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ABSTRACT

Resin infusion (a.k.a. VARTM) is one of the LCM processes, for which liquid resin is drawn into dry rein-
forcements. Significant cavity thickness changes occur during processing, due to the flexibility of the vac-
uum bag used as one side of the tool, and the complex stress balance within the laminate. While the
magnitude of thickness change is often small, the influence is significant on reinforcement properties.
Changes in permeability during filling and post-filling have the potential to significantly affect the pro-
cess. To simulate this behaviour, it is important to accurately model compaction and unloading of rein-

Keywords:

Resin infusion

C. Finite element analysis (FEA)
E. Resin flow

E. Preform

1. Introduction

Resin infusion (RI) is part of the Liquid Composite Moulding
(LCM) process family. The term LCM describes the closed mould
processes in which a liquid polymeric resin is impregnated through
a fibrous reinforcement. Commonly applied LCM processes include
Resin Transfer Moulding (RTM), Injection/Compression Moulding
(I/CM a.k.a. CRTM), RTMLight and resin infusion (RI, a.k.a Vacuum
Assisted RTM). LCM processes provide good control over harmful
volatiles generated by thermoset resins, making them compliant
with tougher new environmental standards put in place interna-
tionally. The final fibre volume fraction (Vf) achieved can be higher
and more consistent than that achieved with traditional open
mould techniques. LCM processes also have the potential for auto-
mation, greatly reducing labour costs [1-4].

During manufacture with an LCM process, the operator typically
has little control over the advancement of the flow, and successful
process development by trial and error requires experience and
can be long and expensive. Reduction of development costs re-
quires a good understanding of the process physics, and can benefit
from development of an accurate simulation tool. Significant effort
has been placed into establishment of RTM and I/CM simulations
that accurately predict fill time, flow front advancement and dry
spot formation [5-11]. These two processes, through the use of ri-
gid mould tools, allow for accurate control of the laminate thick-
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forcement in dry and wet states. A series of tests were completed to determine compaction behaviour of
an isotropic glass fibre mat. From these tests several non-linear elastic compaction models have been
determined, and applied within a resin infusion simulation which addresses pre-filling, filling and
post-filling. This simulation was then used to assess different post-filling strategies.

ness and therefore of the fibre volume fraction. Current rigid tool
simulations can take into account localised phenomena [12-14],
predict tooling forces [15,16], and allow for automated process
control via integrated sensing and simulation technology [17,18].
The accuracy of these tools is dependant on the quality of provided
permeability data, permeability quantifying the resistance to resin
flow provided by the reinforcement materials comprising the pre-
form. Research is ongoing into accurate measurement and predic-
tion of reinforcement permeability [19-23].

As opposed to the RTM and I/CM processes, RI uses a single
sided mould, the reinforcement being contained within a cavity
formed and sealed by a vacuum bag. As the vacuum bag employed
during the process provides minimal rigidity, the compaction of
the fibrous reinforcement is governed by the pressure difference
between the inside of the cavity and the external atmospheric
pressure. The preform thickness will vary in relation to the resin
pressure inside the cavity [24-28], and so will the reinforcement
permeability which is governed by the local reinforcement archi-
tecture. Fig. 1 describes the components required for application
of RI, and the different process stages. Initially, layers of fibrous
reinforcement are laid on the mould to create the preform. A layer
of peel-ply is generally laid over the preform, allowing for easy
separation of the part from the consumables, and provision for a
consistent part surface finish. Distribution media can be laid over
the peel-ply to enhance resin flow if the reinforcement has low
in-plane permeability.

Once inlet and vent tubes are in place, the mould is closed using
a vacuum bag sealed with sealant tape. With the cavity sealed, the
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Fig. 1. Four stages of the resin infusion process.

inlet is clamped and vacuum is applied to the vents, this stage
being referred to here as “pre-filling”. At the end of pre-filling,
the inlet is opened and the resin penetrates the preform. During
this “filling stage”, pressure inside the cavity varies in position
and time. Once the resin front reaches the end of the preform,
the inlet is usually clamped, stopping flow of resin into the cavity.
This “post-filling” stage involves removal of excess resin, and al-
lows resin pressure and laminate thickness to equilibrate within
the cavity [25]. Once the resin is fully cured, the vacuum is released
and the part is lifted off the mould and separated from the consum-
ables. During the full RI process the reinforcement comprising the
preform is subjected to a complex deformation history, which is
discussed next.

