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ABSTRACT 

Aim: To compare brain blood flow between the head up (HUP) and supine (SUP) body 

positions during prolonged cardiopulmonary resuscitation (CPR), using active 

compression-decompression (ACD) CPR and an impedance threshold device (ITD) in a 

swine model of cardiac arrest.   

Methods:  After 8 minutes of untreated ventricular fibrillation (VF), followed by 2 

minutes of ACD-CPR+ITD in the SUP position, pigs were randomized to 18 minutes of 

ACD-CPR+ITD in either 30o HUP or SUP position.  Microspheres were injected before 

VF, and then 5 and 15 minutes after study start.   

Results: Brain Blood flow (ml/min/g, mean ± SD) after 15 minutes of CPR was 

0.42±0.05 for HUP (n=8) and 0.21±0.04 for SUP (n=10), (p<0.01).  The HUP group also 

had lower intracranial pressures and higher cerebral perfusion pressures. 

Conclusions: Brain blood flow in the HUP position was higher in than the SUP position.  

This provides pre-clinical support to proceed with a clinical evaluation of head up CPR in 

humans. 
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1. Introduction 

The head up (HUP) position during cardiopulmonary resuscitation (CPR), either with 

a whole body tilt, or elevation of  just the head and thorax, has been described as a novel 

approach to increase cerebral perfusion pressure when compared with CPR in the supine 

position (SUP) in swine models of cardiac arrest.1-4  Additionally, higher cerebral blood 

flow has been described with the head up whole body tilt versus whole body flat after 5 

minutes of mechanical CPR with an impedance threshold device (ITD). 1  However, most 

clinical CPR efforts last a minimum of 15-20 minutes.5  This poses a potential risk of 

HUP CPR when using a whole-body tilt approach since blood flow to the brain would be 

anticipated to decrease over time secondary to pooling of blood in the lower extremities.  

This physiology is known from the use of head-up tilt-table testing to induce syncope. 6, 7  

To reduce this potential risk, we previously developed a HUP device that elevates just the 

head and upper thorax and demonstrated higher cerebral perfusion pressure (CerPP) in 

the HUP position over a period of 22 minutes with active compression decompression 

(ACD) + ITD CPR. 2  With this device the head is elevated about 25 cm and the heart 

about 5 cm relative to the rest of the body.  Building on these studies, in the current 

investigation we tested the hypothesis cerebral blood flow would be higher with HUP 

versus SUP during prolonged ACD CPR + ITD. 2  The primary endpoint of this study 

was brain blood flow after 15 minutes of CPR in a porcine  model of ventricular 

fibrillation (VF) cardiac arrest. Secondary endpoints included brain blood flow after 5 

minutes of CPR, systemic hemodynamics including intracranial pressure, and end tidal 

CO2 (ETCO2) for up to 20 minutes of CPR. 
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2.  Materials and Methods 

Study Ethics 

This study was approved by the Institutional Animal Care and Use Committee of 

the Minneapolis Medical Research Foundation (MMRF). Animal care was compliant 

with the National Research Council’s 1996 Guidelines for the Care and Use of 

Laboratory Animals, and a certified and licensed veterinarian assured protocol 

performance was in compliance with these guidelines.  

Study Design and Measurements 

Techniques describing the surgical preparation, anesthesia, microsphere 

techniques, and data monitoring and recording used in this study have been previously 

described. 1, 2 Female Yorkshire farm pigs weighing 36-44 kg were fasted overnight after 

acclimatizing in the animal care facility for three days. Intramuscular ketamine (10 mL of 

100 mg/mL) was administered in the holding pen. Animals were transferred to the 

surgical suite where they were treated with inhaled isoflurane at 1% to 2.5%, then 

intubated with a 7.5 French endotracheal tube and ventilation was performed using a 

ventilator (Narkomed, North American Dräger, Telford, PA) with tidal volume 10 

mL/kg. ETCO2 and oxygen saturation were recorded with a CO2SMO Plus® 

(Novametrix Systems, Wallingford, CT). The respiratory rate and FiO2 were adjusted to 

keep oxygen saturation above 92% and ETCO2 between 37 and 43 mmHg.  Intravenous 

access was obtained..  All animals received a normal saline bolus of 1000 ml during 

preparatory phase to maintain the mean right atrial pressure between 4 and 7 mmHg.  
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Temperature was monitored with an esophageal probe, and maintained between 36.5 and 

