\

Integer multiplication in time O(n log n)

David Harvey, Joris van der Hoeven

» To cite this version:

‘ David Harvey, Joris van der Hoeven. Integer multiplication in time O(n log n). 2019. hal-02070778v1

HAL Id: hal-02070778
https://hal.science/hal-02070778v1

Preprint submitted on 18 Mar 2019 (v1), last revised 28 Nov 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02070778v1
https://hal.archives-ouvertes.fr

Integer multiplication in time O(n logn)

DaviD HARVEY AND JORIS VAN DER HOEVEN

ABSTRACT. We present an algorithm that computes the product of two n-bit
integers in O(nlogn) bit operations.

1. INTRODUCTION

Let M(n) denote the time required to multiply two n-bit integers. We work in
the multitape Turing model, in which the time complexity of an algorithm refers
to the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [34]. The main results of this paper also hold in
the Boolean circuit model [40, Sec. 9.3], with essentially the same proofs. We write
f(n) = O(g(n)) (respectively f(n) = Q(g(n))) to indicate that there exist constants
C > 0 and ng such that f(n) < Cg(n) (respectively f(n) = Cg(n)) for all n > ny,
and f(n) = O(g(n)) to mean that both f(n) = O(g(n)) and f(n) = Q(g(n)) hold.

Schonhage and Strassen conjectured in 1971 that the true complexity of integer
multiplication lies in ©(nlogn) [39], and in the same paper established their famous
upper bound M(n) = O(nlognloglogn). In 2007 their result was sharpened by
Fiirer to M(n) = O(nlogn K'°& ™) [12, 13] for some unspecified constant K > 1,
where log* n denotes the iterated logarithm, i.e., log* 2 := min{k > 0 : log°* = < 1}.
Prior to the present work, the record stood at M(n) = O(nlogn4'°8" ™) [22].

The main result of this paper is a verification of the upper bound in Schénhage
and Strassen’s conjecture, thus completely closing the remaining 4'°¢" ™ gap:

Theorem 1.1. There is an integer multiplication algorithm achieving
M(n) = O(nlogn).

If the Schénhage—Strassen conjecture is correct, then Theorem 1.1 is asymp-
totically optimal. Unfortunately, no super-linear lower bound for M(n) is known.
Perhaps the best available evidence in favour of the conjecture is the Q(nlogn)
lower bound [6, 35] that has been proved for the “on-line” variant of the problem,
in which the k-th bit of the product must be written before the (k + 1)-th bits of
the multiplicands are read. Again, the true complexity of on-line multiplication is
not known: currently, the best known upper bound is O(nlogn exp(Cy/loglogn))
for C' = +/2log2 + o(1) [29].

Theorem 1.1 has many immediate consequences, as many computational prob-
lems may be reduced to integer multiplication. For example, the theorem implies
that quotients and k-th roots of real numbers may be computed to a precision of n
significant bits in time O(nlogn), and that transcendental functions and constants
such as e* and 7 may be computed to precision n in time O(nlog®n) [5].

Harvey was supported by the Australian Research Council (grant FT160100219).
1

2 DAVID HARVEY AND JORIS VAN DER HOEVEN

Another interesting application is to the problem of computing DFTs (discrete
Fourier transforms) over C. Given a transform length m > 2 and a target accuracy
of p = Q(logm) bits, it was pointed out in [20, 25] that one may use Bluestein’s
trick [2] followed by Kronecker substitution [14, Corollary 8.27] to reduce a given
DFT of length m to an integer multiplication problem of size O(mp). Theorem
1.1 then implies that the DFT may be evaluated in time O(mplog(mp)). This
compares favourably with the traditional FFT (fast Fourier transform) approach,
which requires O(mlogm) operations in C, and thus time O(mlogm M(p)) =
O(mplog mlogp) in the Turing model.

All of the algorithms presented in this paper can be made completely explicit,
and all implied big-O constants are in principle effectively computable. On the other
hand, we make no attempt to minimise these constants or to otherwise exhibit a
practical multiplication algorithm. Our aim is to establish the theoretical O(nlogn)
bound as directly as possible.

We will actually describe two new multiplication algorithms. The first one de-
pends on an unproved hypothesis concerning the least prime in an arithmetic pro-
gression. This hypothesis is much weaker than standard conjectures in this area,
but somewhat stronger than the best unconditional results currently available. We
give only a brief sketch of this algorithm (see Section 1.2.1). A detailed treatment
is given in the companion paper [24], which also presents an analogue of this al-
gorithm for multiplication in F,[z]. The bulk of the present paper (Sections 2-5)
concentrates on working out the details of the second algorithm, which is technically
more involved, but has the virtue of reaching the O(nlogn) bound unconditionally.

In the remainder of Section 1, we review the literature on integer multiplication
(Section 1.1), and give an overview of the new algorithms (Section 1.2).

1.1. Survey of integer multiplication algorithms. The first improvement on
the classical M(n) = O(n?) bound was found by Karatsuba in 1962. Significant
progress was made during the 1960s by Toom, Cook, Schénhage and Knuth; see
[25, Sec. 1.1] for further historical details and references for this period. FFTs were
brought into the picture by Schonhage and Strassen [39] soon after the publication
of the FFT by Cooley and Tukey [7]; see [28] for more on the history of the FFT.
The multiplication algorithms published since [39] may be roughly classified into
four families:

(1) Schonhage—Strassen’s first algorithm [39] is, in hindsight, the most straight-
forward FFT-based integer multiplication algorithm imaginable. By splitting the
n-bit multiplicands into chunks of size ©(logn), they reduce to the problem of mul-
tiplying polynomials in Z[z] of degree ©(n/logn) and coefficient size ©(logn). The
product in Z[z] is handled by means of FFTs over C, i.e., evaluating the polyno-
mials at suitable roots of unity, multiplying their values pointwise in C, and then
interpolating to obtain the product polynomial. Elements of C are represented
approximately, with a precision of ©(logn) bits. Arithmetic operations in C (such
as multiplication) are reduced to arithmetic in Z by scaling by a suitable power of
two. This leads to the recursive estimate

M(n) = O(nM(n')) + O(nlogn), n’ = O(logn),
whose explicit solution is

M(n) = O(K'¢ " nlognloglogn - - -log®((1°8" M=1 p)

Integer multiplication in time O(nlogn) 3

for some constant K > 0. The algorithm achieves an exponential size reduction at
each recursion level, from n to O(logn), and the number of levels is log™ n + O(1).

Pollard suggested a similar algorithm at around the same time [36], working over
a finite field rather than C. He did not analyse the bit complexity, but with some
care one can prove essentially the same complexity bound as for the complex case
(some technical difficulties arise due to the cost of finding suitable primes; these
may be resolved by techniques similar to those discussed in [25, Sec. 8.2]).

(2) Schionhage—Strassen’s second algorithm is the more famous and arguably
the more ingenious of the two algorithms presented in [39]. It is probably the
most widely used large-integer multiplication algorithm in the world today, due to
the highly optimised implementation included in the free GNU Multiple Precision
Arithmetic Library (GMP) [17, 15], which underlies the large-integer capabilities
of all of the major contemporary computer algebra systems.

