 3HAK® 103 monomer
lysozyme 193L% 129 monomer
deoxy myoglobin 1vXD*¥ 151 monomer
phospholipase-C (PL-C) 1PTG" 305 monomer
trio INTY* 311 monomer
GroEL subunit 1XCK*® 547 monomer
ATCase unligated complex 6AT1* 2778 12-mer

where || || denote the Euclidean norm, r is a conformation of the

ENM, r° is the equilibrium conformation, and r; and r! are three-
dimensional column vectors describing the position of node i in
the respective conformations. The force constant k; is a
parameter controlling the strength of the interaction and is
specified differently in the different models. In this work, the
equilibrium conformation used to calculate the ENMs is in all
cases taken to be an X-ray structure model obtained from the
Protein Data Bank (PDB).*>*¢

Adding the potential energy terms for each pair of nodes and
expanding the result in a Taylor series around r, the potential for
an ENM is expressed as

U(r) = (r — rO)TH(r ) 2)

where H is the Hessian of the system and T denotes the
transpose. H has the form:

—ﬁ(r? - f?)(r? - f?)T; i#j
lr; — rjll
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As only internal interactions are considered, rotations and
translations have no energetic cost, and since moreover the
Hessian is evaluated at an energy minimum where the energy
gradients are zero, the rank of H is at most 3N — 6, with N the
number of nodes in the network.

The Boltzmann distribution for a system governed by a
harmonic potential is a Gaussian distribution with covariance
matrix proportional to the inverse of the Hessian. In the case of
the potential specified in eq 2, whose Hessian is singular, the
covariance matrix of fluctuations can be calculated as the
Moore—Penrose pseudo-inverse of H, denoted with superscript
+. We subsequently normalize the covariance matrix by
multiplying with the reciprocal of its trace:

= 1+ H
tr(H™) 4)

where X is the normalized covariance matrix and tr denotes the
trace of its argument. This normalization removes a global
amplitude factor from the fluctuations and covariances, which
none of the ENMs describes realistically anyway.?” The relative
magnitude of atomic fluctuations is predicted by the positional
variances of the nodes:

o’ = tr(Z)

©)

where 67 denotes the fluctuation of node i and ;; denotes the 3 X
3 submatrix of %, containing the positional covariance of the
three Cartesian coordinates for node i.



The Gaussian network model (GNM)' and a recent
refinement of it>® use a different pair potential:

Z kij 0 0\\T
Uij (r) = ?((ri - rj) = (r; - rj)) ((r, = rj)

- (] =) (6)

The Cartesian components of displacements contribute
independently to this potential, so the potential energy terms
can be summed separately for each coordinate axis:

3
U%(r) = ¥ ~(R, - RY'T(R, - RY)
2
n=1 (7)
where R, and R} are vectors of size N describing the position of

each node along each of the coordinate axes, and I'is a N X N
matrix with

—ky,  ifi#j
L=1% -5, =)
I#i (8)

Rearranging eq 6 reveals that the potential is dependent on the
angle between the displacements of connected residues and
hence not generally zero for rigid body rotations. For translations
the potential is zero, so the rank of I' is at most N — 1. Summing
the covariances along each coordinate axis gives the expected
values of the inner products of the displacements, which are
proportional to the elements of I'*. The normalized matrix of the
expected values of the inner products Z is

1
7= rt
tr(I'™") 9)

whose elements are commonly treated as scalar valued
covariances. To contrast this to the other ENMs, note that
under their respective potentials H;; = ((r; — 1) (r; — 1) "), while
Zi = ((r; = r?)T(rj - r}(.))). () denotes the expected value. The
relative magnitudes of atomic fluctuations ¢7 is:

Ciz =Z; (10)

which has the same interpretation as 67 for the other ENMs.

ENM Parameterizations. In the following the six ENMs we
have treated will be presented. Apart from the two forms of the
potential energy function (eqs 2 and 6), the ENMs are
characterized by how the values for the force constants are
determined. We have focused on anisotropic C, models in
Cartesian coordinates, in addition to the GNM which was
included since it is a very popular model.

