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We propose a technique to measure the velocity of a bubble cloud based on the coda correlation.

The method is founded on successive recordings of multiple scattered waves from a bubble cloud.

Our model predicts the dependence between the correlation coefficient of these coda waves and the

velocity of the bubble cloud under diffusion approximation. The Acoustic experiments are validated

by simultaneous optical measurements in a water tank, with a good agreement between the acoustical

and the optical methods (relative difference smaller than 7%). This technique can be transposed to

any particle flow velocity problems involving multiple scattering effects in acoustics.

PACS numbers:

I. INTRODUCTION

Acoustic propagation in strongly scattering heterogeneous media has been widely studied for years [1–9]. In such

media, the wave is multiply scattered as it encounters successively several heterogeneities. Consequently, transmitting

an acoustic pulse through such a medium provides a typical signal generally showing a ballistic part at the first times

of flight, followed by a multiply scattered coda, possibly lasting for a long time. When the scatterers are modeled as

a random process, a wave propagating there could be described as a sum of a coherent and an incoherent field. A

criterion to quantify the multiple scattering effect is L > `S , where L is the distance over which the wave propagates

in the medium and `S is the scattering mean free path. The scattering mean free path is a characteristic length

between two scattering events. The local energy density of the incoherent field can be modeled as if the wave was a

particle flux where no interference occurred, and thus obeys the Radiative Transfert Equation [10]. Furthermore, it

could be simplified to a Diffusion equation, considering that the direction of the incoming wave is lost in the medium.

The distance `∗ is called the transport mean free path and is the characteristic distance over which the incoherent

field loses the memory of the direction of the incident wave. If L > `∗, it is common to observe a coda. When all the
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scatterers are identical, approximations give the scattering mean free path : `S = 1/nσ, where n is the number of

scatterers per unit of volume, and σ is the scattering cross section of scatterers. In bubbly media, the observation of

a coda depends on the frequency f of the wave which probes the medium compared with the resonance frequency fM

of the bubbles. This resonance frequency is called Minnaert Frequency [11]. If f � fM, the scattering cross section

of the bubbles is very small, and it is very difficult to observe a multiple scattering event. If f ≈ fM, the scattering

cross section is very large, and multiple scattering occurs. However, the absorption cross section is larger than the

scattering cross section, and multiple scattering effects are not visible as coda. Finally, if f � fM , bubbles still have

a strong scattering cross section and a negligible absorption cross section and consequently, at this frequency, it is

possible to observe a well developed coda [12].

The objective of this paper is to propose a technique for measuring the velocity of a bubble cloud driven by a

flow, in a regime where multiple scattering effects are predominant. The most popular acoustic velocity measurement

technique is the Doppler effect. However, when applying this technique, multiple scattering could be a problem. Most

of the papers dealing with Doppler effect in scattering media assume no multiple scattering occurs [13]. In some other

papers it is proposed to model the Doppler effect in Multiple Scattering regime using a Monte-Carlo simulation in

acoustics [14] or in optics [15], and it is shown multiple scattering causes distorsion of the measured flow. Another

paper proposes a technique using a beam-forming method [16], assuming that single scattering is predominant, that

is to say, no multiple scattering occurs. In multiple scattering regime, another technique has been studied, using a

coherent wave phase conjugation process [17]. This technique proposes a measurement based on the coherent part of

the field, and may lose effectiveness when this coherent part becomes negligible. The technique developed in this paper

is based on the sensitivity of the incoherent field to a slight perturbation in the medium. It uses only the incoherent

part of a multiple scattered field to evaluate the bubble-cloud velocity measurement by studying the evolution of the

incoherent field-field correlation coefficient. Our technique is closely related to Diffusive Wave Spectroscopy [18–22]

in optics, Coda Wave Interferometry [23, 24] in seismology and Diffusive Acoustic Wave Spectroscopy (DAWS) in

acoustics [25–29].