The basic recursive problem is taken to be multiplication in Z/(2"+1)Z, where n
is a power of two. Let n/ = 2/(1°8220)/2] — @(n'/2) and T = 2n/n’ = O(n'/?), so
that (n')? € {2n,4n} and T | n’; then by splitting the inputs into chunks of size n’/2,
the problem is reduced to multiplication in R[z]/(zT +1) where R := Z/(2" +1)Z.
The powers of 2 in R are sometimes called “synthetic” roots of unity, as they
have been synthesised algebraically, or “fast” roots of unity, as one can multiply
an element of R by an arbitrary power of 2 in linear time, i.e., in time O(n').
Consequently, for w := 2"/T one may evaluate a polynomial at w,w?,...,w??T !
(the roots of 7 +1) via the FFT in time O((n’ logn’)n’) = O(nlogn). The original
multiplication problem is thus reduced to T" pointwise multiplications in R, which
are handled recursively. Writing M;(n) for the cost of a product in Z/(2™ + 1)Z,
one obtains the recurrence

(1.1) Mi(n) < %” Mi(n')+ O(nlogn), ' = O(n'/?),

Unlike the first Schonhage—Strassen algorithm, this algorithm performs only a geo-
metric size reduction, from n to O(n'/?), at each recursion level, and the number
of recursion levels is log, logn + O(1) = O(loglogn).

The constant 2 in (1.1), which arises from zero-padding in the initial splitting
stage, plays a crucial role in the complexity analysis: it ensures that at each re-
cursion level, the total cost of the “fast” FFTs remains O(nlogn), with the same
implied constant at each level. The overall cost is thus M (n) = O(nlognloglogn).

(3) Firer’s algorithm [12, 13] combines the best features of the two Schonhage—
Strassen algorithms: the exponential size reduction from the first algorithm, and
the fast roots of unity from the second one. The overall strategy is similar to
the first algorithm, but instead of working over C, one uses a bivariate splitting
to reduce to a polynomial multiplication problem over R := Cly]/(y" + 1), where
r = O(logn) is a power of two. This ring contains a synthetic root of unity y of
order 2r, but also inherits higher-order roots of unity from C. Elements of C are
represented approximately, with a precision of O(logn) bits; thus an element of R
occupies O((logn)?) bits.

Firer’s key insight is to apply the Cooley—Tukey FFT decomposition in radix 2r
instead of radix two. He decomposes each “long” transform of length ©(n/(logn)?)
into many “short” transforms of length 2r, with one round of expensive “twiddle
factor” multiplications interposed between each layer of short transforms. The short

4 DAVID HARVEY AND JORIS VAN DER HOEVEN

transforms take advantage of the synthetic roots of unity, and the twiddle factor
multiplications are handled recursively (via Kronecker substitution). This leads to
the recurrence

M(n):O(

and then to the explicit bound M(n) = O(nlogn K'°¢" ™) for some constant K > 1.
Fiirer did not give a specific value for K, but it is argued in [25, Sec. 7] that careful
optimisation of his algorithm leads to the value K = 16.

Several authors have given variants of Fiirer’s algorithm that also achieve M(n) =
O(nlogn K log” ™), using essentially the same idea but working over different rings.
De, Kurur, Saha and Saptharishi [10] replace C by a p-adic ring Q,; this has the
benefit of avoiding numerical analysis over C, but the value of K becomes somewhat
larger. Covanov and Thomé give another variant that achieves K = 4, conditional
on a conjecture on the distribution of generalised Fermat primes [8].

LM) + Olunlogr), o = Of(ogn)?),

n'logn’

(4) The Harvey—van der Hoeven—Lecerf algorithm [25] follows Fiirer in decom-
posing a “long” transform into many “short” transforms of exponentially smaller
length. However, instead of working over a ring containing fast roots of unity, one
works directly over C (as in the first Schonhage—Strassen algorithm), and converts
the short transforms back to multiplication problems via Bluestein’s trick [2]. These
short products are then handled recursively.

The first version given in [25] achieved M(n) = O(nlogn K'°8" ") with K = 8.
The value of K was improved gradually over a sequence of papers [18, 19, 21],
reaching K = 4 in [22]. All of these algorithms perform exponential size reduction,
and the number of recursion levels is log™ n + O(1).

An interesting feature of these algorithms — related to the fact that they dispense
with the need for fast roots of unity — is that they can be adapted to prove bounds
of the form O(nlogn K'°8 ") for the cost of multiplying polynomials in F,lz] of
degree n (for fixed ¢). This was first established with the constant K = 8 in [26],
and improved to K = 4 in [23]. As mentioned previously, the first of the two new
algorithms presented in this paper may be adapted to obtain an O(nlogn) bound
for the F,[z] case [24], but unfortunately this result is still conditional and so does
not yet supersede the unconditional O(nlogn 4'°¢” ™) bound given in [23].

1.2. Overview of new algorithms. Our new algorithms are motivated by the
observation that certain multivariate polynomial rings admit particularly efficient
multiplication algorithms. Let r be a power of two, and for d > 2 consider the ring

(1.2) Rlzy,..wq1)/(a =1, a7 =1), R:=Clyl/(y" +1),

where t; | 2r for all i. One may multiply in this ring by first using FFTs to
evaluate each ; at the synthetic #;-th roots of unity (the powers of y?"/%), then
multiplying pointwise in R, and finally performing inverse FFTs. Such transforms
were studied extensively by Nussbaumer in the late 1970s (see for example [31]),
and are sometimes known as fast polynomial transforms. They consist entirely of
additions and subtractions in C, and require no multiplications in C whatsoever.
In Sections 1.2.1 and 1.2.2 below, we outline two different ways of fashioning
an integer multiplication algorithm from the polynomial multiplication algorithm
just described. The key issue is to show how to transport an integer multiplication
problem, which is intrinsically one-dimensional, to a ring of the type (1.2).

Integer multiplication in time O(nlogn) 5

In both cases, we begin with the following setup. Suppose that we wish to multi-
ply two n-bit integers. We choose a dimension parameter d > 2 and distinct primes
51,...,8q¢ ~ (n/logn)'/? subject to certain conditions that will be explained in
Sections 1.2.1 and 1.2.2. Just as in the first Schénhage—Strassen algorithm, we
split the inputs into around n/logn chunks of roughly logn bits, thereby reducing
the problem to multiplication in Z[z]/(x* % — 1). Now, following a technique
described by Agarwal and Cooley [1] (which is closely related to the Good—Thomas
FFT algorithm [16, 41]), we observe that the Chinese remainder theorem induces an
isomorphism Z[x]/(z** % —1) = Z[z1, ..., zq]/(2]' —1,..., 2" —1), so the problem
amounts to computing a product in the latter ring. For this, it suffices to show how
to efficiently compute a multidimensional complex DFT of size s; X -+ X s4, i.e.,
with respect to the complex s;-th roots of unity, to an accuracy of O(logn) bits.

1.2.1. A conditional algorithm — Rader’s trick. Suppose that we are able to choose
the primes si,...,84 so that s; = 1 (mod r), where r is a power of two, and
where the s; are not much larger than r. We may then deploy a multidimensional
generalisation of Rader’s algorithm [37] to reduce the given DFT of size s1 X - - - X 84
to a multiplication problem in the ring Clzy,...,zq]/(z5 ™" — 1,..., 257" — 1)
(together with some lower-dimensional multiplication problems of negligible cost).
Crucially, the convolution lengths have been reduced from s; to s; — 1. Writing
s; — 1 = q;r, where the ¢; are “small”, we may further reduce this product to a
collection of complex DFTs of size g1 X -+ X qq, plus a collection of multiplication
problems in Clzy,...,zq]/(z] — 1,...,27, — 1). After replacing x4 with /"y, we
see that the latter products are exactly of the type (1.2). As discussed previously,
we may use synthetic FFTs to reduce such a product to a collection of pointwise
products in R = C[y]/(y"+1). These in turn are converted to integer multiplication
problems via Kronecker substitution, and then handled recursively.