During pre-filling vacuum is applied, and as the pressure differ-
ential between the cavity and the atmospheric pressures increases,
the reinforcement is subjected to a ‘dry compaction’ (the dry pre-
form is compacted to a volume fraction higher than the volume
fraction at zero stress). The rate of the dry compaction depends
on how quickly the pressure differential is allowed to increase.
Next comes the filling stage. Note that, before the fluid is injected,
the preform will creep, that is, the volume fraction increases under
the constant pressure differential. During the filling, within the sat-
urated region, the total compaction pressure applied to the cavity
is partly carried by the fluid and partly by the preform. This bal-
ance of atmospheric pressure by the fluid pressure and preform
compaction stress was expressed by Terzaghi in [29]. The saturated
part of the reinforcement is thus subjected to a ‘wet unloading’,
that is, as the local fluid pressure increases, the compaction stress
on the reinforcement decreases, and the local fibre volume fraction
decreases. During the post-filling, the fluid pressure decreases as
the excess resin is drawn out of the cavity. Therefore the preform
compaction stress increases and the reinforcement is subjected
to a ‘wet compaction’. Note that during these three phases (dry
compaction, wet unloading and wet compaction) the preform
exhibits not just elastic, but viscoelastic deformation traits. The lo-
cal volume fraction depends not only on the applied compaction
stress, but also on the rate at which the applied stress is changing,
and these rate effects may be significant. As the permeability is
governed by the local reinforcement architecture, accurate simula-
tion of resin infusion requires a realistic model of the reinforce-
ment compaction behaviour.

Amongst the large number of models used for characterising
the reinforcement compaction behaviour, the authors would like
to review a few significant ones. One of the earliest and most cited
works on reinforcement compaction in the RI literature is the pa-
per by Gutowski et al. [30], in which the authors consider the pre-
form to behave as a bundle of aligned wavy beams meeting at
multiple contact points. The proposed a;(V;) relationship was de-
scribed by:

V
) )

where gy is the compressive stress applied to the reinforcement, Vy,
the original fibre volume fraction (i.e. when no compressive stress is
applied), V, the available fibre volume fraction (i.e. when an infinite
stress is applied) and A, is a “spring constant”. This model was
developed for the compaction of pre-preg material systems, and
considers a lubricated unidirectional fibre bundle. Subsequent stud-
ies have shown this model to adequately capture the compaction
behaviour of more complex reinforcements.

In 2003, Andersson et al. [31] linked V; to the compaction stress
as follows:

of = KE(V}' = (Vy, + K)™), (2)

where E is the stiffness of the fibres, k and m are constants derived
from compaction measurements, and x accounts for the softening
of the reinforcement (zero for a dry fabric and greater than zero
for a wetted fabric). By using a double non-linear elastic behaviour,
the authors were able to simulate the reinforcement lubrication ef-
fect occurring at the flow front. However the use of a model based
on wet compaction for the filling stage is not rigorously correct, as
during the filling stage the compaction stress on the preform de-
creases with time.

In 2005, Joubaud et al. [32] used in their RI simulation a com-
paction model similar to that used by Robitaille and Gauvin [33]

Vi = ao}, 3)

where a and b are experimental parameters dependant on the
reinforcement used. While it is not clearly stated in the paper,
it appears that the authors have used a single compaction model
based on wet compaction experiments. By using a single compac-
tion model based on the wet reinforcement, the thickness (and
permeability at the flow front) of the dry reinforcement was mis-
represented, which may lead to an error in the progression of the
flow front. It should also be noted that further error can be
attributed to the use of a compaction model whereas, as men-
tioned, the reinforcement is actually subject to unloading during
the filling stage of the process.

In 2008, Yenilmez et al. [34] used tabulated values of a dry com-
paction/dry unloading and dry compaction/wet unloading series of
experiments in a presented simulation. After showing that there is
a significant difference between the compaction and unloading
traces, the authors then used the dry compaction data to determine
the compaction of the reinforcement before the arrival of the fluid,
and used the unloading data to simulate the thickness changes in
the saturated part during the filling stage of the RI. Simulation re-



sults were compared to filling experiments, demonstrating that
significantly improved results were obtained using the dry com-
paction and wet unloading model. There is very little literature
concerning experimentation and simulation of the post-filling
stage of the RI process [25,35-37]. However, laminate thickness
and resin pressure evolution during this stage determine the final
quality of the resin infused part, and therefore need to be
addressed.