38.5°C  Proximal airway pressure, a surrogate for intrathoracic pressure, was measured 

with a differential pressure transducer (TSD160C, BioPac Systems, Inc., Goleta, CA). 8 

Central aortic blood pressures were measured with a micromanometer-tipped catheter 

(Mikro-Tip Transducer, Millar Instruments, Houston, TX) placed through the right 

femoral artery into the descending thoracic aorta to the level of the diaphragm. A similar 

Millar catheter was placed in the right femoral vein and advanced to the right atrium 

(RA) to measure right atrial pressure.  A  pigtail catheter was positioned in the left 

ventricle (LV) under fluoroscopic guidance via the left femoral artery.  This was used for 

microsphere injections (see below).  The position of all vascular micromanometer-tipped 

catheters was confirmed by fluoroscopy before induction of VF.  Intracranial pressure 

(ICP) was measured via a burr hole in the skull, and  insertion of a Millar catheter into 

brain as previously described. 1  All animals received a 100 units/kg bolus of heparin 

intravenously every hour. 

 Data, including electrocardiographic monitoring, aortic pressure, RA pressure, LV 

pressure, ICP, and ETCO2, was continuously recorded using the BioPac computer system 

(BioPac; BioPac Systems Inc., Goleta CA). All data was stored using the BioPac 

computer data analysis program. Arterial blood gases (ABG) were acquired through the 

femoral artery catheter and analyzed with a Gem Premier 3000 device (Instrumentation 

Laboratory, Lexington, MA). 

 When the preparatory phase was complete, isoflurane was discontinued, and after 

3 minutes VF was induced with delivery of direct electrical current from a pacing wire 

placed in the right ventricle.  ACD CPR + ITD was performed with an automatic piston 
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device (Pneumatic Compression Controller; Ambu International, Glostrup, Denmark) as 

described previously. 2, 9 ACD CPR was performed at a rate of 80 compressions/min, 

with a 50% duty cycle and depth of 22.5% of antero-posterior chest diameter, and the 

chest was pulled upwards after each compression with a suction cup on the skin at a 

decompression force of approximately 10 kg. An ITD, (ResQPOD-16, Zoll Medical, 

Minneapolis, MN) was placed at the end of the endotracheal tube.  The HUP CPR device 

used elevated just the head and shoulders and upper thorax 30o, as previously described.2 

While transitioning from supine to the HUP CPR was performed in an uninterrupted 

manner. During CPR, positive pressure ventilation was delivered with oxygen, titrated to 

a SpO2 of ≥92%, with a tidal volume of 10 mL/kg.  If the animal was noted to gasp 

during the resuscitation, time at first gasp was recorded. Succinylcholine was 

administered at a dose of 3mg (0.075/kg) to inhibit gasping after the third gasp. 

Microsphere protocol 

 Blood flow to the heart, brain, kidney, and liver was measured with microsphere 

injection into the LV under stable baseline conditions 5 min prior to the induction of VF.  

Neutron activated microspheres (STERIspheresTM, BioPALTM: BioPhysics Assay 

Laboratory, Worcester, MA) 15 microns in diameter containing Samarium (152Sm), 

Ytterbium (175Yb) and Lutetium (177Lu) were used.   

The number of microspheres needed per injection (μ) was determined as follows: μ = 1.2 

x 106 + ((1.9 x 105) x ω) where μ is the number of microspheres and ω is the weight of 

the pig. Then, the volume of microspheres injected at baseline was calculated as follows  
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Volume =             μ                                                                                                                   

((5 x 108)/20).  

A higher number of microspheres was injected during CPR compared to baseline to 

account for the low flow state of CPR.10  Immediately after microsphere injections, 

reference blood samples were withdrawn continuously over 4 minutes from the 

descending aorta at a collection rate of 10 ml min−1.1, 10 

At the end of the study, animals were sacrificed and then tissue samples from the 

brain (posterior [pons portion of the brain-stem, hippocampus], left and right cortex), the 

heart (free left ventricle wall, apex, papillary muscle, and septum), the kidney (cortex), 

and the liver were obtained. Tissue and blood samples were desiccated and sent to the 

reference BioPhysics Assay Laboratory for analysis.10 

Organ blood flow could then be calculated in the reference laboratory after 

performing neutron activation and calculating how many microspheres are in the tissue 

and reference blood samples by using the following equation:  