In the first part of this paper, we present a model, based on Diffusion Approximation, making the connection

between the bubble velocity and the incoherent field-field correlation evolution. In the second part, we show our

experimental configuration of the measurement, and finally, we present the experimental results to conclude about

this method of velocity measurement.
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Figure 1: Schematic diagram of the problem : An incident wave ψI(z, t) propagates in a bubble cloud of thickness L. This
bubble cloud is in uniform motion at velocity ~v = v.~ex, perpendicular to the incident direction of the wave. ST (x, y, t) is the
field at the bubble-cloud surface z = L, for an incident wave emitted at time T . The objective is to model the field at point
M : ψT (0, z0 + L, t), resulting from the diffraction over a distance z0 of ST (x, y, t) in the surrounding medium.

II. MODEL

We consider a bubble cloud of thickness L, in which all the bubbles are moving at a velocity ~v = v.~ex, as it is

shown in figure 1. At the moment T , an incident wave, ψTI (z, t) is emitted at z < 0, and propagates in the direction

~ez in the bubbly medium. The quantity of interest is ψT (L+ z0, t), that is to say, the wave transmitted by the bubbly

medium at the distance z0 from its surface. Let us assume the Diffusion Approximation is verified, and thus the

transmitted field has a coda. Because of the bubble displacement and multiple scattering, the two fields ψT1 and ψT2

resulting from the scattering of ψT1

I and ψT2

I have a very different coda temporal form. We assume our system is

stationary, therefore the correlation coefficient of the signals ψT1 and ψT2 depends on τ12 = T2 − T1, and it is noted

G(τ12). The model studied here has the objective to clarify the relation between G(τ) and the bubble velocity v. The
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model assumes that the bubbles are motionless during wave propagation. If the bubbly medium was probed around

Minnaert frequency, this approximation might not describe the reality, because the speed of sound in a bubbly medium

around this frequency could be very low. However, this paper studies the interaction of an acoustic wave whose central

frequency is higher than the Minnaert frequency. At this frequency, recent work has shown that the coherent field is

described by the Independent Scattering Approximation [12]. This Model that neglects the correlation position and

the loop of scattering predicts a group velocity not very different from the velocity in the surrounding medium. If the

flow velocity is much smaller than the velocity in the surrounding medium, it is possible to assume that the bubbles

are motionless during wave propagation.

The bubbly medium is modeled as a random process realization that is statistically spatially translation invariant

in directions ~ex and ~ey. The bubbly medium also has the property of spatial ergodicity, implying that all realizations

of disorder can be observed at sufficiently different locations in the medium. Thus, the correlation coefficient is :

G(τ) =

∫
< ψT (L+ z0, t)ψ

T+τ (L+ z0, t) > dt∫
< |ψT (L+ z0, t)|2 > dt

, (1)

where < ... > means the averaged value over all bubble disorder realizations. The coefficient correlation is also, in the

frequency domain :

G(τ) =

∫
< ψ̂T (L+ z0, ω)

∗
ψ̂T+τ (L+ z0, ω) > dω∫

< |ψT (L+ z0, ω)|2 > dω
, (2)

where ψ̂ is the temporal Fourier Transform of ψ. Interactions between an acoustic wave and bubbles generate multiple

scattering effects when the propagation length is longer than the scattering mean free path `e, which depends on the

bubble concentration and the scattering cross section of each bubble. As the medium is modeled as a random process,

the acoustic wave is the sum of its coherent and incoherent parts. If the thickness of the medium is longer than

the transport mean free path, the incoherent field could be described by a random walk process, and it is possible

to assume the local energy density is described by a Diffusion Equation. Under the diffusion approximation, the

incoherent field at a position ~r = x.~ex + y.~ey +L.~ez on the sample surface can be modeled as a sum of replicas of the

incident signal e(t) [27] :

ST (~r, L, t) =
∑
n

Ane(t− τn(~r)). (3)
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with τn(~r), corresponding to the different times of flight through the bubble cloud and An being the pressure amplitude

of the partial wave with time of flight τn(~r). These times of flight depend on the spatial disorder of the bubbles and

also on their size distribution. Consequently, times of flight τn are also random processes. The statistical translation

invariance in ~ex and ~ey directions implies τn(~r) are identically distributed whatever ~r. If ∆τ is the duration of the

incident wave, we assume all the times of flight in an interval of length ∆τ , centered on the arrival time t0, have an

average magnitude A(t0). Thus the Fourier Transform of ST in an interval [t0 −∆τ/2; t0 + ∆τ/2] is :