The main sticking point in the above algorithm is the cost of the auxiliary DFT's
of size q; X -+ - X qq. There are various options available for evaluating these DFTs,
but to ensure that this step does not dominate the complexity, the key issue is to
keep the size of the ¢; under control. What we are able to prove is the following.
For positive, relatively prime integers m and a, define

P(a,m) :=min{q > 0 : ¢ prime and ¢ = a mod m},

and put P(m) := max, P(a,m). Linnik’s theorem states that there is an absolute
constant L > 1 such that P(m) = O(m!). The best published value for L is
currently L = 5.18 [42], and under the Generalised Riemann Hypothesis one may
take L = 2 + ¢ for any € > 0 [27]. In the companion paper [24], we prove that if
Linnik’s theorem holds for some L < 1+ ﬁ, and if we take d near 105, then the
cost of the auxiliary DFTs can be controlled and one does in fact obtain an overall
M(n) = O(nlogn) bound. (Actually, in [24] we work over a finite field, but the
same method should work over C, possibly with a different threshold for L.)

On the other hand, it is widely expected that the bound P(m) = O(m*) should
hold for any L > 1. For this reason, we strongly suspect that the algorithm
sketched above does run in time O(nlogn), despite us being unable to supply a
proof. For further discussion, and examples of even stronger bounds for P(m) that
are expected to hold, see [24].

6 DAVID HARVEY AND JORIS VAN DER HOEVEN

«© 000 O

%©®%°* S
o 6 o o
@ 000 Q

% ©%°* s

O vece 0
e o o o
.0.0.q
Lol ol Ned

FIGURE 1. Torus (R/Z)? with 13 x 11 source array (white circles)
superimposed over 16 x 16 target array (black circles)

Remark 1.2. The idea of evaluating a multidimensional transform via a combina-
tion of Rader’s algorithm and polynomial transforms was previously suggested in
a different context by Nussbaumer and Quandalle [32, p. 141].

1.2.2. An unconditional algorithm — Gaussian resampling. The rest of the paper
is devoted to the second method. Here we choose the primes s1,...,s4 in such a
way that each s; is slightly smaller than a power of two ¢;, and so that ¢;---t; =
O(s1---84). Finding such primes is easily accomplished using the prime number
theorem with a suitable error term (see Lemma 5.1).

Assume as before that we wish to compute a complex multidimensional DFT of
size 81 X «-+ X 84, to an accuracy of O(logn) bits. Our key innovation is to show
that this problem may be reduced directly to the problem of computing a complex
multidimensional DFT of size t1 X « -+ X tq4.

The idea of the reduction is as follows. Suppose that we are given as input an
51 X - -+ X sq array of complex numbers u = (uj, . j,)o<j<s;- We may regard this
array as lying inside the d-dimensional unit torus (R/Z)%: we imagine the coefficient
Uj,.... ja. tO be plotted at coordinates (ji/s1,...,Jjq/sq) in the torus (see Figure 1).
We construct from v an intermediate ¢; X - - - Xtg array v = (Vk, ...k, o<k <t;- Again,
we think of vy, .k, as being plotted at coordinates (k1/t1,...,kq/tq) in the torus.
The coefficients of v are defined to be certain linear combinations of the coefficients
of u. The weights are essentially d-dimensional Gaussians, so each coefficient of v
depends mainly on the “nearby” coefficients of u within the torus.

This construction has two crucial properties. First, the rapid decay of the Gaus-
sians allows us to compute (i.e., approximate) the coefficients of v very quickly from
those of u; indeed, the cost of this step is asymptotically negligible compared to the
cost of the DFTs themselves. Second, using the fact that the Fourier transform of a
Gaussian is a Gaussian, we will show that 4 and ¥ (the DFTs of v and v) are related
by a fairly simple system of linear equations. In fact, the matrix of this system is
of the same type as the matrix relating v and v. The system is somewhat overde-
termined, because t1 ---ty > $1---$4. Provided that the ratios t;/s; are not too
close to 1, we will show that this system may be solved in an efficient and numeri-
cally stable manner, and that we may therefore recover 4 from ©. This procedure
forms the core of our “Gaussian resampling” method, and is developed in detail in

Integer multiplication in time O(nlogn) 7

Section 4. It is closely related to the Dutt—Rokhlin algorithm for non-equispaced
FFTs [11]; see Section 4.4.3 for a discussion of the similarities and differences.

We have therefore reduced to the problem of computing ¢ from v, and we are free
to do this by any convenient method. Note that this is a DFT of size t; X - -+ X tq4
rather than s; X --- X s4. In Section 3 we will show how to use a multivariate
generalisation of Bluestein’s algorithm [2] to reduce this DFT to a multiplication
problem in a ring of the form (1.2). As already pointed out, such a product may
be handled efficiently via synthetic FFTs; the details of this step are also discussed
in Section 3.

Analysis of this algorithm leads to a recurrence inequality of the form

K
n M(n') + O(nlogn), n' = nato)

(1.3) M(n) <

n/

where both K and the big-O constant are absolute, and in particular, do not depend
on d. (In Section 5 we establish (1.3) with the explicit constant K = 1728, and
in Section 5.4 we list some optimisations that improve it to K = 8.) The first
term arises from pointwise multiplications in a ring of the type R = C[y]/(y" + 1),
and the second term from the fast FFTs and other auxiliary operations, including
computing v from u and recovering @ from o.

We stress here the similarity with the corresponding bound (1.1) for the second
Schonhage—Strassen algorithm; the difference is that we are now free to choose d.
In Section 5, we will simply take d := 1729 (any constant larger than K would do),
and then it is easy to see that (1.3) implies that M(n) = O(nlogn). (A similar
analysis holds for the conditional algorithm sketched in Section 1.2.1, for different
values of K and d.)

It is striking that for fixed d, the new algorithm performs only a geometric size
reduction at each recursion level, just like the second Schonhage—Strassen algo-
rithm, and unlike the first Schonhage—Strassen algorithm or any of the post-Fiirer
algorithms. In the new algorithm, the total cost of the FFTs actually decreases
by the constant factor d/K > 1 at each subsequent recursion level, unlike in the
second Schonhage—Strassen algorithm, where it remains constant at each level, or
any of the other algorithms mentioned, where it increases by a constant factor at
each level.

Actually, with some care it is possible to allow d to grow with n, so as to achieve
size reduction faster than geometric, and still reach the desired O(nlogn) bound,
but we will not carry out this analysis.

Finally, we mention that our reduction from a DFT of size s; X - -+ X s4 to one of
size t1 X --- X tq is highly non-algebraic, and depends heavily on the archimedean
property of R. Consequently, we do not know how to give an analogue of this
algorithm for multiplication in Fg[z].

2. DFTS, CONVOLUTIONS AND FIXED-POINT ARITHMETIC

In the Turing model we cannot compute with elements of C exactly. In this sec-
tion we introduce a framework for systematic discussion of DFTs and convolutions
in the setting of fixed-point arithmetic. (This framework is loosely based on the
presentation in [25, Sec. 3].)

8 DAVID HARVEY AND JORIS VAN DER HOEVEN

2.1. Integer arithmetic. Integers are assumed to be stored in the standard bi-
nary representation. We briefly recall several well-known results concerning integer
arithmetic; see [5, Ch. 1] for further details and literature references.

Let p > 1, and assume that we are given as input x,y € Z such that |z, |y| < 2P.
We may compute = + y and — y in time O(p). For multiplication, we will often
use the crude estimate M(p) = O(p'*?), where for the rest of the paper ¢ denotes a
small, fixed positive quantity; for definiteness, we assume that § < %. If y > 0, then
we may compute the quotients |x/y| and [z/y] in time O(p**?). More generally,
for a fixed positive rational number a/b, and assuming z,y > 0, we may compute
[(2/9)*/*] and [(z/y)*/*] in time O(p!*),

2.2. Fixed-point coordinate vectors. Fix a precision parameter p > 100. Let
Co == {u € C: |u| < 1} denote the complex unit disc, and set

Co = (27PZ[]) NCo = {27P(z + iy) : 7,y € Z and 22 + y* < 2?7},

In the Turing model, we represent an element z = 277(z 4 iy) € C, by the pair of
integers (z,y). It occupies O(p) bits of storage, as |z|, |y| < 2P. The precision p is
always known from context and does not need to be stored alongside z.