Uniform Force Constants (ANM and GNM). The two
simplest models, the GNM" and the anisotropic network model
(ANM),"® define the force constants as

y, if di? <c

where dg =0 - rio|| , 7 is a uniform force constant, and ¢ defines a
cutoff distance within which nodes are defined to be interacting.
We only treat normalized covariance matrices and atomic
fluctuations, which are not affected by the parameter y, so its
value is not important. The parameter ¢ of the GNM is generally
chosen to include interactions within the first coordination shell
around interior residues, often with a value around 0.7 nm."® For

the ANM there is no clear consensus on a transferable value for
this parameter. Cutoffs in the range of 0.7 nm can in this case lead
to under-restrained degrees of freedom, causing local over-
estimates of atomic fluctuations.'® In the case of completely
unrestrained degrees of freedom implied in protein deforma-
tions, this model has a Hessian of rank lower than 3N — 6.
General recommendations for the cutoff in the case of ANM vary
from the range of 0.8—0.3 nm*” to the range of 1.5—2.4 nm.*” For
both models it has been suggested that the appropriate cutoff
could be chosen by fitting to B-factors.””** We will refer to these
models subscripted with the cutoff parametrization in nanome-
ters, e.g,, ANM,g for an ANM model with ¢ = 0.8 nm. When
investigating the ANM we have represented it with one
parametrization from either range (ANM,g and ANM,y),
illustrated in Figure 1.

Figure 1. [llustration of a uniform force constant ENM (ANM or GNM)
of the triple functional domain protein (trio). Left: Cartoon
representation of the protein, C, atoms shown as red spheres. Center
and right: Elastic interactions (gray bonds) for a cutoff of 0.8 and 1.8 nm,
respectively.

Distance-Dependent Force Constants (HCA and
pfANM). The model introduced by Hinsen et al,® which we
will refer to as the harmonic C, potential model (HCA),
determines the force constants as

ad] — b, ifdj <c
ki/
ay(d))°, ifd) > c (12)
where the parameter c is set to 0.4 nm to separate interactions
between C, atoms adjacent in sequence from the other
interactions. Long range interactions are proportional to an
inverse power of six of the equilibrium distance between the
interacting nodes. The parameters a;, a,, and b were chosen by
fitting to an all-atom normal mode calculation for crambin.’ This
is also the parametrization we have used here.
The parameter-free anisotropic network model (pfANM
defines force constants by the inverse-square of the equilibrium
distance between the interacting nodes:

0\—2
ky = (d,.j (13)

On the request of a reviewer we also tested the dependence of
pfANM on the choice of exponent, and in particular to the
alternative choice of —6 which is very similar to the HCA model.
Results are presented in the Supporting Information.
Backbone Refinement (REACH). In a series of publications,
Smith and co-workers investigated several aspects of coarse-
grained modeling of protein interactions with the realistic
extension algorithm via covariance Hessian (REACH)
model.'”***" In particular, refined force constants for backbone
interactions were considered. Long range interactions were
treated with a fast decaying distance-dependent function. We

)49



have used here the rnodel employed by Moritsugu and Smith'”
and Moritsugu et al.:*

-

ki, if s =1
ks ifs =2
kij=<kl4, ifs=3
ale_bld'?, ifs>3
aze_bzd*? , forinterdomain interactions (14)

where s is the sequential distance between the interacting
residues, so that s = 1 for adjacent residues. More generally, two
interacting residues are separated by s — 1 other residues along
the protein sequence. We have used the parameters obtained
from fitting to MD simulations of a myoglobin dimer."”

For a visual comparison of the distance dependence of the
force constants in HCA, pfANM, and REACH, see Figure S3.

Implicit Side-Chain Representation (fGM). The f
Gaussian Model (BGM)'® uses a force constant definition very
similar to that of the ANM and GNM, but sets itself apart from
these by modeling side-chains. Nodes representing C, atoms are
located at their equilibrium position, and side-chains are
represented for all residues except glycines by a node we will
refer to as C;. The position of Cy is given by

20 00
O =40 Toi ~ Yait1 ~ Yai-1
pi — Tai o 0

” 21'(11 ~ Toip1 T l'mz‘—l” (15)

where 1}; and r; denote the position of the C; and C,, atoms of i,
respectively, and 1 is chosen to be 0.3 nm. An approximation to
the Cj displacements as a function of C, displacements can be
derived from this as

2%y — Xyip1 — Xgiy

X5 XX, 71
pi ai 0 0 0
| Zrai RS rai—l” (16)

with x,; and x4; denoting the displacements of the C, and Cyatom
of residue i, respectively. Substituting eqs 15 and 16 into eq 2
gives a Hessian of C, coordinates incorporating the effects of
interactions with Cy atoms:

T T

where H,, H,s and Hy, are the Hessians for interactions
between C, atoms, between C, and Cj atoms, and between Cy
atoms, respectively. D is a 3M X 3N-matrix encoding eq 16, the
transformation from N C, displacements to M Cg displacements.
In principle, four force constants are defined:

K, ift(i)=t(j)=C,ands=1
aa’ lf t(l) = t(]) {11

K
s>1
7 | Kyp i (i) = C,, t(j) = Cyy i # j and
0 0
ey —rpll <c

Kgg, if (i) = ¢(j)

—r0||<cand

- 0 0
=Cpand llry —rpll <c (18)

where t(i) denotes the type of the node (C, or Cy). Following
Carnevale et al.® we set i, = K op = Kpp Kg = 2Kgq and ¢ = 0.75 nm.