ŜT (~r, L, ω) = A(t0)Ê(ω)
∑
n

ejωτn(~r) (4)

If the signal has a narrow bandwidth, which implies ω ∆ τ � 1, the mean value of ST is zero, which is logical because

it corresponds to the mean value of the incoherent part of the field. The mean value of the incoherent intensity is :

< |ŜT (~r, L, ω)|
2
>= NS |A(t0)Ê(ω)|

2
, (5)

where |A(τ0)|2 obeys a Diffusion Equation, under the Diffusion Approximation. NS is the number of paths correspon-

ding to the times of flight over the interval [t0 −∆τ/2; t0 + ∆τ/2]. The correlation coefficient defined by equation (2)

could be expressed as a function of the field at the sample surface ST using the relation between Ŝ and ψ̂. ψT results

from the diffraction of ST over the distance z0 in the surrounding fluid. The relation between ŜT and ψ̂ is given by

the Rayleigh-Sommerfeld integral [35] :

ψ̂T (L+ z0, ω) =
z0

jλ

∫∫
ŜT (x, y, L, ω)

ejk
√
x2+y2+z20

x2 + y2 + z2
0

dxdy. (6)

The Fresnel Approximation makes it possible to simplify this relation :

ψ̂T (L+ z0, ω) =
ejkz0

jλz0

∫∫
ŜT (x, y, L, ω)ej

k
2z0

(x2+y2)dxdy. (7)

In the experimental condition, the incident wave is generated by a transducer of finite size, and thus the surface

support for the incident wave is also finite. In addition, let bubbles be in the near zone of the transducer. Thus, the

acoustic beam is collimated and the field at the sample surface also has a finite aperture. We assume the spatial

support for the incident acoustic wave inscribes itself in a disk of radius a. In this case, the Fresnel approximation is
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verified if z0 � a.

The spatial autocorrelation function < ST
∗
(~r1, L, ω)ST (~r2, L, ω) > depends on ~r2 − ~r1 because of the statistical

invariant property of the bubble cloud in the orthogonal direction to ~ez, and thus :

< ST (~r1, L, ω)∗ST (~r2, L, ω) >= NS |A(t0)E(ω)|2χ(~r2 − ~r1). (8)

Then, all times of flight τn(~r) are independent because of the diffusion approximation, and consequently the field at

the sample surface can be modeled as a spatial white noise :

χ(~r2 − ~r1) = Uδ(~r2 − ~r1), (9)

where U is a constant. As a consequence of the bubble motion, ST and ST+τ verify :

ST+τ (x, y, L, ω) = ST (x− vτ, y, L, ω), (10)

where it is expected that τ is greater than the duration of the transmitted signal. The spatial intercorrelation function

between ST and ST+τ is :

< ST (~r1,L, ω)∗ST+τ (~r2, L, ω) >=

NS |A(t0)E(ω)|2Uδ(x2 − x1 − v.τ)δ(y2 − y1).

(11)

Using equation (11) and equations (2) and (7), the correlation coefficient defined at equation (2) is :

G(τ) ≈
∫∫

Σ

e−j
ωc
c0

xvτ
z0 dxdy, (12)

where ωc is the angular central frequency of the incident signal and Σ is the spatial support of the field at the sample

surface. If we suppose the spatial support of ST and ST+δT is a disk of radius a, the correlation coefficient is :

G(τ) = 2
J1(ατ)

ατ
, (13)
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where α is :

α =
a

z0

v

c0
2πfc. (14)

The approximation made at equation (12) is that J1(ατ) varies slowly over this useful bandwidth of the incident signal

E(ω) and thus its averaged value over the useful bandwidth is equal to its value at the central frequency of the signal.

It is interesting to observe that, while the field at the bubble cloud surface is a spatial white noise, after a propagation

distance z0 and as a consequence of the diffraction on this distance, a correlation between two transmitted fields

separated by a time τ does exist. This correlation is a consequence of the finite size of the spatial support of the field.