Organ flow (mL/min) = Known organ flow (mL/min) x No. of microspheres in organ with unknown flow 

     No. of microspheres in organ with known flow 

Here, the known organ flows were from the reference blood samples, and the number of 

microspheres in the organ with unknown flow calculated in each organ by neutron 

activation. Therefore, the blood flow to each organ could then be calculated in mL/mg/g 

tissue.11 
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Experimental Protocol 

 The experimental protocol is outlined in Figure 1. After 8 minutes of untreated 

VF, ACD CPR + ITD was performed with a 30:2 compression: ventilation ratio, and 

positive pressure ventilation with room air was provided while all pigs were in the SUP 

to simulate basic life support (BLS).12  After 2 minutes of CPR, animals were randomized 

either HUP CPR or SUP CPR and continuous asynchronous ACD CPR+ITD CPR was 

continued for 18 minutes with a 10:1 compression: ventilation ratio to simulate advanced 

life support (ALS).13  Randomization was performed with block randomization in groups 

of 4 prior to the study start. All members of the research study team were unaware of the 

randomization until 1 minute into CPR, when an unmarked envelope was opened with the 

randomized body position. . Microsphere injections were performed after 5 and 15 

minutes of CPR and 20 ml of blood were collected over 4 minutes (see above).  After 19 

total minutes of CPR, 0.5 mg of adrenaline was administered intravenously followed by 

25 mg of amiodarone.  One minute later, pigs were defibrillated with up to three 200 J 

biphasic shocks (X-series, Zoll Medical, Chelmsford MA).  If return of spontaneous 

circulation (ROSC) was not obtained, CPR was resumed and a shock was delivered every 

2 minutes together with 0.5 mg of adrenaline every 4 minutes.  If spontaneous circulation 

was not restored after a total of 3 shocks, CPR was stopped.  If ROSC was obtained, 

animals were euthanized with an intravenous injection of KCl 20 minutes later. 

2.3 Data Analysis 

 The sample size calculation was based on previous studies. We estimated the 

brain blood flow would be approximately 25% higher in the HUP ACD CPR + ITD 



 

7 

group. 1  Assuming an alpha level of 0.05 and 80% power, 11 animals were needed per 

group to detect an 80% difference.  

 Hemodynamic data were analyzed at baseline just prior to the microsphere 

injection, and then after 5, 15, 19, and 20 minutes of CPR.  Airway, aortic, right atrial, 

and intracranial pressures measurements were made from 3 sequential compression-

decompression cycles between positive pressure breaths.  These values were averaged for 

each of the compression-decompression cycle measurements for each time point in each 

animal study.  The coronary perfusion pressure (CPP) was calculated as the difference 

between the decompression phase aortic and right atrial pressures, and represents the 

aortic to right atrial pressure gradient during the relaxation phase of cardiopulmonary 

resuscitation. As with previous studies, our target CPP during CPR was at a minimum of 

15 mmHg since CPP of at least 15-20 correlates with ROSC in animals and humans, and 

is a marker of high quality CPR.14, 15 In addition, when calculating the mean CerPP we 

used the mathematical difference between aortic and intracranial pressure over a 15 

second interval at each time point. 

 Data are expressed as mean ± standard deviation (SD). Statistical analysis was 

performed using SPSS 21 (IBM Corporation, USA). An unpaired Student’s t-test was 

used to determine significance between HUP and SUP for the primary outcome of blood 

flow at 15 minutes, and also for secondary hemodynamic outcomes.  A Fisher’s exact test 

was used to compare ROSC rate.  All statistical tests were two-sided, and a p value of 

less than 0.05 was required to reject the null hypothesis. Unadjusted p values are 

presented for the secondary analyses.  Studies where technical difficulties were 

encountered due to either dislodgment of the left ventricular catheter, or inability to 
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compress the chest 22.5% of the antero-posterior diameter, did not meet study inclusion 

criteria and were therefore not included in the results. 

3. Results  

Eighteen pigs weighing 39.5 ± 8.2 kg randomized to CPR in HUP (n=8) or SUP 

(n=10) met study inclusion criteria.  Results showing the blood flow to the brain, heart, 

kidney, and liver before VF and then 5 and 15 minutes after the start of CPR are provided 

in Table 1 and Figure 2.  The blood flow to the brain after 15 minutes of CPR, the 

primary study endpoint, was higher in the HUP group at 0.42 ±0.05 ml/min/g versus 0.21 

± 0.04 in the SUP group, respectively (p<0.01).  When compared with pre-VF values, 

blood flow to the brain after 15 minutes of CPR was 25% of baseline in the SUP versus 

50% in the HUP.  Regional brain blood flow before cardiac arrest and after 5 and 15 

minutes of HUP and SUP CPR are shown in Figure 2.  