Atomistic Sampling Model. From MD trajectories the
covariance matrix V is obtained as a sample statistic:

= X)X, - X)

(19)

where X is a column vector of dimension 3N specifying the jth
conformation in the trajectory, roto-translated to minimize the
root-mean-squared distance (RMSD) over all C, atoms to the
conformation reported in the PDB. M is the number of
conformations in the trajectory, and X is the mean conformation:

L1 e
Xﬂ;

We obtain the normalized covariance matrix S as for the ENM
covariances:

(20)

1
tr(V) v (21)

S =

Since roto-translational contributions to the variance are
approximately removed these matrices effectively have rank 3N
— 6, provided sufficient sampling. The relative magnitudes of
atomic fluctuations are obtained as

5i2 = tr(S;) (22)

where s? denote the atomic fluctuations for atom i and S is the 3
X 3 submatrix of S containing the positional covariances of the
three Cartesian coordinates for atom i.

B-Factors. When comparing with B-factors we use the
isotropic B-factor of each C, atom as they are found in the PDB
structures listed in Table 1. These parameters are fitted to
experimental observations and typically represent the width of a
Gaussian electron density assumed for each atom. The values for
this fit are dependent on many factors, like thermal fluctuation,
lattice defects, and static disorder. Because of the former they are
sometimes taken to be an approximation to the thermal
fluctuations of the crystal. We denote the B-factors for a crystal
structure by the vector b? with b} the B-factor of atom i.

Measures of Similarity. Similarity of Covariances. We
benchmark ENMs by comparing the covariance matrices they
predict with covariance matrices obtained from MD simulations.
We compare such matrices with the rank-normalized Bhattachar-
yya distance, introduced for this purpose in Fuglebakk et al.*> For
comparing covariance matrices A; and A, this is

1 IAl
ND , = —
B(A1 A,) = l(|QA1Q|QA2Q)1/2] (23)

where the columns of Q are the g principal components of (A, +
A,)/2 with highest variance and A is a diagonal matrix with the
corresponding eigenvalues. | | denotes the determinant, and we
choose g to retain 95% of the total variance of (A, + A,)/2 with as
few principal components as possible. This dimensionality
reduction is done to ensure positive definiteness of the matrices.
For convenience we report the similarity as the Bhattacharyya
coeflicient:

BC(A,, A;) = e DiArA) (24)

which is maximally 1, obtained when A; = A,. Viewing the
proteins’ Boltzmann distributions as central Gaussian distribu-
tions, p, with covariance matrix A; and p, with covariance

matrix A,, eq 24 can be derived from the more general form:



Table 2. Bhattacharyya Coefficients Comparing MD Covariances with Covariances Predicted from Different ENMs“

100 ns® 10 ns? 100 ns© 20 ns® 100 ns© 230 ns® 60 ns®

prion lysozyme myoglobin PL-C trio GroEL ATCase
MD, 3 0.90 0.96 0.94 0.92 091 0.85 0.89
HCA 0.82 0.93 0.87 0.83 0.86 0.78 0.73
REACH 0.82 0.92 0.85 0.83 0.90 0.84 0.80
ANM,, 0.79 0.92 0.89 0.83 0.85 0.77 0.85"
pSGM 0.86 0.93 0.86 0.85 0.90 0.85 0.82
ANM, 4 0.62 0.77 0.63 0.66 0.58 0.54 0.52
pfANM 0.65 0.80 0.66 0.69 0.55 0.51 0.50
NULL 0.58 0.74 0.62 0.66 0.51 0.49 0.50

“The coefficients are maximally 1, the value obtained for identical covariance matrices. The first row, MD,,;, shows comparisons between
covariances obtained from the first and last third of each trajectory. The last row, NULL, compares MD covariances with the null model. bANMolg
covariance matrix had rank lower than 3N — 6. “CHARMM27. “Amber94. “Amber03.

BC(A, A) = [p, ('p, (1) dr 6s)

See for instance Lee Brestschneider.”® The Gaussian assumption
implied in deriving eq 24 from eq 25 is approximate for the MD
covariances, while strictly justified for the ENMs.

The form used by Merritt** to compare anisotropic displace-
ment parameters in crystallographic model refinement is
equivalent to eq 24 for Gaussian distributions. For that
application, where all matrices are positive definite with the
same rank, the rank normalization and dimensionality reduction
are not required.

A brief exploration of the sensitivity of the Bhattacharyya
coeflicient to differences in covariance matrices are provided in
the Supporting Information (Figures S1 and S2).