Although some RTM and I/CM simulations have moved towards
modelling more complicated reinforcement deformation [38-41],
all reported RI simulations have applied one or two non-linear
elastic compaction/unloading curves. Restricting the analysis to
elastic modelling certainly reduces the complexity of the mechan-
ical coupling which arises between the V and the resin pressure.
Also, due to the relatively slow cycle of compaction occurring in
the RI process, a viscoelastic, i.e. inelastic, model might not be nec-
essary or even appropriate.

This paper addresses the complex reinforcement deformation
behaviour exhibited during the resin infusion process. A macro-
scale compaction model has been developed in conjunction with
compaction experiments to replicate reinforcement behaviour dur-
ing the pre-filling, filling and post-filling stages, through the use of
multiple non-linear elastic curves. This model was then imple-
mented into a Finite Element simulation of the infusion of a rein-
forcement without the aid of a distribution media. This case is
industrially relevant, addressing infusion using a high permeability
preform, as well as for RTM processes using inflatable bladders as
B-side tools.

2. Theory
2.1. Resin flow

Resin flow through a fibrous reinforcement is usually described

using Darcy’s law, provided here for 1D flow in the x direction;
Ky dP

qx=— WAk’ 4)
where g, represents the volume-averaged velocity, K the permeabil-
ity of the preform, u the fluid viscosity and P is the local fluid pres-
sure. Considering both resin and fibres as incompressible, the
conservation of solid and fluid mass imposes:

a(qch) oh
ox  ot’ ()
where h is the local laminate thickness. Combining Egs. (4) and (5)
gives the governing equation;
9 (Kay 0P _oh
ox\ u ox) ot

(6)

Using a non-mixed method with conservative elements [42], qx
at the flow front can be approximated as follows. Using linear finite
elements, the first derivative of the pressure is constant over an
element. Using a Taylor series about the centre of the element
one finds that:

K0P aq,
q"__Fﬁ—‘_(x_xc)W' (7)
As thickness and hence permeability varies spatially along the
length, the velocity gradient can be expressed as:

aq, 0 ( K aP) 1 9Ky OP 62P>

ox  Ox

n o ox

L ox ox Kega ®)

and Eq. (6) can then be expanded to:
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Combining Eqgs. (8) and (9) leads to:
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The flow equation is therefore:
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2.2. Reinforcement properties

Local Vis dependant on the compaction stress history applied
to the preform. As mentioned earlier, fibrous reinforcements have
complex compaction behaviour, exhibiting viscoelasticity and per-
manent deformation [33,38,43,44] and also display a change in
stiffness between the dry and saturated state. During RI, fibre com-
paction is governed by the difference between external atmo-
spheric pressure (Pg,) and pressure inside the cavity (P), which
is described by Terzaghi's relation [29]:

0 = Pam — P, (12)

In this study, the modified Carman-Kozeny equation is used to
relate experimental permeability and Vf data:

where C and n are parameters determined from experiment. The
permeability of the 450 g/m? Chopped Strand Mat (CSM) used this
study was measured at various V; during steady state flow experi-
ments following the procedure described by Umer et al. [45]. Three
repeats of the test were performed showing very good repeatability,
average C and n values found to be 9.5 x 10~!' m? and 2.6, respec-
tively. Fig. 2 presents permeability as a function of V; showing the
experimental measurements as well as the modified Carman-Koze-
ny fit.

3. Reinforcement compaction behaviour

As discussed earlier, during RI, the reinforcement can be consid-
ered to follow three distinct compaction phases: a dry compaction

1- Vf)n+1 during pre-filling, a wet unloading of the saturated region during
K=C o (13) filling and a wet re-compaction during post-filling. The character-
f isation of these compaction responses is discussed next.
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3.1. Experimental procedure

Compaction behaviour of the CSM has been experimentally
characterised using an Instron universal testing machine in force
control mode, using a rig composed of two flat platens. The
upper platen is fitted with a spherical alignment system to min-
imise misalignment with the lower platen (Fig. 3). The rein-
forcement samples were composed of ten layers cut into
200 mm diameter disks with a 15 mm diameter hole at their
centre.