A limit case is to consider that when a� z0 the diffraction effect is negligible, and the field remains a spatial white

noise after a propagation distance z0. Two transmitted fields separated by a time τ , in this case, are uncorrelated, and

G→ 0. If a� z0, the degradation of the angular resolution, due to the diffraction, decreases the difference perceived

between the two transmitted fields separated by a time τ . Thus, on the one hand, the motion of bubbles during a time

τ tends to reduce the correlation between two transmitted waves separated by the same time. On the other hand,

the finite size of the spatial support of the field tends to keep a correlation between those fields. The decay of G as a

function of τ is a consequence of the superposition of those two antagonistic effects. These theoretical results are an

application of the Van-Cittert and Zernicke theorem [30, 31].

The model proposes a relation between the correlation coefficient and the bubble velocity v. A measurement of the

correlation coefficient as a function of τ could therefore be a measurement of the uniform velocity of the scatterers v.

The objective of the next part is to show experimental results giving a confirmation of this model and to propose a

velocity measurement technique.

III. EXPERIMENTAL PROCEDURE

A. Material and methods

Figure 2 shows the experimental setup : in a 1 m3 water tank, a transducer emits an acoustic wave that propagates

in a bubbly medium. A hydrophone records the transmitted wave at the distance z0 = 20.0 ± 1.0 cm beyond the

bubbly medium. The uncertainty of 1.0 cm comes from the uncertainty of the position of the surface of the bubbly

medium.

The bubbly medium is obtained using a radial divergence vein : Over-saturated water is injected through specific
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z0 = 20 cm

L = 10 cm

10 cm

Transducer
Hydrophone

Injectors

Ejection speed

Figure 2: Experimental setup : Five injectors inject bubbles in the surrounding water at an ejection speed ~v. The bubbles
move at a velocity equal to the ejection speed. A transducer emits an ultrasonic plane wave. A hydrophone records the wave
transmitted by the bubbly medium at the distance z0 = 20, 0± 1, 0 cm from the bubbly sample surface.

Figure 3: Black line : Bubble radius distribution function in the cloud, produced in our experiments. Red line : Fit with a Γ
function with mean radius R0 = 14.6µm and standard deviation : σ = 6.7µm. Inset : Photography of the bubbly medium.

injectors with fast divergent outlet. The rapid relaxation that is induced creates a cavitation pocket which collapses,

and since the water is over-saturated, stable micro-bubbles remain. Then, the fluid containing the bubbles is ejected in

the water tank by five injectors. This generation process creates a flow, driving the bubbles. Ultrasonic measurements

are made in a region near the injector outlets, where we can assume that, on the one hand the flow is uniform, on

the other hand, all the bubbles are driven by the flow at the velocity ~v, equal to the flow velocity. The ultrasonic

measurements are made to assess this velocity v. A polydisperse bubbly medium is thereby produced. Optical measu-

rement are made on the medium to estimate its radius distribution - plotted in figure 3 - and its gas fraction, using an
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immersed camera Baumeur TXG50. These optical measurements are performed using successive pictures of the bubble

cloud at different times and positions. The location corresponds with acoustical measurement zone which is close to

the injector outlets. A photo of the bubbly medium is showed in the inset of the figure 3. The radius distribution

function can be approximated using a gamma function with a mean radius of R0 = 14.6µm and a standard deviation

σ = 6.7µm. The gas fraction is measured around φ0 = 10−4. The size of the bubbly medium is 50 cm× 10 cm× 10 cm.

A piezoelectric transducer (Olympus A395S, with a central frequency of 2.25 MHz and 38 mm in diameter), emits a

pulse with a Gaussian envelope, containing 8 periods of a sinusoidal signal centered at 1.2 MHz within the transducer

bandwidth limits. This in order to probe the medium at a frequency at which bubbles have a larger scattering cross

section, and thus to increase the multiple scattering effects. The transducer near field distance is around 30 cm at 1.2

MHz, therefore the beam propagating in the bubbly medium is collimated, in particular at the sample surface. The

transducer is connected to a tension generator working in burst regime. As the velocity of the cloud is not tunable in

our experiments, three independent measurements are performed changing the pulse repetition frequency (PRF), set

at 100, 200 and 400 Hz. That means that we have an acoustical signature of the cloud every dT100 = 10 ms, dT200 = 5

ms and dT400 = 2.5 ms. This procedure is somewhat equivalent to keep a constant PRF with a bubble cloud moving

at different velocities.