Similarity of Atomic Fluctuations or B-Factors. The atomic
fluctuations predicted by MD sampling (eq 22), ENMs (eq S), or
isotropic B-factors can all be expressed as N-dimensional vectors
with a value for each C, atom of the protein structure. We
compare two such vectors, w; and w,, by their normalized
squared inner product (SIP):

(Wirwz)z

SIP(w, w,) = ———F——
0o ) (WlTwl)(W;rwz) (26)

Null Model. As a null model for the benchmarking of
covariances, the identity matrix would represent the covariance
matrix of a protein with uniform fluctuations and no correlations
between the atoms. However, the complete absence of
correlations can be obtained only by including the rotational
and translational degrees of freedom of the whole protein.
Therefore we consider instead the projection of the 3N X 3N
identity matrix onto the subspace of internal deformations of the
protein. The null-matrix, X, is

6
Z0=I - (Z anf)
n=1 (27)

where I is the identity matrix and v are the orthonormal basis
vectors for the subspace of global translations and rotations. The
matrix is then normalized to its trace as was done for the ENM
and MD covariance matrices. For comparing with the GNM we
use an analogous definition of the null-matrix, which is the
projection of the N X N identity matrix. This is obtained by
simply subtracting the outer product of the normalized
eigenvector describing uniform displacement, u. The null-matrix
for the GNM Z,, is

Z0=I—uuT

(28)
Note that every entry of uu” is equal to 1/N. These matrices have
rank 3N — 6 and N — 1 with all nonzero eigenvalues being the
same. Motion represented by these matrices is not completely
uncorrelated between atoms, but as the variance is equal along all
principal components, collective and local motions have the
same energetic cost. The Bhattacharyya measure conveniently
allows us to do meaningful comparisons with the null model,
even with this degeneracy of eigenvalues.>

MD Simulations. For two of the structures we used MD
trajectories previously published. We refer to these publications
for the modeling details. A 10 ns trajectory of lysozyme (PDB ID:
193L) was obtained with the Amber94 force field>> by Kneller
and Hinsen*® (the reference reports a 1.2 ns trajectory, which was
later extended to 10 ns). A 285 ns trajectory of the GroEL
subunit (PDB ID: 1XCK, chain A) was obtained with the
Amber03 force field®” by Skjaerven et al.>®

A 20 ns of trajectory of phospholipase-C (PDB ID: 1PTG)
solvated in TIP3P-solvent™ was obtained with the CHARMM27
force field” by co-worker Cédric Grauffel, who kindly offered
this trajecto?f for analysis in this study. Integration was done with
NAMD 2.8,°! with an integration step of 1 fs and a temperature
of 300 K. Distance constraints were enforced on all bonds
between hydrogens and heavy atoms by the SHAKE algorithm.®*

For the remaining four structures we solvated proteins in
TIP3P-solvent and simulated using the CHARMM?27 force-field.
In the ATCase complex zinc ions are coordinated by four
proximal cysteine residues, a type of interaction not well
represented in CHARMM?27. We modeled these interactions
with harmonic energy terms restraining the distance between the
sulfurs and the ion. 100 ns production runs were obtained for all
four systems, using Gromacs version 4.5.4% with an integration
step of 2 fs. Distance constraints on all covalent bonds were
enforced by the LINCS algorithm.** All ensembles were coupled
to a thermostat set to 300 K.

Additional details about the MD simulations are provided as
Supporting Information.

Analysis of MD Trajectories. For all trajectories we super-
imposed all frames to the conformation reported in the PDB
structure to minimize the RMSD. We then investigated whether
this distance was stable across the trajectory. We discarded any
leading frames that exhibited very large variation in this
parameter. For most proteins no frames needed to be discarded,
but for the AT Case-complex and the GroEL subunit as much as
40 and 55 ns were removed, leading to final trajectories of 60 and
230 ns, respectively. Some of the trajectories still had somewhat



increasing trends for the RMSD. Nevertheless, we have chosen to
use these trajectories, as converged descriptions of collective
motion is not attainable. Recent work also indicates that
amplitude-normalized ensemble statistics are not very sensitive
to simulation time.**%® To guard from overinterpretation we
quantified the heterogeneity of the covariances in a trajectory by
comparing covariance matrices obtained from the first and last
third of the trajectory. This internal similarity is denoted MD, 5.
For the analyzed trajectories, plots of the RMSD to the PDB
conformation is provided as Supporting Information.

RESULTS

Benchmarking the ENMs. To learn which of the
investigated ENMs are better suited to model the inter-residue
covariances of compact folded proteins, we calculated the
Bhattacharyya coeflicient for the comparison of each ENM-
predicted covariance matrix (eq 4) to the covariance matrix
obtained from MD simulations (eq 21).