To simulate dry compaction occurring during the pre-filling
stage, each sample was compacted at a rate of 0.3 kN min~! to
an equivalent compaction pressure of 1.0 bar. This pressure was
then maintained for 5 min to allow for any significant creep to oc-
cur. The sample was then unloaded to an equivalent pressure of
0.01 bar, again held for 5 min to allow for creep, and then re-
loaded to 1.0 bar at the same rate of 0.3 kN min~'. It is this sec-
ond, reloaded, compaction curve which is used for the dry
compaction curve. This was done in order to replicate the com-
paction history during pre-filling, for which vacuum is first ap-
plied and then slowly released while looking for leaks in the
bag. This procedure is commonly applied in industry before final
application of vacuum prior to the filling stage. The sample was
then wetted while compacted by injecting mineral oil through
the centre of the lower platen, mimicking the wetting process
at the flow front. The fluid was injected at a pressure of 1.8 bar
until the sample was completely saturated, the injection time
being typically less than 2 min. After waiting for 8 min to allow
for creep to occur, the saturated sample was then unloaded to
an equivalent pressure of 0.01 bar at a rate of 0.05 kN min~'. This
replicates the reduction of compaction stress applied to the pre-
form during the filling stage where the resin pressure inside the
cavity increases. To replicate the post-filling stage, the saturated
sample was then re-compacted to an equivalent pressure of
1.0 bar at a rate of 0.05kN min~!. During this wet compaction
phase, the fluid pressure at the injection gate was monitored.
No significant pressure build up was detected due to the choice
of fluid viscosity, loading rate and sample size. From this point
on, the wet unloading to 0.01 bar, will be referred as the “main
wet unloading” and the wet compaction from 0.01 bar will be re-
ferred as the “main wet compaction”.

During an actual resin infusion process, at the completion of
filling there exists a gradient of fluid pressure ranging from
approximately atmospheric pressure at the inlet, to the applied
vacuum pressure at the vent. Therefore, the compaction state of
the preform at the completion of filling varies along the length
of the part from stress-free at the inlet to 1.0 bar of compaction
stress at the vent. The inlet is typically closed at the onset of
post-filling, while the excess fluid is being drawn through the
vent from this point in time. As a result, the fluid pressure inside
the laminate decreases, thus increasing the compaction stress on
the fibres.

As described in [33,46,47], reinforcement compaction behav-
iour is dependant on the compaction history. The reinforcement
at the inlet, being fully unloaded at the completion of filling, will
behave differently to that closer to the vent, which is still partially
compacted. Fig. 4 schematically depicts the reinforcement com-
paction state along the length of the preform at the completion
of the filling stage and presents experimental traces of the main
wet unloading and main wet compaction behaviour. At the onset
of post-filling, the material has undergone a wet unloading but,
due to the pressure profile along the preform, an unloading to dif-
ferent volume fractions along the length of the preform. This is
indicated by the black lines linking different points of the preform
to the main wet unloading trace in Fig. 4 As post-filling proceeds,
the material is next wet compacted. However, one cannot use
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Fig. 7. Comparison of re-compaction model and experimental results.

the main wet compaction data (shown by the red! line in Fig. 4) di-
rectly. This is because that data was obtained after a complete
unloading (zero stress), whereas the material during post-filling
is actually re-compacted from non-zero stress-states (as indicated
by the red arrows in Fig. 4), moving towards the main wet compac-
tion as post-filling progresses. To map the compaction response
during this period, another series of tests were therefore conducted
in which the samples were first compacted and wetted under sim-
ilar conditions as described above. Unlike the first tests, the sam-
ples were then unloaded to various compaction levels and then
re-compacted to an equivalent pressure of 1bar at a rate of
0.05 kN min~!. Fig. 5 schematically describes the series of tests
performed to evaluate the influence of the compaction history.
During each test the dry cycle is similar but, after wetting, the sam-
ple is unloaded to different levels before being re-compacted.

3.2. Numerical interpolation

To fit the experimental data using simple equations, the data
were first divided into three non-linear elastic laws; dry compac-
tion, main wet unloading and main wet compaction. It was found
that a power law (14) as described by Robitaille [33,46] was an
effective way of characterising the relationship between stress
and fibre volume fraction. The following power law can be easily
inverted and differentiated, and provides a reasonable fit to the
experimental data:

Vy=Vy, - of, (14)

where Vj and B are parameters determined from experiment.