We define a round-towards-zero function p: C — C as follows. First, define
po: R = Z by po(z) = |z]| for > 0, and po(x) = [x] for & < 0. Then define
po: C — Z[i] by setting po(z + iy) = po(x) + ipo(y) for z,y € R. Observe that
lpo(u)| < |u| and |po(u) — u| < /2 for any u € C. Finally, set

p(u) == 27Ppo(2Pu), ue C.

Thus |p(u)| < |u| and |p(u) — u| < /2277 for any u € C. Clearly p(C,) C C,.
Now let V be a finite-dimensional vector space over C. In this paper, every
such V is understood to come equipped with a privileged choice of ordered basis
By ={bo,...,bm—1}, where m = dim¢ V. For the special case V = C™, we always
take the standard basis; in particular, for V' = C the basis is simply {1}.
We define a norm ||-|| : V' — [0,00) in terms of the basis By by setting

[[Mobo + < + A—1bm—1|| = mjax|/\j|, A; eC.
This norm satisfies ||u + v|| < ||ul|+]|v| and |[Au|| = |A] ||u|| for any u,v € V, A € C.
The unit ball in V is defined to be
Vo={ueV ul| <1} ={dbo+ -+ Amc1bm-1: A; € Co},
and we also define
Vo i={obo+ -+ Am_1bm_1: \j € Co }.

We extend p to a function p: V' — V by acting componentwise, i.e., we put

p(Aobo + -+ Amoibm1) = >_p(A)bj, A €C.
J

Then [|p(u)|| < |Ju|| and ||p(u) — ul| < v/2- 277 for any u € V. Clearly p(V,) C Va.
In the special case V' = C we have simply |ju|| = |u| for any u € C, and the
notations C,, C, and p: C — C all agree with their previous definitions.
In the Turing model, an element u € V, is represented by its coordinate vector
with respect to By, i.e., as a list of m elements of C,, so u occupies O(mp) bits of
storage.

Integer multiplication in time O(nlogn) 9

For u € V,, we systematically use the notation @ € V, to indicate a fixed-point
approximation for u that has been computed by some algorithm. We write

e(@) = 2% [[a — ull

for the associated error, measured as a multiple of 277 (the “unit in the last place”).
For example, we have the following result for addition and subtraction in V.

Lemma 2.1 (Addition/subtraction). Given as input u,v € V,, in time O(mp) we
may compute an approximation W € Vo, for w = %(u +v) € V, such that e(0) < 1.

Proof. Consider first the case m = 1, i.e., assume that V' = C. Let u = 27Pa and
v = 27Pbh where a,b € Zli] and |a|,|b] < 2P. Since the denominators of the real
and imaginary parts of 2Pw = 1(a £ b) are at most 2, we have [po(2Pw) — 2Pw| <
(3)2+(3)H2 = % Define w0 := p(w) = 27Ppo(2Pw). We may clearly compute @
in time O(p), and e(w) = 27| p(w) —w| < % < 1. The general case (m > 1)
follows by applying the same argument in each coordinate. (]

Occasionally we will encounter a situation in which we have computed an ap-
proximation @ € V, for some u € V, and we wish to compute an approximation
for cu, where ¢ > 1 is a fixed integer scaling factor for which it is known that
cu € V,. A typical example is the final scaling step in an inverse FFT. Unfortu-
nately, the obvious approximation cu might lie just outside V,. We deal with this
minor technical nuisance as follows.

Lemma 2.2 (Scaling). Let v € V and let ¢ be an integer such that 1 < c < 2P.
Assume that ||u|]| < ¢71, and let v :== cu € V,. Given as input ¢ and an approxi-
mation U € f/o, m time O(mp1+6) we may compute an approximation U € V, such
that (v) < 2c-e(a) + 3.

Proof. Again it suffices to handle the case m =1, V = C.

We first compute 277(z + iy) = ci in time O(p'*°). Note that cit might not lie
in Co, but z and y are certainly integers with O(p) bits.

Next we compute a := 22 +y? in time O(p'*%), so that a'/? = 27 |cil|. If a < 227
then already ¢t € Co, so we may simply take # := cii, and then £(0) = 27 | — v| =
2 |ct — cu| = c¢-e(u) < 2¢-e(a) + 3.

Suppose instead that a > 227 (i.e., cii ¢ C,). We then compute b :== [a'/?] > 27,
again in time O(p'*?). Let z := 2Pcii/b = (z +iy)/b and © = p(z). Note that
0 = 27P(2' +1y’) where 2’ = py(2Px/b) and y' = po(2Py/b), so we may compute ¥
in time O(p'*?). We have 3| < |z| = 2P|ci| /b < 2P |cii| /a*/? = 1, so indeed
v E @o. Moreover,

[0 = v |0 — 2| + |z = ctl + et — v| = |p(2) = 2| + [2] |1 = | +cla—ul,
50 £(0) < V2+ 2P —b| + ¢ - £(@). We also have 2P < b < a'/? +1 =27 |cii| + 1, so
0<b—2P<2P|ctt| —2P +1 < 2P |cu| — 2P + 2P jc —cu| + 1 < c-e(a) + 1.
We conclude that |2P — b| < c-&(@)+1, and therefore £(9) < 2c-e(@)+(1+v/2). O

2.3. Coeflicient rings. By a coefficient ring we mean a finite-dimensional com-
mutative C-algebra R with identity (together with a privileged basis Br). We are
chiefly interested in the following two examples:

10 DAVID HARVEY AND JORIS VAN DER HOEVEN

(1) Complex case: C itself, with the basis {1}.
(2) Synthetic case: for any r > 1, the ring Z = Cly]/(y" + 1), with the basis
{]‘7y’ M 7yT71}'
Let R be a coefficient ring of dimension r with basis Bg, and let n > 1. Then
R™ is a vector space of dimension nr over C. We associate to R™ the “nested” basis
formed by concatenating n copies of Br. In particular, we have |lu| = max; ||u;]|

for v = (ug,...,un—1) € R™. In place of the awkward expressions (R™), and

(Rm),, we write more compactly R” and R”. In the Turing model, an element of
R" occupies O(nrp) bits of storage.

Now let d > 1 and nq,...,ng = 1. We write ®%_; R™, or just ®; R™ when d
is understood, for the tensor product R™ ®pg -+ ®gr R™. It is a free R-module of
rank nj ---ng, and also a vector space over C of dimension nj - --ngr. An element
u € ®; R™ may be regarded as a d-dimensional array of elements of R of size
ny X --- X ng. For indices ji,...,jq where 0 < j; < n;, we write uy, . ;, € R for
the (j1,...,74)-th component of w.

We associate to ®; R™ the nested basis consisting of n---ng copies of Br
arranged in lexicographical order, i.e., listing the coordinates of u in the order
(uo,....0,U0,....15- - - a“nl—l,...,nd—j)- Observe then that |lul| = max;, ., Wi ...l
Instead of (®; R™), and (®; R™),, we write ®; R and ®; R?. In the Turing
model, an element of ®; R™ occupies O(ny - - - ngrp) bits of storage.