The results are tabulated in Table 2. Reported here are also the
similarities between the MD covariances and the null model (eq
27) and the similarity between covariance matrices obtained
from the first and last third of each trajectory. For the GNM, no
result is reported in this table, as the covariance matrix that can be
obtained from this model has a different interpretation from
those obtained with anisotropic models. For the ANM,, g model
of the AT Case, the Hessian had rank lower than 3N — 6. These
additional zero components were eliminated the same way as the
roto-translational components when constructing the covariance
matrix (eq 4).

We observe a clear separation between models that have weak
long-range interactions (HCA, REACH, ANM,, and fGM) and
models that have relatively strong long-range interactions
(pfANM and ANM,;), the former performing consistently
better than the latter. We consider the ANM, 4 to provide long-
range interactions due to the very high connectivity of an atom
that interacts with all neighbors within 1.8 nm. Within these two
groups there are no consistent trends for ranking the models,
although there seem to be a tendency for the refinements
introduced in REACH and /GM to have a positive effect. Note
that the functional form describing the distance dependence of
force constants are varied within these groups, with little effect on
the agreement with MD covariance. Similar observations were
recently made by Leioatts at al.>®

Since the uniform force constant models are convenient to
visualize, we refer to Figure 1 for an illustration of the contrast
between weak long-range interaction (ANM,;) and strong long-
range interaction (ANM, g).

The MD-predicted covariances are dependent on the time-
scales sampled, the choice of force field, solvent modeling, and
sampling parameters as well as important but arbitrary system
preparation parameters like initial velocity configurations.
Observations regarding the differences between the ENMs that
are not consistent for different proteins should therefore be
interpreted cautiously. For the case of the GroEL subunit we
investigated the dependence of covariances on the initial
velocities by comparing S trajectories of 100 ns each, all
computed from different initial velocity configurations. This was
the system with the longest simulation time and the lowest
internal consistency (MD) ;). Averaging over all 10 comparisons
this gave a mean Bhattacharyya coefficient of 0.84, with a
standard deviation of only 0.019. We did not attempt to quantify
this dependence for other proteins. Considering the comparison
of parts of the trajectories to each other (MD,;), we note high

coeficients indicating that the trajectories give stable estimates of
the covariances.

For the GroEL subunit, for which we have data from multiple
trajectories, we see that the best performing ENMs are as similar
to the MD covariances as covariances obtained from these
trajectories are to each other. This is in agreement with earlier
observations that a good ENM can be as reliable as a single MD
trajectory for capturing the covariance structure of a protein.'®
On the other end of the table, we observe that the worst
performing models are sometimes only marginally more similar
to the MD covariances than the null model.

Alternative Benchmarks: MD fluctuations or B-Factors.
We have chosen to benchmark the ENMs by comparing the
covariance matrices obtained from coarse-grained ENMs with
those obtained from atomistic MD simulations. The primary
reason for this is that the covariance structure of the protein
determines its collective motions, the kind of motions that ENMs
are best motivated for studying. Although the principal
components of the covariance matrices are often used to make
inference about large amplitude motions, both the ENMs and the
MD simulations only explicitly consider small deviations from
the equilibrium structure. Under equilibrium dynamics, it is
expected that tightly coupled degrees of freedom will remain
tightly coupled even on longer time scales, which justifies
validating ENMs by assessing the covariance structure. It is
however not clear that agreement between atomic fluctuations of
models imply agreement between their covariance structures. As
other studies have frequently validated ENMs by the atomic
fluctuations they predict, we are interested in learning to what
extent this benchmark agrees with results for MD covariances.

We therefore benchmarked the ENMs by comparing the
atomic fluctuations obtained from the ENMs (eq S) to both
atomic fluctuations obtained from MD trajectories (eq 22) and
B-factors. The agreement was quantified using the SIP (eq 26).
Figure 2 summarizes the results and contrasts them with the
benchmark against MD covariances. We note that the best
models according to the benchmark comparing covariances are
also the best in terms of benchmarking with MD atomic
fluctuations, except for ANM,,. Despite its high score when
benchmarking with covariance, the ANM,;z sometimes obtains
very low scores both for comparisons with MD atomic
fluctuations and B-factors. This is illustrated by the very
inconsistent intersect of the green lines with the F and B axes
in Figure 2. The ENMs that are in poor agreement with MD
covariances are also generally in poor agreement with the atomic
fluctuations, while they are in good agreement with the B-factors.
Notice in this respect the frequent crossing of red and blue lines
connecting C and B axes in Figure 2. Particularly, pfANM has
consistently the best agreement with B-factors among the
anisotropic models, while almost consistently being among the
worst along the other axes.