A hydrophone (RESON TC4038) records the transmitted field at a distance z0 = 20 cm. The transmitted wave is

recorded every dTPRF.

To test the hypothesis bubble motionlessness during the wave propagation in the medium, we compare the group

velocity of the coherent field with the flow velocity, assuming that the group velocity gives an order of magnitude

of an effective sound velocity in the bubbly medium. The Independent Scattering Approximation in the polydisperse

case predicts the following wave number [32] :

k2 = k2
0 + 3φ0

∫
f0(R)

R3
pdf(R)dR, (15)

where pdf(R) is the function plotted in figure 3, and f0(R) is the forward scattering function of a bubble of radius R.

This approximation predicts a group velocity around 1420 m.s−1 for such bubbly medium, and for a wave at a central

frequency around 1 MHz, which is much higher than the flow velocity, which is around 0.1 m.s−1. The hypothesis

that assumes bubble motionlessness during wave propagation is consistent with this experiment.



10

(a) (b)

(c)

(v) (arb. u.)

(V)

(V)

(V)

(V)

Figure 4: (a) : Reference signal recorded by the hydrophone after 40 cm propagation in the water. (b) : Spectrum of the
reference signal. (c) : Four signals recorded by the hydrophone at different times, with 10 cm propagation in the bubble cloud.
The transducer emit a signal every dT200 = 5 ms. The hydrophone is at z0 = 20 cm beyond the bubble cloud surface and records
the transmitted wave at every time dT200. Temporal signals are in Volts, and the spectrum is in arbitrary units.

Finally, the transport mean free path is :

`e =
1

=(k)

`∗ =
`e

1− < cos >

(16)

where < cos > is the cosine of all scattering angles averaged on the differential scattering cross section. At 1.2 MHz, we

get a transport mean free path of 2 cm. The thickness of the bubbly medium over which the acoustic wave propagates

is L = 10 cm. It is equal to 5 transport mean free paths in these conditions, which is enough to observe an incoherent

regime described by the Diffusion Approximation.

B. Results and analysis

This part details the measurements and the data processing giving the velocity of the bubble cloud for the repetition

frequency of 200 Hz. Figure 4.c shows four arbitrarily chosen signals acquired at the repetition frequency of 200 Hz,
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after propagation through the bubbly sample of the incident wave ψTI (t) represented under its temporal (fig. 4.a) or

spectral (fig. 4.b) form. Each transmitted signal, recorded at a time T , corresponds to one bubble disorder realization.

The signal coda, well developed, is characteristic of the bubble disorder. In this experiment, we record N = 2000

signals, every dT200 = 5 ms, noted si(t). The total duration of the acquisition is 10 s.

1. Validity of the Diffusion Approximation

Before working on the correlation coefficient to validate the model, it is necessary to check whether the diffusion

approximation is verified in this experiment. When the diffusion approximation is verified, the local energy density

W is described by a diffusion equation governed by a coefficient D. As described in reference [2, 4, 5, 12], the finite

thickness of our sample can be taken into account by adding boundary conditions to the diffusion equation describing

W , leading to a modal decomposition of W :

W (z, t) =

∞∑
m=1

Am sin

(
mπ(z + 2`∗

3 )

L+ 4`∗

3

)
e
−D

(
mπ

L+4`∗
3

)2

t
. (17)

Each mode m exponentially decreases with a characteristic time inversely proportional to m2 :

τDm =
(L+ 4`∗/3)2

m2π2D
(18)

Thus, for long enough times, the first diffusive mode dominates all others, and the local energy density decreases

exponentially with the characteristic time τD1
. Experimentally, we measure the acoustic intensity of the incoherent

wave, which is the average value of the Poynting vector ~J = −D~∇W . Therefore, the intensity of the incoherent field

also exponentially decreases with a characteristic time τD1 under the diffusion approximation and with the appropriate

boundary conditions. To estimate the incoherent intensity, we take part of both the spatial ergodicity and the spatial

translation invariance of the medium. In our experiment, the hydrophone is motionless but the bubbles are moving.