Let u € ®; R™. By an i-slice of u we mean a one-dimensional sub-array of u,
consisting of the entries u;, . ;, where ji,...,7i—1,Ji+1,.-.,ja are held fixed and
J; varies over {0,...,n; —1}. We will occasionally wish to apply a given algorithm
separately to each of the nq---n;_1n;41 - - - ng distinct i-slices of some u € ®; 1:22“
To accomplish this in the Turing model, we must first rearrange the data so that
each i-slice is stored contiguously. In the lexicographical order specified above, this
amounts to performing n; ---n;_; matrix transpositions of size n; X (n;41---nq).
This data rearrangement may be performed in time O(n; ---ngrplogn;) using a
fast matrix transposition algorithm [4, Appendix].

o

2.4. DFTs and convolutions. Let R be a coefficient ring and let n > 1. Through-
out the paper we adopt the convention that for a vector u = (ug,...,un—1) € R"
and an integer j, the expression u; always means ; mod n- For u,v € R", we define
the pointwise product u - v € R™ and the convolution product u * v € R™ by

n—1
(u-v); = u;vj, (u*v); ::Zukvj,k, 0<j<n.
k=0

Then (R™, -) and (R™,*) are both commutative rings, isomorphic respectively to
the direct sum of n copies of R, and the polynomial ring R[z]/(z™ — 1).
A principal n-th root of unity in R is an element w € R such that w” = 1,
Z;S(wj)k = 0 for every integer j # 0 (mod n), and |jwu|| = |lul| for all uw € R.
We define an associated R-linear DFT map F,,: R™ — R™ by the formula

1 n—1)
(Fou); ==Y w*u, weR", 0<j<n
n
k=0

nfl)

It is immediate that w™! (= w is also a principal n-th root of unity in R, and

that ||F,ull < ||u|| for all uw € R™.

Integer multiplication in time O(nlogn) 11

Lemma 2.3 (Convolution formula). For any u,v € R™ we have
1
—uxv=nF,-1(F,u- F,v).
n

Proof. For each j, the product (F,u);(F,v); is equal to

n—1n—1

1 , 1 1
il —j(s+t) - —jk [)
o E g w Ty, = 2 kgiow J E UV = an(u*v)],

s=0 t=0 s+t=k (mod n)

so F,(u+*v) =nF,u- F,v. On the other hand, for any w € R™ we have

n—1 n—1 n—1 n—1
1 si st 1 s(it 1
(s (o) = 35 o™ Yo~ = o5 3 (w0 Ju = S,
s=0 t=0 t=0 \ s=0
so F,-1F,w = %w. Taking w := u * v, we obtain the desired result. [

For the two coefficient rings mentioned earlier, we choose w as follows:
(1) Complex case. For R = C, let n > 1 be any positive integer, and put
w = e>™/" We denote F,, in this case by F,,: C* — C". Explicitly,
1 n—1
(Fru); = fZe_Q”ijk/"uk, weCm 0<j<n.
" =0
We also write F: C* — C" for F,-1.
(2) Synthetic case. For R = Z = Cly]/(y" + 1), let n be any positive divisor
of 2r. Then w = y?"/™ is a principal n-th root of unity in Z. We denote
F,, in this case by G,,: Z"™ — Z". Explicitly,

1%
(Qnu)j = - Zy—wjk/nuk’ weR", 0<j<n.
k=0

We also write G : Z" — %" for F,-1.

All of the concepts introduced above may be generalised to the multidimensional
setting as follows. For u,v € ®; R™, we define the pointwise product u-v € ®; R™
and the convolution product u * v € ®; R™ by

(u : v)jlr--»jd = Ujy,5a Vi, das

’I’L1—1 nd—l

(u * v)jl7~--»jd = E T E Uky,...,kqVj1—Fk1,....ja—ka"

k1=0 kg=0
Then (®; R™,) is isomorphic to the direct sum of nj---ng copies of R, and
(®; R™, %) is isomorphic to R[x1,...,zq)/(z™ —1,...,2™ —1).

Let wy,...,wq € R be principal roots of unity of orders nq,...,ng. We define an
associated R-linear d-dimensional DFT map by taking the tensor product (over R)
of the corresponding one-dimensional DFT's, that is,

le,...,wd = ®; Fwi D ®; R™ — & R™.

Explicitly, for u € ®; R™ we have

77,171 nd—l

1 . .
_ E E —j1k1 —Jjaka
(FW17»--7Wdu)j1»--~7jd - Wi Wy Uky,....,kq-
nl .. .nd
k1=0 kq=0

12 DAVID HARVEY AND JORIS VAN DER HOEVEN

The multidimensional analogue of Lemma 2.3 is

1
2.1 ———uxv=mn1---ngF -1 —-1(F,
() nl"'ndu v nl nd Wy Tyee,W, (1

and is proved in exactly the same way.
In particular, in the “complex case” we obtain the d-dimensional transform

Forring = Qi Fn,t 4 C" — ®,C™
(take w; := €2™/7) and in the “synthetic case” the d-dimensional transform
Gnivoing = @i Gn,: QiR — Qi A™

(where each n; is a divisor of 2r, and w; = y>"/™). We define similarly Fotimg =
®; F,, and G = ®; G, .

Any algorithm for computing F,, may easily be adapted to obtain an algorithm
for computing F¥, by adjusting signs appropriately. A similar remark applies to Gy,
and to the multidimensional generalisations of these maps. For the rest of the paper,
we make use of these observations without further comment.

2.5. Fixed-point multiplication. We now consider the complexity of multipli-
cation in the coefficient rings R = C and R = Z#. In both cases we reduce the
problem to integer multiplication. For the case R = # (Lemma 2.5) we will ex-
press the complexity in terms of M(-) itself, as this eventually feeds into the main
recurrence inequality for M(-) that we prove in Section 5.3. For the case R = C
(Lemma 2.4) we do not need the best possible bound; to simplify the subsequent
complexity analysis, we prefer to use the crude estimate M(p) = O(p**?9).

Lemma 2.4 (Multiplication in C). Given as input u,v € Co, in time O(p'*9) we
may compute an approzimation W € Cq, for w = uv € C, such that e(0) < 2.

Proof. We take w = p(w), so that () = 27 ||p(w) — w|| < V2 < 2. Writing u =
27Pg and v = 27Pb where a,b € Z][i] and |a|,|b] < 2P, we have W = 27Ppy(2 Pab).
Thus @ may be computed in time O(p'*?) by multiplying out the real and imaginary
parts of a and b, and then summing and rounding appropriately. O

For the case R = %, observe first that for any u, v € Z we have ||uv|| < r||ul] ||v|,
as each coefficient of uv = (ug + -+ + ur_1y")(vo + -+ vp_1y" ") mod y" + 1
is a sum of exactly r terms of the form +w;v;. In particular, if u,v € %, then

w/r € Xo.

Lemma 2.5 (Multiplication in %Z). Assume that r is a power of two and that
r < 2P7L. Given as input u,v € %, in time 4 M(3rp) + O(rp) we may compute an
approzimation W € Ho for w = wv/r € %o such that e(0) < 2.

Proof. Write 2Pu = Uy(y) +1U:(y) and 2Pv = Vy(y) +1Vi(y) where U; and V; are
polynomials in Z[y] of degree less than r and whose coefficients lie in the interval
[—2P,2P]. Then 2%Prw = Wy(y) +iWi(y) where

WO = (U()Vo - U1V1) mod yr + 1, Wl = (U()Vi + U1V0) mod yr + 1.

We use the following algorithm, which is based on the well-known Kronecker sub-
stitution technique [14, Corollary 8.27].

(1) Pack coefficients. Evaluate U;(2%),V;(2%) € Z for j = 0,1. As the input
coeflicients have at most p bits, this amounts to concatenating the coefficients with

Integer multiplication in time O(nlogn) 13

appropriate zero-padding (or one-padding in the case of negative coefficients), plus
some carry and sign handling. The cost of this step is O(rp).

(2) Multiply in Z. Let Wy == U;Vj, € Zly] for j,k € {0,1}. Compute the four
integer products W x(2%7) = U;(2%P)V},(23F). The cost of this step is 4 M(3rp).