For benchmarking with MD atomic fluctuations and B-factors,
we also obtained results for the isotropic GNM with a cutoft of
0.8 nm. These are shown in gray in Figure 2 (only between the F
and B axes), showing that GNM,, quite consistently agrees
poorly with the MD atomic fluctuations and agrees well with B-
factors.

Atomic Fluctuations of Short Cutoff ANM. The disagree-
ment between benchmarking with atomic fluctuations and
covariances is striking for the case of ANM,s. We inspected the
atomic fluctuation profiles for the proteins where this disagree-
ment is larger and found this difference to be explained by the
kind of extremely mobile residues that can be expected in under-
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Figure 2. A comparison between benchmarking with MD covariances
(C) and benchmarking with either B-factors (B) or MD atomic
fluctuations (F). All three axes extend in the positive direction from the
origin. The lines connect scores obtained with the same model. HCA,
REACH, and fGM are colored in blue, ANM, is colored in green, and
ANM, 5 and the pfANM are colored in red, pfANM being the darker red.
The gray dotted lines connect scores for the GNM,, for which no
comparison of covariances were done.

restrained regions of short cutoff ANM models.'® One example is
the GroEL subunit. For this structure ANM 3 ranks comparably
well when considering covariances but scores poorly both when
comparing with B-factors and MD atomic fluctuations (Figure
2). Although most of the profile shapes are in good agreement,
there is a very high peak that affects the normalized magnitudes
resulting in a low value for their SIP; see Figure SS. This peak
consists of three residues in a short loop segment joining two
antiparallel S-strands (Figure S6). If the fluctuation of the most
mobile residue in this peak is excluded from the atomic
fluctuation profiles, the SIP is increased from 0.15 to 0.44.

In the case of the AT Case complex some chain terminals are
only connected to two other C, atoms with this cutoff. This leads
to unrestrained rotation around a nearby bond, which explains
the aforementioned additional zero components of this Hessian;
see Figure S7.

Cutoff Dependence for Covariances and B-factors. To
investigate the sensitivity of the benchmarks to the choice of
cutoff parameter for the ANM, we repeated the benchmark
against MD covariances and B-factors for different cutoffs in the
range 0.8—2.5 nm. Figure 3 summarizes the results (the large
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Figure 3. The dependence of the performance of the ANM for two
different benchmarks on the cutoff parameter. (a) The Bhattacharyya
coefficients (BC) for comparing the ANM covariances (X) and MD
covariances (S). The maximal similarity for each protein is shown in red.
(b) The SIP between ENM atomic fluctuations (¢*) and B-factors (b%).
The AT Case complex was excluded from this analysis for computational
reasons.

ATCase complex was omitted from this analysis for computa-
tional reasons). The cutoff values that are optimal for
reproducing B-factors (red marks, Figure 3b) are much higher
than those that optimize similarity with the MD covariances (red
marks, Figure 3a). Often they are even higher than the 1.8 nm
parametrization illustrated in Figure 1. Compared to the MD
covariances, trends for B-factors are less consistent between
different proteins. Particularly, the proteins differ with respect to
how tolerant the reproduction of B-factors will be for lower cutoft
values.

The cutoft that optimizes agreement with MD covariances
consistently falls in the narrow range of 0.8—1.0 nm (Figure 3a).
This is slightly above what would be expected from radial
distribution analysis.*~®®

Loss of Collectivity with Long Cutoffs. We observe from
Table 2 that the models that agree most with the MD-predicted
covariances are those that have weak force constants for the long-



range interactions, and from Figure 2 that stronger force
constants improve the agreement with B-factors. Similarly, we
see that GNM,; is in agreement with B-factors, but less so with
MD atomic fluctuations.

The collective motions of individual protein chains in a crystal
are likely to be largely constrained. As acknowledged by the
ANM authors, agreement with B-factors (for high cutoffs) is
likely to be partly due to these constraints imposed on large-scale
structural changes in crystals. Consider, e.g., the difference in
constraints on the protein domains between the two different
cutoff parametrizations in Figure 1. Similarly we hypothesize that
the potential of the GNM (eq 6) constrains the collective
motions even for short cutoffs by putting an energetic cost on
domain rotation movements.

To investigate the effect of cutoff parametrization on the
collective motions, we compared the null model matrices with
ANM and GNM covariance matrices, obtained with different
cutoffs. Since the null model is representative of nearly
uncorrelated motion, with no energy difference between
collective and local deformations, we interpret high similarity
with the null model as indicative of restricted collective motion.
Results are shown in Figure 4. For increasing values of the cutoff
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Figure 4. The BC for comparing covariances predicted by the ANM and
GNM to the null model, with different values for the cutoff parameter.
Black: ANM, BC(Z,E,). Gray: GNM, BC(Z,Z,).

parameter the ANM and GNM covariances approach the null
model, reaching close to complete agreement at the values
obtained from optimizing cutoffs to reproduce B-factors (Figure
3b).