The ergodicity implies that all our recorded signals are representative patterns of the bubble disorder realizations.

The incoherent intensity is estimated by :

< Ie(t) >=
1

N

N∑
i=1

|HT (si(t))|2, (19)
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Figure 5: Incoherent intensity < I > in arbitrary units, obtained with the estimator given at equation (19) (blue line).

Experimental results are fitted with an exponential function e−t/τD (dotted black line).

where HT(si)(t) signifies the Hilbert Transform of the signal si(t).

Figure 5 shows the temporal evolution of the incoherent intensity averaged over bubble disorders, obtained using the

estimator given at equation (19). We observe the first arrival time of flight from 275µs to 280µs. In this interval, the

incoherent intensity is better described by a radiative transfer equation [10] and does not obey a diffusion equation.

Between 280µs and 320µs, the incoherent intensity decreases as an exponential function, thus we can conclude the

Diffusion Approximation is well verified over this interval [2, 9, 12].

Thus, it is possible to apply our model showed in part II on the interval 280µs - 320µs, where the profile of the

intensity is well described by a diffusion equation associated with boundary conditions. This interval is wide enough

so that it is longer than the temporal duration of the incident field. Therefore we can study the evolution of the

correlation coefficient of the recorded signals, and thus obtain an estimator of its time evolution.

2. Correlation coefficient estimation

Using the 2000 recorded signals, we need to find a good estimator for the correlation coefficient between two recorded

signals separated by τ = n×dT , with dT200 = 5 ms. The window used to evaluate the Fourier Transform of the signals

is centered at t0 = 295µs, to be under Diffusion Approximation. The size of the window is equal to the size of the

incident field : ∆t0 = 8.5µs. The correlation coefficient between two signals separated by τ = n× dT200 and over one
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Figure 6: Experimental estimation of the correlation coefficient G(τ) between two recorded signals separated by a time τ . This
correlation coefficient is obtained averaging P = 49 bubble disorder realizations.

bubble disorder is :

Gp(ndT200) =

∫
sp(t)sn+p(t)dt√∫

sp(t)2dt
√∫

s2
n+p(t)dt

. (20)

Because of the poor signal to noise ratio, it is necessary to take the noise into account when calculating the correlation

coefficient. The noise level Np of the p recorded signals is quantified with the intensity of the recorded signal before

t = 270µs.

Gp(ndT200) =

∫
sp(t)sn+p(t)dt−Np × δn,0√∫

sp(t)2dt−Np
√∫

s2
n+p(t)dt−Nn+p

, (21)

where δn,0 is the Kronecker symbol equal to 1 if n = 0 and equal to 0 in the other cases. To compare the experimental

results with the model, this correlation coefficient is averaged over several realizations in the following way. Considering

the time interval −100ms < τ < 100ms, this means we need to use K = 41 signals to calculate this correlation

coefficient over one disorder realization of the bubbles. Consequently, we can estimate this correlation coefficient over

P = 49 bubble disorder realizations :

< G(ndT200) >=
1

P

P∑
l=1

G20l+1(ndT200), −K
2
≤ n ≤ K

2
. (22)
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The correlation coefficient estimated by equation (22) is shown in figure 6. Error bars are evaluated using :

σG =
1√
P

(
1

P

P∑
l=1

(G20l+1(ndT200)− < G(ndT200) >)2

)1/2

(23)

The correlation coefficient is well described by an analogous function that is given at equation (13) over the interval

−50ms ≤ δT ≤ 50ms. The model describes well the time evolution of the correlation coefficient over this interval.

For the higher times of flight, the decorrelation rate between two signals is lower than predicted by the model. To get

the analytical function of the correlation coefficient, we inverse the problem by minimizing the cost function :

F (α) =

∫ T

−T
|2J1(αδT )

αδT
− < G(δT ) >| dδT

with T = 60 ms.