To obtain a closer fit to the experimental data over the complete
Vy range, the experimental compaction and unloading traces were
interpolated in three overlapping sections. Fig. 6 presents an exam-
ple of this approach, comparing fitting of the wet unloading data
by a single power law and by three overlapping power laws. A
macro has been written within Microsoft Excel to optimise the
selection of the sections to interpolate. This macro minimises the
fitting error as well as the change of gradient between the

! For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.



interpolated curves. The dry compaction, wet unloading to
0.01 bar, and wet compaction from 0.01 bar experimental traces
were interpolated following this approach.

3.3. Re-compaction after partial unloading

As could be expected, all of the partial wet unloading traces fol-
low the main wet unloading trace. A difficulty lies in modelling the
wet re-compaction behaviour, as each trace starts from a different
point on the main unloading trace. To be of any use in a simulation,
it is necessary to be able to determine the re-compaction behav-
iour from any arbitrary unloading pressure with a minimum num-
ber of equations. It was found that the compaction of the partially
unloaded preform can be interpolated from the main wet unload-
ing and main wet compaction models as follows:

. Vfu (O'f)f ((Jc ay) ((\ggjtg)) VfL(Gf))_%
min Vi <Vy,
Vi(op)+ ({22 (Vi (0) - V4 (0))) :
Vf = Vfc
(15)

with ¢* the compaction stress on the reinforcement at the start of
the re-compaction, Vj, the volume fraction during the re-compac-
tion, Vy, the volume fraction following the main wet unloading
trace, Vj;, the volume fraction following the main wet compaction
trace, V. and oc are the fibre volume fraction and compaction
stress at which the main wet compaction and unloading curves
are found to intersect. It was also observed that all the re-compac-
tion traces crossed the unloading curve around that point. This
point has significance in the definition of the proposed compaction
model, while at this time the physical significance is not clearly
understood. If V; > V. the model uses the main wet compaction
trace. If Vy < V;_ the model uses the minimum produced by two ap-
proaches to interpolation between Vy, and Vj . The first interpola-
tion gave best results at compaction stresses close to ¢*, while
the second was found to be more accurate as the compaction stress
was increased.

Fig. 7 presents the experimental CSM dry compaction, main wet
unloading, main wet compaction and a selection of three re-com-
paction curves. Also presented are re-compaction curves generated
using the interpolation described by Eq. (15). From Fig. 7 we can
see that the model is in very good agreement with the experiment
for compaction stresses below oc.

For ¢ > o the re-compaction model follows the main wet com-
paction trace, resulting in moderate errors.

VfR(O'f,O'*):

Vi, (P)

4. Simulation

Having discussed the compaction behaviour, next is discussed a
complete 1D simulation of the RI process which includes this com-
paction information.

4.1. Solution method

Using the Galerkin Finite Element Method, the weak formula-
tion of Eq. (6) is:

% Ky, Op dw oh
[(Geni®) o

To assemble this formulation on the computational mesh, it is
first formulated in the matrix form:

w(x))dx: {%hg—iw(x)r“. (16)

Xj

= =—=0h
K(h)el + Cela = F(h)eh (17)

where K(h),, is the element stiffness vector, Co the element capac-

itance matrix, F(h),, the element force vector, and h is the vector of
laminate thickness values associated with the element. An implicit
method is used by applying a backward difference approximation:
oh  h(t) — h(t — At)
— 7 18
ot At (18)
The current thickness values (h(t)) are estimated from the pre-
vious time step, and an iterative approach has been taken to refine
the solution. Eq. (17) can then be expressed as:

K{D) +C W) ~ F(h(D), (19

where h(t) and h(t — At) are the vectors of laminate thickness
throughout the filled part of the mould at time t and t — At, respec-
tively. The estimated error is the residual, R(h(t)), calculated from:

W:?(M-Wﬁm(d@) —F(m)) (20)

To minimise the residual at each time step, the Newton-Raph-
son algorithm is used.

) -

KT(T (21)

)
hi—]

h =B~ 4 Al

__ The matrix K7 is the tangent matrix, i the iteration number and
h' is the vector of thickness distribution at iteration i. For the first
iteration, the thickness distribution is assumed equal to the thick-
ness distribution at the previous time step. This algorithm is run
iteratively until the residual reaches the desired precision.