Key hemodynamic variables for the two treatment groups are shown in Table 2.  Pigs 

treated with HUP CPR had significantly lower intracranial pressure (ICP) and higher 

CerPP after 5, 15, 19, and 20 minutes of ACD CPR + ITD versus SUP.  One minute after 

adrenaline, the CerPP values remained higher in the HUP group. The time to first gasp 

was 282 ± 51 seconds in the HUP group versus 437 ± 185 seconds in the SUP group 

(p=0.045).  

 The ROSC rate and ABG values were similar between the two treatment groups. 

With HUP CPR 5/8 pigs achieved ROSC versus 3/10 in the SUP group (p=0.34). The 

arterial blood gases were similar at baseline and in the animals that had ROSC, as shown 

in Table 3. 
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Discussion 

 The evaluation of any new approach in the treatment of patients in cardiac arrest 

requires preclinical proof of safety and effectiveness.  This translational process is 

ongoing in regard to the potential benefits of elevating the head and thorax during CPR.  

Building upon recent studies demonstrating proof-of-concept of HUP CPR in multiple 

animal laboratories,1, 2, 16 the current study was designed to determine if elevation of the 

head and thorax was effective, safe, and consistent with previous work during a 

prolonged CPR effort in pigs.  The experimental protocol lasted 20 minutes, the average 

duration of many CPR efforts. Two questions were assessed in this protocol: are the 

beneficial physiological effects of HUP CPR sustained over time and can this new 

approach be safely applied in a prolonged resuscitation?  ACD CPR + ITD was used 

based upon prior animal studies demonstrating that conventional CPR did not provide 

enough forward flow to pump blood “uphill” to the brain during HUP CPR, whereas a 

longer-term hemodynamic benefit was observed with HUP ACD+ITD CPR. 2 

 These  results show for the first time that blood flow can be maintained at levels 

of 50% of baseline values in this animal model of prolonged CPR.  By contrast, ACD 

CPR + ITD in the flat position provided only 25% of normal brain flow after 8 minutes of 

untreated VF and 15 minutes of CPR.  The microsphere blood flow studies parallel the 

hemodynamics findings of higher CerPP throughout the resuscitation effort, and results 

from the current study confirmed prior hemodynamic studies. Two hemodynamic factors 

contributed to the higher and sustained CerPP in the HUP group; a gradual reduction in 

ICP in the HUP group over time and a sustained mean aortic pressure. By comparison, 

ICP remained relatively high and constant and aortic pressure relative low and constant in 
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the SUP group. An earlier study demonstrated a similar improvement in CerPP, but such 

measurements are calculated by the difference between the arterial driving pressures and 

the resistance generated by ICP.  This calculated CerPP has the potential to overestimate 

the actual delivery of blood to brain tissues as the arterial pressure cannot be easily 

measured in the cerebral arteries, due to technical limitations. 2 This limitation of the 

previous work highlighted the need to also demonstrate increased brain blood flow with 

HUP CPR in a prolonged CPR effort as shown in the current study. 

 Blood flow to the brain is needed to preserve and maintain brain function. 

Gasping is also dependent upon brain blood flow. 17  Pigs treated with HUP CPR took 

their first spontaneous gasp earlier compared with the SUP group.  This may be of 

clinical significance as gasping is associated with brain stem functionality and better 

clinical outcomes in patients in cardiac arrest.  As such, time to first gasp may be a useful 

clinical endpoint when evaluating HUP CPR in human patients. 17-21 

 The increase in brain blood flow and shorter time to first gasp are a direct result of 

HUP CPR.  These observations are most likely due to the multiple effects of gravity and 

ACD CPR + ITD on intracranial and right heart pressures and trans-pulmonary blood 

flow. 1-3  With HUP CPR, venous blood flow to the thorax and right heart is enhanced 

from the brain and paravertebral plexus; this decreases ICP and increases cardiac preload. 