(24)

The minimization procedure gives α = 47.7 ± 1.3 s−1. With equation (14) it is possible to evaluate the velocity v

of the bubbles. The parameters z0 = 20, 0 ± 1, 0 cm and c0 = 1490 m.s−1 are known. We assume the spatial

support of the field at the bubble cloud is a disk of the same radius as the transducer, so a = 1.90 ± 0.10 cm. This

is due to the fact that the near field distance is around 25 cm, and the bubbly medium surface is at 30 cm from the

transducer. This method gives the following bubble velocity : v200 = 9.40±0.38 cm.s−1. We detailed the experiments

made at the repetition frequency of 200 Hz. Using the same experimental acquisition and data processing, the other

experiments made with repetition frequencies of 100 Hz and 400 Hz yield respectively these following bubble velocities :

v100 = 9.49± 0.41 cm.s−1 and v400 = 9.09± 0.39 cm.s−1.

The acoustical assessment was confirmed by an optical measurement. A video-camera records an image during

an exposure time of 2.3 ms. The bubbles are moving during this duration, and the final image shows a distorted

bubble between its initial and final position. We can deduce the distance traveled by the bubbles during the exposure

time, and consequently, their velocity. We measured the velocities of 164 bubbles, we found a mean velocity value

of v̄ = 8.9 cm.s−1 and a standard deviation σv = 3.5 cm.s−1. Consequently, the velocity obtained by the optical

measurement is v = 8.90 ± 0.28 cm.s−1 which confirms the acoustical measurement of the bubble velocity proposed

in this paper.

This measurement technique is robust regarding a change of the PRF frequency, that demonstrates it is also robust

regarding a change of the bubble cloud velocity. In practice, the measurements aim at interpolating the correlation

coefficient which corresponds to the function determined at the equation (13). In that relation, experimental values
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Figure 7: Relative error between |αreal − αest|/αreal as a function of the dimensionless repetition period.

are fixed by the user such as the transducer radius a, the distance z0 and the central frequency fc or are related to the

surrounding medium through c0, and the velocity of the bubble cloud. These data provide the parameter αreal (eq.

(14)). Ultrasonics measurements aim at measuring the correlation coefficient, the inversion of which gives an estimation

αest. To evaluate the efficiency of our method, we calculate G(αrealδT ) given by the equation (13), for three values

of αreal. The calculation is performed at the times δT = ndTPRF, -50< n <50. A centered Gaussian noise with a

standard deviation 0.05, is added to G(αrealδT ) to mimmick the experimental noise. Then, the function G(αrealδT )

is inverted. This process is repeated for different values of dTPRF. The relative error given by |αEST − αreal|/αreal, is

plotted in the figure 7 as a function of the dimensionless repetition period αreal × dTPRF. The relative error increases

drastically when αreal× dTPRF > 3. Therefore, the user must adjust the repetition frequency to verify the inequality :

αreal × dTPRF < 3. (25)

If this condition is fulfilled, the correlation coefficient can be inverted using the procedure detailed in this paper, to

obtain an estimate of the bubble cloud velocity.

IV. CONCLUSION

The present study shows that it is possible to measure particle flow velocity, using the coda of a transmitted

acoustic wave. It is shown that the time decorrelation of successive multiply-scattered waves depends on the velocity

of the scatterers. Experimental validations were conducted in a tank filled with water and containing a cloud of



16

moving bubbles. These results of this velocimetry method are confirmed by closely agreeing optical measurements.

This technique is different from previous techniques using more the coherent part of a field [17]. Furthermore, if

the operating condition is that most of the field is incoherent, the classical technique using the Acoustical Doppler

Velocimetry loses effectiveness and this technique could be a good resort to velocity measurement. This method could

also be efficient for bubbly flow velocity measurement through an opaque pipe, using piezo-transducers placed on the

surface. Indeed, the estimation of the correlation coefficient, which determines the flow velocity will not be affected

by the presence of the pipe while the contribution of the latter remains unchanged over successive measurements.

Current efforts aim at improving an experimental application using a multi-channel probe than could be directly

immersed into the medium in order to reduce uncertainties.
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