(3) Unpack coefficients. For each pair (j,k), the coefficients of W;), € Z[y] are
bounded in absolute value by r(2P)? < 23771 so W, may be recovered from the
integer W, 1(2°P) in time O(rp). (In more detail: the constant term of W;; lies in
the interval (—23P~1,23P71) 50 it is easily read off the last 3p bits of W, ;,(257). After
stripping off this term, one proceeds to the linear term, and so on.) We then deduce
the polynomials Wy = (Wp,0—Wh,1) mod y" +1 and Wy = (Wy,1 +W1,0) mod y"+1
in time O(rp).

(4) Scale and round. Let cp .= (Wy)e +1(W1), € Z]i] for £ € {0,...,7—1}. Then
w = (22Pr)"Yeo + -+ + cro1y”), so lce| < 22Pr for each £. In time O(rp) we
may compute w = p(w) = 277377 5 po((2P1)"e;)y? € Ao (each division by 2Pr
amounts to a bit-shift), and as usual e() = 27 ||p(w) — w| < V2 < 2. O

2.6. Linear and bilinear maps. Let A: V — W be an C-linear map between
finite-dimensional vector spaces V and W. We define the operator norm of A to be

lA]| == sup [[Avl|.

veVy
For example, the normalised DFT maps F,, defined in Section 2.4 all have norm
exactly 1.
Assume now that ||A| < 1. By a numerical approzimation for A we mean a
function A: V, — W, that is computed by some algorithm, typically via fixed-
point arithmetic. The error of the approximation is defined to be

e(A) == max 2° || Av — Av|| .
veV,
We write C(A) for the time required to compute Av from v (taking the maximum
over all possible inputs v € V).

Lemma 2.6 (Error propagatlon) Let A:V — W be a C-linear map such that
| Al <1, and let v € V. Let A: V, — W, be a numerical approzimation for A,
and let © € V,, be an approzimation for v. Then @ = Av € W, is an approzimation

for w = Av € W, such that () < e(A) + ().
Proof. We have
e(w) = 27 || AD — Av|| < 2P || AG — AB| + 27 || A5 — Av)|

e(A) + 27 ||l |7 — v]| < e(A) + (D). 0

NN

Lemma 2.6 yields the following estimate for compositions of linear maps.

Corollary 2.7 (Composition). Let A: U — V and B: V — W be C-linear maps
such that ||A|,||B|| < 1. Let A: U, — V, and B: Vo, — W, be numerical ap-

prozimations. Then C = BA: U, — W, is a numerical approzimation for C =
BA: U — W such that £(C) < £(B) + ¢(A).

Proof. For any u € U,, if we set v = Au € V, and & := Au € V,, then
2P || BAu — BAu|| = 27 || Bt — Bv|| < e(B) + () < e(B) + ¢(A). O

14 DAVID HARVEY AND JORIS VAN DER HOEVEN

The above definitions and results may be adapted to the case of a C-bilinear
map A: U x V — W as follows. We define

[All = sup [A(u,0)].
uelU,,veEV,
If ||A|l < 1, then a numerical approzimation for A is a function A: Uy x Vo — W,
that is computed by some algorithm. The error of the approximation is
e(A) = max 2P| A(u,v) — A(u,v)]|,
uelUy,veVy,

and C(fl) denotes the time required to compute ./Zl(u, v) from w and v. Lemma 2.6
has the following analogue in the bilinear case.

Lemma 2.8 (Bilinear error propagation). Let A: U~><~V —>~W be a (C—bilm(far
map with || Al < 1, and let u € Us, v € Vo. Let A: Us x Vo = W, @ € Us,

v € Vo be approrimations. Then w = A(ﬂ,ﬁ) e W, is an approzimation for

w = A(u,v) € W, such that e(0) < e(A) + e(a) + £(0).
Proof. We have
e(w) < 2°(|A(@,) — A(a, o)[| + || A(@) — Alu, 0)]| + [|A(w,) — Alu, 0)]))
= 27(||A(a,9) — A(@,0)|| + [lA(@ — u, 0)[| + [A(u, & —v)[))

< e(A) + 2 Al @ — ul| [[3]] + 27 LA [[ull |5 — o]
< e(A) +e(a) + (d). 0

The following application of Lemma 2.8 will frequently be useful.

Corollary 2.9. Let u,v € Co, and let w :=uv € Co. Given as input approzima-
tions 1,v € Co, in time O(p' %) we may compute an approzimation © € C, such
that e(w) < e(a) +(0) + 2.

Proof. Define a bilinear map A: C x C — C by A(u,v) := uv. Then [[A| <1, and
Lerrgma 2.4 yields an approximation A: C, x C, = C, such that £(A) < 2 and
C(A) = O(p'*%). Applying Lemma 2.8 to A and A yields the desired result. [

2.7. Tensor products. The following result is used to construct numerical ap-
proximations for tensor products of linear maps over a coefficient ring.

Lemma 2.10 (Tensor products). Let R be a coefficient ring of dimension r, and
letmy,...,mg,n1,...,ng = 1. Put M := [[, max(m;,n;), and assume that M > 2.
Forie{1,...,d}, let A;: R™ — R™ be an R-linear map with ||A;|| < 1, and let
A;: Rg” — RQI‘ be a numerical approrimation. Let A = ®; A;: ®; R™ — ®; R™
(note that automatically ||A| < 1).

Then we may construct a numerical approximation A: ®; RT - ®; R’O’ such

that e(A) < 3, e(A;) and

CA <M

%

Ci;;ll) + O(Mrplog M).

Proof. For i € {0,1,...,d}, let
Ul'=R"®.-.--Q R*%"'@QR"“"®@ R ® ... R™M,

Integer multiplication in time O(nlogn) 15

In particular, U = @; R™ and U? = ®; R*. The map A: U° — U? admits a
decomposition A = By --- By where B;: U"~! — U’ is given by

Bi=T,, @ QLn, , @A @Lpy\, @@L,

(here 7, denotes the identity map on R*). In other words, B; acts by applying
A; separately on each i-slice. Explicitly, for any v € U™ we have (Byu)j,.. j, =
(A;v);, where v € R™ is the vector defined by vy, = = Uy it ki1

We may define an approximation B;: U:~! — U! by mimicking the above formula
for B;; i.e., for u € U:~! we define (Biu);,.._j, == (Aw);,, where v € R™ is given
by v = Wy ooodim 1 Kodigtesda We may evaluate B; by first rearranging the data so
that each i-slice is stored contiguously (see Section 2.3), then applying A; to each
i-slice, and finally rearranging the data back into the correct order. We then define
A=By - Bi.

We clearly have £(B;) = £(A;) for all i, so by Corollary 2.7 we obtain e(A) <
S e(Bi) = 3, e(A;). The cost of the data rearrangement at stage i is

O(ng -+ mij—1mymigr - - mgrplogn;) + O(ny -+ - nj_1mm;qq - - - mgrplog m;)
= O(Mrp (logn; + logm;)),

so the total over all ¢ is O(Mrplog M) (here we have used the hypothesis that
M > 2). The total cost of the invocations of A; is

K3 1
2.8. Exponential functions. The next three results concern the approximation
of real and complex exponentials. We give only a sketch of the proofs, omitting
routine details of the error analysis. We use the fact that the constants 7w and log 2
may be approximated to within an error of 277 in time O(p'*?), and that for z
lying in any fixed bounded subset of C, we may approximate e* to within an error
of 277 in time O(p'*?) (in fact, in time O(M(p) log p); see [3, Ch. 6-7] or [5, Ch. 4]).

Lemma 2.11 (Complex exponentials). Let k > 1 and j be integers such that
0<j <k, and let w = e?™i/k ¢ C,. Given j and k as input, we may compute an
approzimation @ € Co such that () < 2 in time O(max(p, log k)'*°).