4.2. Boundary conditions

The presented simulation uses a 1D mesh with linear elements.
At both inlet and vent, additional elements are used to simulate the
resin distribution tape applied in these regions. This feature allows
for more accurate simulation of the conditions at the entry and exit
of the fluid to and from the preform. During filling, the inlet node
has a prescribed fluid pressure, and the flow front node is set to the
applied vacuum pressure at the vent. During post-filling, to model
clamping of the inlet tube, the inlet node is assigned a zero
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Fig. 8. Schematic diagram of the use of the floating node.



Initial condition: first element full.
Boundary conditions: Inlet Pressure, Vent Pressure, External
pressure.
Calculate time step.
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Fig. 9. Flow chart description of the simulation.
Table 1
Plan of simulations.
Scenario Description Flow front position at the Brake Post-filling pressure (mbar)
end of filling (mm)
Case 1 Standard 400 No 4.7
Case 2 Use of brake 400 5 mm peel-ply 4.7
Case 3 Modified post-filling pressure 400 No 200
Case 4 Early inlet clamp 340 No 4.7




pressure gradient. The flow front node pressure is maintained at a
constant vacuum pressure.

4.3. Floating node

The preform is discretised using a grid of fixed nodes. To allow
for accurate tracking of the flow front without penalising computa-
tional performance, a floating node, i.e. a node temporarily placed
between two of the fixed grid nodes, is used; the floating node
marks precisely the flow front. Fig. 8 demonstrates the application
of the floating node. At the start of time step n the laminate thick-
ness profile is known, and therefore the V; permeability and fluid
pressure along the cavity. The flow front velocity is then calculated
from the pressure gradient at the flow front. The new position of
the flow front is then approximated, assuming its velocity remains
constant throughout the time step. The floating node is then
moved to this new position and the laminate thickness profile is
calculated using the iterative Newton-Raphson implicit method.

4.4. Solution process

A complete summary of the simulation and solution procedure
is given in the flow chart of Fig. 9. As the reinforcement compaction
behaviour is assumed to be purely elastic, the pre-filling stage of
the simulation is of minor importance. The laminate properties at
the end of pre-filling and in the dry portion of the preform are
those of the dry reinforcement under a load equivalent to the
atmospheric pressure minus the vacuum pressure. The initial con-
ditions are calculated with the first element filled, the quasi-static
height profile and flow rate being determined in that region. Using
the fluid velocity at the flow front, the flow front is updated and the
Newton-Raphson algorithm is used to calculate the new tempo-
rary properties of the saturated part of the preform. The algorithm
is declared converged when the fraction of thickness change is
smaller than the set convergence criteria. If the algorithm con-
verges in less than a specified upper limit on iterations, the time
step is advanced and the pressures and preform properties are up-
dated. Otherwise the values at the beginning of the time step are
retrieved and the solution is evaluated for a smaller time step.

The filling stage is complete once the flow front reaches the
specified position, or alternatively once a specified quantity of fluid
is injected. Once the end of filling condition is achieved, the bound-
ary conditions are changed to those of post-filling. The iterative
process remains the same as for the filling. If the flow front reaches
the end of the mesh, the amount of resin evacuated is calculated
from the flow out of the last element. The simulation is set to
run for a given post-filling time period, typically comparable to
the gel time of the applied resin system.

Once all the steps of the simulation were finalised, convergence
tests were performed to verify the convergence of the simulation
and find the most efficient mesh size and convergence criteria.
To test the convergence of the solution, the evolution of the pre-
dicted fill time was evaluated as a function of the number of ele-
ments as well as the convergence criteria. It was found that
convergence was reached with a 100 elements mesh and a conver-
gence criteria of 1.0 x 107>,

5. Simulation results

To demonstrate the capability of the presented compaction
model and RI simulation, four different infusion scenarios are con-
sidered. In each case the goal was to impregnate a 400 mm long
preform consisting of 10 layers of CSM, the fluid used in each case
is considered to be mineral oil Mobil DTE Heavy, with a constant
Newtonian viscosity of 0.365 Pas~!.

The first case considered is a “standard” infusion in which the
preform is infused completely before clamping the inlet and letting
the excess resin flow through the vent during post-filling. The sec-
ond case uses 5.0 mm width of peel-ply as a “brake” between the
end of the preform and the vent. A third example applies a change
in the vacuum pressure during post-filling. The final scenario dem-
onstrates simulation of the inlet being clamped early, the inlet is
clamped once the flow front has progressed along 85% of the length
of the cavity, and the excess resin in the saturated portion of the
preform is used to complete filling. Details of the four simulated
scenarios are given in Table 1.