1-3, 22 This reduction in ICP lowers resistance to forward brain flow. The reduction in ICP 

and right-sided venous pressures in combination with the factor of pumping blood 

“uphill” with compression during HUP CPR also reduces the concussive forces that 

simultaneously strike the brain with each chest compression from a combination of 

simultaneous high arterial and venous high pressure waves.  In these recent studies ACD 
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CPR + ITD was used to generate high enough aortic pressures to overcome the challenge 

of pumping arterial blood “uphill”.2  Without the ITD there was less of a clinically 

meaningful benefit with HUP CPR. 1 

 Previous studies have demonstrated that ACD CPR + ITD is superior to 

conventional CPR in terms of blood pressure, brain flow to the heart and brain, and long-

term survival with favorable neurological function. 3, 5, 23  In this study, ACD CPR + ITD 

in both positions resulted in similar aortic pressures and ABGs.  Right atrial pressures 

tended to be lower in the HUP group but these differences were not significant.  The 

current study suggests that when ACD CPR + ITD is performed continuously, first SUP, 

during the transition from SUP to HUP, and then HUP for a prolonged period of time, 

there is no increased risk of harm. 

 The current study provides additional support for the concept of HUP CPR but 

does have some limitations.  First, this study is in an animal model of VF cardiac arrest, 

using young healthy swine without cardiac disease.  The current VF model is widely used 

in cardiac arrest research, however may not necessarily translate to humans. Additionally, 

many prolonged arrests have an initial presenting rhythm of pulseless electrical activity 

(PEA), or asystole. However, the VF prolonged arrest model is commonly used.24-27  

While this study provides definitive evidence of an increase in blood flow to the brain 

during prolonged HUP CPR, it is unknown if this benefit will translate into an increase in 

long-term survival with favorable brain function. Further study is needed in this regard.  

Another limitation is that given the higher than anticipated effect size we stopped 

randomizing and performing studies on pigs after 18 pigs.  Different from the first study 

that was used to estimate the sample size1, in the current study we used an ACD CPR that 
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pulled upwards with 10 kg versus 1.5 kg, and we only elevated the head and thorax rather 

than whole body head up tilt.  Finally, we did not examine the potential risks and harm of 

maintaining HUP in pigs in cardiac arrest without ongoing CPR.  We suspect that long 

pauses during cardiac arrest could be potentially harmful in the HUP due to pooling of 

blood in the abdomen and lower extremities without ongoing circulatory effort.   

4. Conclusion 

After prolonged ACD CPR + ITD with elevation of the thorax and head, blood flow of 

the brain was 2-fold higher versus controls treated with the same method of CPR in the 

supine position.  These findings provide additional strong pre-clinical support to proceed 

with a clinical evaluation of elevation of the head and thorax during ACD CPR + ITD in 

humans in cardiac arrest. 

 



 

13 

 

ml/min/g 
Baseline 5 min CPR 15 min CPR 

SUP HUP SUP HUP SUP HUP 

          n 10 8 10 8 10 8 

Brain 
0.84 ± 

0.17 
0.86 ± 0.14 0.33 ± 0.06 0.45 ±0.07 0.21 ± 0.04 0.42 ± 0.05 * 

Heart 
1.37 ± 

0.19 
1.57 ± 0.17 0.51 ± 0.11 0.42 ± 0.09 0.33 ± 0.12 0.34 ± 0.06 

Kidney 
2.51 ± 

0.29 
2.32 ± 0.24 0.28 ± 0.08 0.38 ±0.07 0.21 ± 0.06 0.31 ± 0.07 

Liver 
0.59 ± 

0.11 
0.76 ± 0.23 0.10 ± 0.02 0.08 ± 0.02 0.05 ± 0.02 0.08 ± 0.02 

 

Table 1: Blood flow (ml/min/g) to various organs during cardiopulmonary resuscitation 

(CPR) in animals randomized to head and thorax elevation (HUP) or supine (SUP) 

positions. Values are presented as mean ± standard deviation; *p=0.01 compared to the 

15 min SUP CPR value. 
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N 

SUP=10 

HUP=8 

Baseline 5 min CPR 15 min CPR 19 min CPR 20 min CPR 

SUP HUP SUP HUP SUP HUP SUP HUP SUP HUP 

ITP diastole 2.3 ± 1.2 2.0 ± 0.6 -5.3 ± 3.0 -5.8 ± 1.8 -5.7 ± 2.8 -6.0 ± 0.8 -5.6 ± 3.4 -5.1 ± 1.5 -5.1 ± 3.9 -5.4 ± 1.3 