Proof. Temporarily increasing the working precision to p’ := p + C for a suitable
constant C' > 0, we first compute a p’-bit approximation for 27j/k € R in time
O(max(p, log k)'*?), then approximate exp(—2~" + 27ij/k) € C, in time O(p'*+?)
(the 277 term ensures that the approximation lies within in the unit circle). We
finally round towards zero to obtain an element of C, at the original precision p. O

Lemma 2.12 (Real exponentials, negative case). Let k > 1 and j > 0 be inte-
gers, and let w = ;‘”j/k € C,. Given j and k as input, we may compute an
approzimation w € Co such that () < 2 in time O(max(p,log(|j| + 1), log k)1+9%).

Proof. We first check whether j > kp in time O(max(log p,log(|j| + 1),log k) *?).
If so, then e~ ™/* < e~™ < 277 50 we may simply take w = 0.

Otherwise, we may assume that 0 < j/k < p. In this case, we first compute an
integer 7 > 0 such that 7 < Z5j/k < 74 2 in time O(max(logp log k)!*7) (note
that 7 = O(p)). Temporanly increasing the precision to p’ = p + [log, p| + C,
we now compute an approximation for z = 7log2 — wj/k € [*QIOg 2,0] in time

16 DAVID HARVEY AND JORIS VAN DER HOEVEN

O(max(p,log k)'+%) and then for e* = 27¢~™/F < 1 in time O(p'*?). We finally
divide by 27 and round towards zero to obtain an approximation for e=™/* in C,
at the original precision p. O

Lemma 2.13 (Real exponentials, positive case). Let k > 1, j > 0 and o > 0 be
integers, and assume that e™/k <29 gnd o < 2p. Let w = 2-9¢mi/k € Cy. Given
i, k and o as input, we may compute an approxrimation W € C,o such that e(w) <2
in time O(max(p, log k)'*7).

Proof. The hypotheses automatically ensure that j < kp. We now proceed along
similar lines to the proof of Lemma 2.12: we first compute an integer 7 > 0 near
o— @ j/k, and then at suitably increased precision we approximate successively
z = (1 —o0)log2 + mj/k and e* = 2779¢™/kand finally divide by 27 and round
towards zero to obtain an approximation for 2~?¢e™/* at precision p. O

3. COMPLEX TRANSFORMS FOR POWER-OF-TWO SIZES

Let p > 100 be the working precision as defined in Section 2. The goal of this sec-
tion is to construct an efficiently computable approximation for the d-dimensional
complex transform F, ;,: ®;C' — ®@;C" in the special case that the ¢; are
powers of two. The following theorem is proved at the end of the section.

Theorem 3.1 (Power-of-two complex transforms). Let d > 2 and let ty,...,tq be
powers of two such thatty > --- > t1 > 2. LetT =1t ---tq and assume thatT < 2P.
Then we may construct a numerical approximation ftl,...,td3 ®; ((Eé — ®; CZ for
Fiy ... tq Such that 6(]:}17___@) < 8Tlog, T and

.....

AT
1) < - M(3tqp) + O(Tplog T + Tp'*+°).
d

Throughout this section we set
r = tg, Z = Clyl/(y" +1).

The basic idea of the proof of Theorem 3.1 is to use Bluestein’s method [2] to reduce
the DFT to the problem of computing a (d — 1)-dimensional cyclic convolution of
size t1 X - - - Xtg_1 over Z, and then to perform that convolution by taking advantage
of the synthetic roots of unity in %Z. The M(-) term in the complexity bound arises
from the pointwise multiplications in #. The O(TplogT) terms covers the cost
of the synthetic FFTs over %, and the O(Tp'*%) term covers various auxiliary
operations.

For the rest of this section, ®; Z% always means ®7_| Z*%, and ®; Ct always
means ®%_, C.

3.1. Transforms and convolutions over %. We begin with the one-dimensional
case. Recall that we have defined a synthetic transform G;: #* — %' for each
positive divisor ¢ of 2r, i.e., for t € {1,2,4,...,2r}.

Lemma 3.2 (FFT over %’2 For t € {1,2,4,...,2r}, we may construct a nu-
merical approximation Gy: XL — XL for Gy such that €(G;) < logyt and C(Gy) =
O(trplog2t).

Integer multiplication in time O(nlogn) 17

Proof. For the case t = 1, observe that G1: #Z — Z is the identity map, and admits
the trivial approximation Q1 > — %’ given by Qlu = u. This satisfies 6(91) =0
and C(gl) = O(rp).

Now let t € {2,4,...,2r}, and assume that Qt/g 7 %t/ has already been
constructed. Given as input u € ,%’o, we will use the well-known Cooley—Tukey
algorithm [7] to approximate Gyu € Z¢.

For any j € {0,...,¢t — 1}, observe that

—1 t_q
; R et
—2rjk/t —2rj(k+1)/t
y T]/uk"';ZZJ T3 (2)/uk+%
k=0 k=0
t1

= Z Y2/t uk+ (1) gy
t/2

S
W+

gtu Zy72rjk/t —

2)

where we have used the fact that y” = —1. For £ € {0,..., £ — 1} this implies that
(Gru)ae = (Gij2v)e and (Gyu)aeq1 = (Gejow)e, where v, w € %5/2 are given by

Vg = %(uk—i—u,ﬁ%)7 wy, = éy‘zrk/t(uk—ukJr%), 0<k<t/2

We may therefore use the following algorithm.

(1) Butterflies. For k € {0,... ,% — 1}, we use Lemma 2.1 to compute approx-
imations Oy, W}, € %, for vy and wj, = 3 (up — Uy) such that e(oy),e(wy,) < 1.
We then compute an approximation wy € s for wy, = y’QTk/tw;c; as y" = —1, this
amounts to cyclically permuting the coefficients of @), (and adjusting signs), and
clearly e(wy) = e(w},) < 1. The cost of this step is O(trp).

(2) Recurse. We compute G /20 and G /2w using the previously constructed
map G, /2, and interleave the results (at a further cost of O(trp)) to obtain the
output vector Gyu € #¢ defined by (Giu)ay = (Giy20)e and (Giu)aer1 = (Gyjow)e
for € {0,...,L —1}.

By Lemma 2.6 and induction we have

27 (|(Gew)ae — (Gew)acll = 2°1|(Grja®)e — (Gepv)el|
(Giy2) + £(0) <logy(t/2) + 1 =log, t.
A similar argument applies for (Gyu)s1. Therefore £(G,) < logyt. As for the

complexity, the above discussion shows that C(G;) < 2C(G, s2) + O(trp). This
immediately yields the bound C(G;) = O(trplogt) for t > 2. O

Combining Lemmas 3.2 and 2.10, we obtain the following approximation for the
multidimensional transform Gy, :, ,: @; Z' — ®; #".

Proposition 3.3 (Multivariate FFT over Z). Letty,...,tq andT be as in Theorem
3.1. We may construct a numerical approzimation Gy, .+, @ ®; Rt — @; AL for
Gttty Such that €(Gy, . 1,) <logy T and C(G,,.. t,) =O(TplogT).

Proof. We apply Lemma 2.10 (with d replaced by d — 1), taking R := Z, m; == t;,
n; = t;, A; == Gy, for i € {1,...,d — 1}. The quantity M defined in Lemma 2.10
is given by M = t1---t4—1 = T/r. Using the approximations G;, constructed in

18 DAVID HARVEY AND JORIS VAN DER HOEVEN

Lemma 3.2, we obtain

d—1
(gtlwv-»td 1 25
=1

d—1
logy t; = logy(T'/r) < log, T'
=1
and
d—1

C(Gtyootay) < %Z C(tgﬁ + O((T/ryrplog(T/r))

T
= Z O(rplog2t;) + O(TplogT) = O(TplogT). O

i=1

Next we will use the above result to approximate the normalised (d — 1)-dimen-
sional convolution map Mg: ®; Z% x ®; Bt — ®; ' defined by

1
Mg (u,v) = TU*, u,v € ®; B

Note that ||Mg| < 1; indeed, each component of uxv is a sum of ¢y ---t4_1 =T/r
terms of the form w;,, . j, Uk, . ks ., and we saw earlier that |lab|| < r|al| ||b]| for
all a,b € Z.