5.1. Material parameters

The preform simulated was composed of 10 layers of the previ-
ously characterised CSM, and was 200 mm wide and 400 mm long.
At the inlet side a groove 5 mm high having a length of 5 mm was
simulated, providing a flow channel with a constant equivalent
permeability of 2.5 x 10~% m?, based on calculations for flow be-
tween to infinite parallel plates. At the vent side of the preform a
high permeability distribution tape 5 mm thick with a length of
20 mm was simulated, having a permeability of 7.5 x 1077 m?
and a porosity of 0.85. For case 2, a single layer of peel-ply was
simulated at the vent end, with a permeability of 7.5 x 107" m?,
a thickness of 0.1 mm and a porosity of 0.3.

It should be noted that apart from the CSM, the material param-
eters chosen here are rough estimates based on experimental
observation and equivalent permeability calculations. These mate-
rials require more careful characterisation in order to provide
numerical results comparable to actual experiments. The authors
acknowledge that the brake case is an extreme virtual scenario,
in real industrial application a “brake” zone may commonly consist
of a felt material. Such a brake would have a lower permeability
but higher porosity and thickness, and would also be longer in
length. The authors have chosen a 5 mm peel-ply brake to illus-
trate the potential of the simulation and highlight the importance
of enabling fluid to flow through.

5.2. Comparing RI and RTM filling simulations

For the first three scenarios considered, the conditions during
filling are unchanged. It is interesting to compare the flow front
advancement predicted by the resin infusion simulation with an
analytical solution for RTM. An RTM solution considers a rigid
mould with constant prescribed laminate thickness. Fig. 10 pre-
sents the progression of the flow front calculated by the RI simula-

0.4
0.35

B

= 03

=

2

£ 025

72}

2

2 02

S Dry

& 0.15 Wet | RTM case

B — e nlet

E 0.1 — = Standard Infusion

——— Clamped eardly
0.05

0 500 1000 1500 2000 2500 3000 3500
Time (s)

Fig. 10. Evolution of flow front position, comparison between RTM and resin
infusion simulations.



tions corresponding to case 1 and case 4, with comparison to three
RTM cases. For the ‘Dry case’, laminate thickness is derived from
the dry CSM compaction, with applied compaction equivalent to
1.0 bar. The ‘Wet case’ simulation uses the wet CSM compaction
data at the same compaction level. The ‘Inlet case’ uses the mea-
sured laminate thickness at the inlet at the completion of filling,
i.e. thickness of a saturated reinforcement with no applied compac-
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6000

tion stress. The RTM ‘Dry’ and ‘Wet’ solutions significantly over
estimate the fill time, as they do not account for increases in per-
meability in the saturated portion of the preform. The RTM ‘Inlet
case’ greatly underestimates the fill time, as an overly large cavity
thickness is used, within which permeability is significantly larger
than experienced in reality. For RI simulation case 4 (inlet clamped
early) we can observe the flow front progressively slowing down as
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the pressure gradient inside the laminate reduces, the flow front
reaching the end of the preform 300 s later than in the other RI
solutions (~13% longer).

Fig. 11a-c present, respectively, the laminate thickness, lami-
nate permeability and fluid pressure along the length of the pre-
form during both filling and post-filling for the “standard”
infusion strategy, case 1. Surface plots have been used to efficiently

(@) 100000
90000
80000
70000
60000
50000
40000

Fluid pressure (Pa)

30000
20000
10000

present the variation of each quantity in time, and along the length
of the perform. Each line on a plot represents the distribution of the
observed variable along the preform length at one time step during
the process. From Fig. 11b it can be seen that there is a very large
predicted variation of permeability in the inlet half of the preform,
this again illustrating the importance of accounting for thickness
changes in an RI filling simulation.
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Fig. 12. Simulated fluid pressure traces for the four cases considered, (a) 30 mm from the inlet, (b) in the middle of the preform, and (c) 2 mm from the end of the preform.