Contrasting the results of GNM and ANM for low cutoffs, we
note that the GNM is in close agreement with the null model,
even at short cutoffs. For the pfANM, which is the anisotropic
model that agrees the most with B-factors and which also have
force constants decaying very slowly with distance, comparison
with the null model gives Bhattacharyya coeflicients in the range
[0.97,0.99]. Coefficients for the other ENMs are provided as
Table S3.

DISCUSSION

The Appropriate Ranges of Interactions. ENMs give an
approximate representation of the protein interactions, suitable
for investigating thermodynamical properties governed by
collective motions in dense protein structures. Validation and
benchmarking of such models should therefore make sure to test
their ability to represent collective motions. Lacking well-
developed methods for experimentally determining the cova-
riance structure of proteins, we think that covariances from
computational sampling methods are the best standard available
for validating ENMs.

Benchmarking the ENMSs against covariance matrices
obtained by MD simulations, we find that HCA, REACH,
ANM, 5, and SGM perform consistently better than ANM, 4 and
pfANM. The former four models are in good agreement with
MD covariances, while the latter two predict covariance
structures close to that of a null model with no collective motion.

The anisotropic ENMs differ only in their force constant
parametrization. Since we only treat normalized covariances, the
explanation for the differences in benchmarking scores between
the ENMs should be sought in the contrast between the force
constants within a protein model. The competitive performance
of ANM,; reveals that cz;pturmg the first coordination shell
around internal residues® already approximates well the
covariance structure, even when a uniform force constant is used
in this range. This is somewhat surprising given the poor
prediction of atomic fluctuation profiles (Figure 2) and the
technical problems with low-rank Hessians associated with this
parametrization. To more reliably predict atomic fluctuations,
some treatment of long-range interactions is necessary. It is
important, however, to make sure that there is a proper contrast
between the short- and long-range interactions. Simply
extending the ranges of the appealingly simple uniform force
constant model quickly leads to restrictions on collective motion
as illustrated in Figure 4.

Modeling long-range interactions with fast-decaying distance-
dependent force constants (HCA and REACH) or increasing the
granularity of the elastic network (AGM) addresses the problem
of hyper-mobile residues seen in the ANM,;. As can be seen
from the lack of collective effects with the pfANM, it is necessary
to make sure that the long-range interactions decay sufficiently
fast. Particularly one should consider if model parameters are
robust to variations in protein size and oligomerization, by
checking if the system energy is well behaved for lattice sums.
Observing this constraint, it seems that the exact form of fast-
decaying force constant is not that important, comparing an
exponential (REACH) with an inverse power of six (HCA) (see
Table 2). Moreover, changing the exponent in a power-decay
model like the pfANM increases its performance as the contrast
between short- and long-range interactions is increased (see
Figure S4). With the exponent equal to —6, performance very
close to the HCA is recovered (see Table S4).

The Appropriate Potential. We have indirectly assessed the
alternative potential and isotropic assumption invoked by the
GNM, by including this model in relevant analysis. It is
particularly informative to compare with the ANM, which
defines the force constant according to the exact same criteria as
the GNM. As the GNM covariance matrix has a different
interpretation than those of the other ENMs, we did not make a
direct benchmark of covariances akin to the ones found in Table
2. We did, however, compare the atomic fluctuation profiles of
the GNM with those obtained from MD and B-factors and found



the GNM to behave like the anisotropic models with strong long-
range interactions in these respects (ANM, g and pfANM). We
also compared the GNM with a null model analogous to what we
used for the anisotropic models and found it to have very small
collective components. Interpreting this in the light of theoretical
considerations, we think that the similarity between the GNM
covariances and the null model indicates that the simplicity
obtained by the potential in eq 6 comes at the cost of not
capturing collective effects to the same extent as the anisotropic
models. Figure 4 shows that this is the case even for cutoffs which
retain collective motions with the ANM, indicating that it is
indeed the potential and not the cutoff that constrains collective
motion in this case.

One possible cause for this loss of collective motion is that the
GNM puts an energetic cost on rigid-body rotations of domains,
in contrast to any physically realistic potential (see for instance
Thorpe).*” Many large-amplitude collective motions in proteins
contain such rigid-body domain motions.

The Appropriate Benchmarking Standard. In agreement
with Leioatts et al.** we find that the ENM performance is robust
to the choice of formalism for determining force constants. Once
a formalism for force constants is chosen, the parametrization
depends on the standard chosen for benchmarking. We therefore
seek to explain the large differences in collective degrees of
freedom between some of the ENMs by contrasting the
benchmark against MD simulations with that obtained from B-
factors.