Proposition 3.4 (Convolution over #). Letty,...,tq and T be as in Theorem 3.1.
We may construct a numerical approzimation M% Qi Bl x @; Bt — @; R for
Mg such that e(Mg) < 3T log, T + 2T + 3 and

- AT
C(Mg) < —M(3rp) + O(Tplog T + Tp'™o).

Proof. We are given as input u,v € ®; 2. Let w = Mg(u,v) = Luxv € @; %%
be the exact (normalised) convolution. According to (2.1) we have
1

————uxv=(t1-ta-1)G5, . (Geytgy) (G tay V)
t - tgy

Dividing both sides by r = t4, we obtain w = (T/r)w’ where

w' = gt*lauwtd—l (%(gtlanwtd—lu) : (gtlv-'ﬂtd*lv)) € ®; '%21

We use the following algorithm.

(1) Forward transforms. We invoke Proposition 3.3 to compute approximations
W, 0 € @ A for u' =Gy, 4, u € @AY and v = Gy, 4, v € ®; B, with
e(t'),e(0") < logy T. The cost of this step (and step (3) below) is O(TplogT).

(2) Pointwise multiplications. Let A: % x % — % be the normalised multipli-
cation map defined by A(a,b) = ab/r; then Lemma 2.5 yields an approximation
A: Ry x Ry — o such that e(A) < 2 (note that r = t4 < T/2 < 2P~). Applying
A to each component of @' and 7/, we obtain an approximation Z € ®; @f, for
z = 1u’ v’ € ®; ZL. This step requires time

T 4T
— (AM@rp) + O(rp)) = ——~ M(3rp) + O(Tp),
and by Lemma 2.8 we have

e(2) < e(A) +e(@) + (@) <2+1logy T +logy T = 2log, T + 2.

Integer multiplication in time O(nlogn) 19

(3) Inverse transform. We use Proposition 3.3 again to compute an approxima-
tion @' € @; Z for w' =G, | z€ ®;Z; by Lemma 2.6 we obtain

e(w') < 5(9}*1’.”,%_1) +¢e(2) <logy T + (2logy T +2) = 3logy T + 2.

(4) Scaling. Recall that w = (T/r)w’ and that |w| < 1. We may therefore apply
Lemma 2.2 (with ¢ :== T'/r < 2P) to compute an approximation 1w € ®; Z% such
that

e(w) < 2(T/r)e(w')+3 < T(3log, T +2) + 3
(here we have used the hypothesis that r = tq > 2). The cost of this scaling step is
O(Tp'*?). Finally we take Mz (u,v) := . O

3.2. Transforms and convolutions over C. We now transfer the results of the
previous section from &% to C. Consider the normalised d-dimensional convolution
map Mc: ®; Ct x ®; Cti — ®; Ct defined by

1
Mc(u,v) = U, u,v € ®; Ch.
As before we have |[Mc| <1

Proposition 3.5 (Convolution over C). Letty,...,tq and T be as in Theorem 3.1.

We may construct a numerical approzimation Mc: ®; Cli x ®; Cti — @, Cli for
M such that e(Mc) < 3T log, T + 2T + 15 and

C(Mc) < g M(3rp) + O(Tplog T + Tp**°).

Proof. Let ¢ := e™/" and consider the C-linear map S: C" — Z defined by

S(ugy -+ up_1) =g+ Cury + - + ¢ty

Then § is a isomorphism of rings between (C",x) and %; in fact, recalling that
(C", %) 2 Clz]/(z" — 1), we may regard S as the map sending x to Cy. Moreover, S
induces an isomorphism of rings

T: (®§i:1 Chi %) — (®§i:_11 R).

Indeed, identifying these rings respectively as Clzy,...,2q]/(z}' — 1,..., 2% — 1)
and Clzy,...,2q_1,9]/(z —1,. x(tf o —1,y" + 1), the isomorphism 7 sends
w(xy, ..., Tg—1,2q) to u(xl,...,xd_l,Cy). Writing U = 7! for the inverse iso-

morphism, we obtain
Mc(u,v) =UMg(Tu, Tv)), u,v € ®; Ch.

Now we construct numerical approximations for the maps just introduced. We
may construct an approximation S: (CT — A, by first using Lemma 2.11 to compute
an approximation (] e C, for each G = = e™i/7 € C,, and then using Corol-
lary 2.9 to compute an approximation #; € C, for each product v; = (ju; € Co.
We obtain £((;) < 2 and then &(9;) < £({;) + 2 < 4. Hence £(S) < 4 and C(S) =
O(rp'*®). Then, applying S separately to the coefficient of each]t J;Zf o,
we obtain an approximation 7: ®%L, Cl — @ %% such that 5(7’) < 4 and
(T = ((T/r)rp1+5) O(Tp1+5) The inverse is handled similarly; we obtain an
approximation U : ®@4=} %% — @¢_, C% such that e(U) < 4 and C(UU) = O(Tp'*?).

20 DAVID HARVEY AND JORIS VAN DER HOEVEN

Finally, given as input u,v € ®; C%, we define Mc(u,v) = U(Mz(Tu, Tv)).
Then Lemma 2.6, Lemma 2.8 and Proposition 3.4 together imply that

e(Mc) <e) +e(Mg) +e(T) +e(T) < (3Tlogy T+ 2T + 3) + 4+ 4 + 4,
and the estimate for C(Mc¢) follows immediately from Proposition 3.4. O

Finally we use Bluestein’s trick [2] to prove the main result of this section.

Proof of Theorem 3.1. We are given as input u € ®; @f, We wish to approximate
_____ t,u € ®; Cli| which is given explicitly by
1 t1—1 tq—1
Gpogs = 2 0 S e iy, 0 i<
E1=0 kq=0

For any j1,...,jq € Z set
(3.1) Qjy . = eﬂi(jf/t1+~~+j3/td) e C,.

The identity —2jk = (j — k)? — j2 — k? implies that

| ol tasl
(3.2) Ujryeda = Qa7 D DREEE N7 N P (S TS)

k1=0 kq=0

where ~ denotes complex conjugation. Moreover, we observe that a;, . ;, is periodic
in each j; with period t;, as emiUitt)*/ti — miii/ti (gmi)20itti — miii/ti (using the
fact that ¢; is even). Therefore, regarding (3.1) as defining a vector a € ®; Cli, we
may rewrite (3.2) in the form

v=2a-(gax(a-u)).

We now use the following algorithm.

(1) Compute a. Recalling that each ¢; divides r, we may write
T
Mjrseenda = ?

. ro.
Ajy,....5a = €]12+"'+a]3 (mod 27‘).

1
Iterating over the tuples (ji,...,jq4) in lexicographical order, we may compute
Mj,....jo i amortised time O(logr) = O(p) per tuple (for example by precom-
puting a table of squares modulo 2r), and then use Lemma 2.11 to compute an
approximation @j, . ;, € Co such that e(a;,,;,) < 2 in time O(p'*?). We thus
obtain @ € ®; C% with (@) < 2 in time O(Tp'*?).

(2) Pre-multiply. We use Corollary 2.9 to compute an approximation b € ®; Cl
for b= @ - u with e(b) < £(@) + 2 < 4 in time O(T