Ao systole 

/diastole 

96 ± 12 

/ 73 ± 10 

86 ± 14 

/ 65 ± 13 

56 ± 11 

/ 24 ± 5 

58 ± 10 

/ 24 ± 5 

53 ± 14 

/ 21 ± 6 

59 ± 8 

/ 23 ± 4 

45 ± 17 

/ 16 ± 8 

53 ± 9 

/ 20 ± 5 

52 ± 22 

/ 21 ± 12 

58 ± 13 

/ 23 ± 7 

RA systole/ 

diastole 

7.4 ± 2.2 

/ 5.9 ± 2.3 

7.1 ± 1.9 

/5.1 ± 1.7 

60 ± 17 

/ 6.1± 4.9 

49 ± 16 

/ 2.8 ± 3.6 

52 ± 15 

/ 5.7 ± 4.2 

48 ± 14 

/ 2.7 ± 3.4 

48 ± 14 

/ 5.1 ± 4.5 

43 ± 14 

/ 2.0 ± 3.7 

51 ± 11 

6 / 6± 

46 ± 16 

/ 4 ± 5 

ICP mean 
18.8 ± 2.5 

 

16.8 ± 3.6 

 

18.3 ± 6.4 

 

10.0 ± 7.0 

* 

17.7 ± 5.5 

 

7.7 ± 5.5 

*** 

15.7 ± 4.2 

 

6.1 ± 5.1 

*** 

14 ± 2 

 

2 ± 2 

*** 

CPP diastole 66 ± 10 58 ± 13 18 ± 8 21 ± 6 15 ± 8 20 ± 5 11 ± 11 18 ± 6 15 ± 15 20 ± 6 

CerPP mean 
65 ± 11 

 

60 ± 14 

 

13 ± 7 

 

26 ± 7 

*** 

11 ± 9 

 

28 ± 5 

*** 

8 ± 10 

 

27 ± 5 

*** 

6 ± 11 

 

20 ± 7 

** 

EtCO2 mean 42 ± 2 42 ± 2 34 ± 16 40 ± 6 28 ± 15 32 ± 14 24 ± 11 28 ± 12 23 ± 10 26 ± 11 

 

Table 2: Hemodynamic measurements in animals randomized to the head up (HUP) or supine (SUP) position during a prolonged cardiopulmonary              

resuscitation (CPR) effort. Values are presented as mean ± standard deviation. Abbreviations: Intrathoracic pressure (ITP), Aortic pressure (Ao), right            

atrial pressure (RA), intracranial pressure (ICP), Coronary Perfusion Pressure (CPP), Cerebral Perfusion Pressure (CerPP), end-tidal CO2 (ETCO2),             

active compression decompression (ACD), impedance threshold device (ITD), *** p≤0.001 ; ** p<0.01 ; * p<0.05, compared to the SUP CPR value at                     

the same CPR time point. 
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 Baseline ROSC 

 SUP HUP SUP (n-3) HUP (n=4) 

pH 
7.46 ± 0.02 7.46 ± 0.03 7.02 ± 0.03 6.97 ± 0.03 

PaCO2 
42 ± 3 44 ± 1 57 ± 5 73 ± 21 

PaO2 
85 ± 10 93 ± 16 80 ± 10 91 ± 18 

HCO3- 
30 ± 2 30 ± 1 15 ± 1 16 ± 4 

BE 
6 ± 3 6 ± 1 -16 ± 1 -10 ± 4 

SaO2 
96 ± 2 97 ± 1 86 ± 5 83 ± 11 

 

Table 3: Arterial blood gases results of the head up (HUP) and supine (SUP)  

cardiopulmonary resuscitation (CPR) groups. Values are presented as means ± standard 

deviation; Abbreviations: Return of spontaneous circulation (ROSC), base excess (BE) 
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Figure 1: Study timeline. Abbreviations: Head Up CPR (HUP), supine (SUP), active 

compression decompression (ACD) plus impedance threshold device (ITD) 

cardiopulmonary resuscitation (CPR), ventricular fibrillation (VF), basic life support 

(BLS), advanced life support (ALS), return of spontaneous circulation (ROSC), 

adrenaline. 
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Figure 2: Blood flow to the various areas of the brain with head up (HUP) and supine 

(SUP) cardiopulmonary resuscitation (CPR) 
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