Integer multiplication in time O(n log n) - Archive ouverte HAL
Article Dans Une Revue Annals of Mathematics Année : 2021

Integer multiplication in time O(n log n)

Résumé

We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representa- tion. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer’s fast polynomial transforms.
Fichier principal
Vignette du fichier
nlogn.pdf (571.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02070778 , version 1 (18-03-2019)
hal-02070778 , version 2 (28-11-2020)

Identifiants

Citer

David Harvey, Joris van der Hoeven. Integer multiplication in time O(n log n). Annals of Mathematics, 2021, ⟨10.4007/annals.2021.193.2.4⟩. ⟨hal-02070778v2⟩
82299 Consultations
232350 Téléchargements

Altmetric

Partager

More