5.3. Comparing the resin infusion cases

Figs. 12 and 13 present the simulated resin pressure and lami-
nate thickness evolutions for the four RI cases. In both figures the
values are evaluated at three points along the length of the laminate
30 mm away from the inlet, at the centre of the preform and 2 mm
away from the end of the preform. For the case where the inlet was
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clamped early (case 4), the pressure and laminate thickness reach
equilibrium much earlier than for the three other cases. In this case,
less fluid was introduced into the cavity, resulting in a lower
amount of excess fluid to be evacuated through the vent. The next
case to reach equilibrium is that in which the post-filling pressure
was set to 200 mbar (case 3). In this case less fluid was evacuated
as the equilibrium fluid pressure was set to a higher value.
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Fig. 13. Simulated laminate thickness traces for the four cases considered, (a) 30 mm from the inlet, (b) in the middle of the preform, and (c) 2 mm from the end of the
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In case 2, the brake material had a similar permeability as the
CSM but a much smaller thickness and porosity, thus severely lim-
iting the quantity of fluid able to flow through this material. The
reduction of pressure and laminate thickness during post-filling
was therefore considerably slower than for any other case. This
case was the only one in which the preform had not reached equi-
librium after 1 h of simulated post-filling. This result demonstrates
the strong influence of additional flow resistances placed between
the preform and vent, a practice commonly applied in industry.

In cases 2 and 3, the changes of condition at the flow front at the
end of filling have a significant effect on resin pressure and lami-
nate thickness close to the vent and approaching the centre of
the preform. In both cases the resin flow rate at the flow front is
predicted to slow down creating a pressure build up at the end
of the preform. This, in conjunction with the squeeze flow occur-
ring at the inlet side, result in a rise of pressure between the vent
and the middle of the preform. In the case for which post-filling
vent pressure is set to 200 mbar, the flow front stops briefly until
the fluid pressure behind the flow front increases over 200 mbar,
then the rest of the post-filling happens at a similar rate as for case
1. In case 2 however, the flow of fluid through to the vent is per-
turbed by the small amount of fluid able to flow through the
peel-ply at any time, there is therefore a pressure build up at the
end of the preform. The fluid pressure along the preform tends to
equalise leaving only a small gradient related to the slow flow of
fluid through the brake material.

In an industrial RI process, the aim will typically be to have a
low cycle time with the best possible part quality. It is therefore
desirable for the resin pressures within the laminate to have equa-
lised before gelation of the resin system. For this reason cases 3 and
4 could be considered as preferable approaches. It should be noted
that at very low pressure levels, many thermoset resin systems
tend to release gases as components boil off, leading to increased
porosity in the part. In the case in which the inlet is clamped early,
fluid pressures decrease quickly to a very low level, thus increasing
the risk of porosity developing in the laminate. In case 3, as the
equilibrium pressure is set to a higher value, this problem may
be avoided, but the predicted final fibre volume fraction will be
slightly lower than in the other cases (0.48 for case 3 instead of
0.49 for cases 1 and 4).

In industrial applications a brake zone is usually applied be-
tween the end of the preform and the vent. This brake is intended
to slow down the flow of resin and insure the whole part is impreg-
nated before the resin reaches the vent. As can be seen from the
simulation of case 2, the choice and dimension of the brake mate-
rial is very influential on the post-filling stage. In this case, progres-
sion of the flow front was slowed only slightly, however the rate of
extraction of the excess resin was dramatically reduced. A better
strategy would have been to choose a material with a lower per-
meability but a higher porosity and larger thickness, which would
have slowed down the progression of the flow front while not lim-
iting the resin flow rate out of the preform.

6. Conclusion

In this paper we have demonstrated an interpolated method to
model the through thickness deformation behaviour of a CSM rein-
forcement during the resin infusion process. This model includes a
variation of the empirical multiple power law model previously
developed by Robitaille [46], as well as an interpolation method
to account for the loading history of the preform. The model pre-
dictions were in good agreement with the tests carried out with
the Instron universal testing machine.

The compaction model was then implemented into a one-
dimensional Finite Element simulation of the resin infusion pro-

cess, addressing the pre-filling, filling and post-filling stages. The
predictions during post-filling are promising, this simulation
showing the potential for predicting fibre volume fraction in the fi-
nal part, as well as simulating different injection strategies (i.e.
clamping of the inlet before the flow front reaches the end of the
preform, or changing vacuum pressures during post-filling). The
ability to simulate applied post-filling conditions may lead to an
optimisation of the pressure parameters and choice of brake mate-
rial, increasing part quality and control of Vj, while reducing cycle
time.
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