Validating models against B-factors is appealing as these are
fitted to experimental observations. The practice can be
questioned though, considering neglected effects such as lattice
defects and crystal contacts as well as unjustified assumptions
made when modeling the B-factors in the structure refinement
process. Also, B-factors are are not necessarily proportional to
the temperature, as shown by, e.g,, Hinsen,?” indicating that they
can not generally be interpreted as thermal fluctuations. More
fundamentally, the assumption that the motion of a protein in a
crystal is representative of its motion in solution is not justified.
Indeed, we see that the ENMs developed to reproduce B-factors
have stronger long-range interactions or use a potential that
restricts collective motion. This observation has also been
reported elsewhere.**

Our analysis shows that very good agreement with B-factors is
generally associated with poor agreement with the benchmark
against MD covariances (Figure 2). Contrasting benchmarks
against MD covariances with benchmarks against B-factors is
complicated by the differences between the measures of
similarity involved. For a more direct comparison we also
compare to the benchmark against MD-predicted atomic
fluctuation profiles, using the same similarity measure that was
used for the B-factors. These results are in much better
agreement with the MD covariances (Figure 2), indicating that
the discrepancy between B-factors and MD covariances are due
to the quality or applicability of the data source and not the
measure of comparison. Moreover, we show that the collective
effects in the models that are optimized for reproducing B-factors
are so small that the resulting covariance matrix can be very well
approximated with the null model (Figure 4). This supports the
notion that the strong long-range interactions obtained from
optimizing against B-factors reflect the loss of collective motion
in the crystalline environment.

An alternative approach to validate ENMs against crystallo-
graphic data involves modeling protein crystals as elastic
networks.”” The crystal ENM would then not be expected to

have larger collective motion than the experimental data it would
be benchmarked against. This can possibly be used to
parametrize ENMs. The implied assumptions would be that
the parametrization is transferrable to a solvated system and that
nonthermal contributions to positional variance are non-
systematic. Our current analysis does not address the merits of
such methods.

A severe limitation with benchmarking against MD
simulations is the intractability of the time-scales at which
collective motion can be sampled to its full extent. It has
therefore been necessary to analyze trajectories that have not
converged in describing the motion that is usually of interest
when ENMs are employed. We therefore have to assume that the
correlations observed in our MD simulations are similar to those
that would be observed in a much longer simulation. Still the
discrepancy between the benchmarks obtained from B-factors
and MD covariances is consistently related to the collective
effects. Since collective effects are a priori expected to be a
limitation of the B-factor benchmark and since analysis of the
same effects are a main part of the motivation for ENMs, we find
the MD covariances to be a more appropriate benchmark.

As the atomic fluctuations of ENMs have frequently been used
to characterize the intrinsic dynamics of proteins, it is reassuring
to see a very consistent positive correlation between prediction of
atomic fluctuations and covariance matrices (Figure 2). For two
proteins (phospholipase-C and AT Case), the ENMs that are in
poor agreement with covariances give competitive prediction of
atomic fluctuations (Figure 2d,g). This serves to illustrate the
aforementioned point that agreement with atomic fluctuations
does not necessarily imply agreement with covariances.

Sacrificing Simplicity. The simplicity of the ENM:s is an
appealing aspect, that both aids in interpretation of the results
and makes them widely applicable. Their simplicity also implies
that there is a large selection of refinements that can be
considered to improve the models at the cost of adding
complexity. Improvement of coarse-grained models is an active
area of research, and the ENMs tested here, as well as others
mentioned in the introduction, are just a representative sample of
the many variants proposed. As proposed improvements
commonly come at the cost of applicability and interpretability,
the development of good experimental benchmarks and the
careful investigation of generality of models are important.
Indeed, from our results we see that even well motivated
refinements do not consistently improve the agreement with MD
covariances. To be confident that refinements to models actually
improve prediction of collective motion, the quality of
benchmarks must be carefully scrutinized.

CONCLUSIONS

For analyzing collective motion in proteins, we recommend
using models that provide an appropriate contrast between close
interactions and long-range interaction. Of the models
investigated here, the best examples are HCA, REACH, and
PGM. These are able to capture well the covariance structure of
the proteins, while still providing reasonable estimates of the
atomic fluctuation profiles.

The large difference in performance between the ENMs can be
understood in terms of the benchmarking criteria that has been
employed in development of the models. In our opinion the
discrepancy between the benchmarks obtained against B-factors
and MD covariances reflects expected differences in protein
mobility between solvated and crystalline conditions. We
strongly recommend parametrizing models of isolated proteins



against benchmarks that do not imply the restrictions of a
crystalline environment.
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