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Abstract 

We investigate the dynamics of a deterministic self-propelled particle endowed with coherent memory. 

We evidence experimentally and numerically that it exhibits several stable free states. The system is 

composed of a self-propelled drop bouncing on a vibrated liquid driven by the waves it emits at each 

bounce. This object possesses a propulsion memory resulting from the coherent interference of the 

waves accumulated along its path. We investigate here the transitory regime of the build-up of the 

dynamics which leads to velocity modulations. Experiments and numerical simulations enable us to 

explore unchartered areas of the phase space and reveal the existence of a self-sustained oscillatory 

regime. Finally, we show the co-existence of several free states. This feature emerges both from the 

spatio-temporal non-locality of this path memory dynamics as well as the wave nature of the driving 

mechanism. 
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The dynamics of a self-propelled particle usually results from the balance between an external friction 

and a self-propulsive mechanism and leads to a unique ballistic free solution. If the particle interacts 

with a memoryless thermal bath, a large variety of stochastic paths may be observed [1-3]. However, 

their dynamics shares common statistical properties. More complex behaviors with several distinct free 

states are observed in the presence of external sensing, interactions with other particles [4-8] or a 

minimal form of intelligence [9-10]. In this letter, we show how such complex behaviors emerge even 

in the absence of any of these mechanisms, from a coherent memory.  

We leverage the properties of self-propelled bouncing drops, called walkers. Such a system in which 

the information is stored in waves, was introduced a decade ago [11,12]. This entity is composed of a 

droplet driven by the surface standing waves it emits when bouncing on the surface of a vertically 

oscillating bath [13]. The dynamics of this self-propelled object is designated as a path-memory wave 

driven dynamics. The information about the droplet past trajectory is stored iteratively in its wave field 

composed of the coherent addition of all elementary standing circular wave fields centered at the 

successive droplet bounces. In return, this information encoded in the wave drives the droplet dynamics 

by changing the local slope at each of the impact points. Walkers are endowed with a non-quantum 

wave-particle duality based on a time non-locality. Several dynamical solutions emerge from the balance 

between the surface shearing and the propulsive force depending on the excitation parameters which 

control the memory time. The most natural solution in which the drop moves at a constant speed has 

been thoroughly investigated [14-18]. Self-trapped spinning states have also been studied [19-22]. 

Wind-Willassen et al. [23] found non-stationary walking states and ascribed these dynamical modes to 

an alternation between different bouncing modes. Finally, Sampara and Gilet [24] have evidenced that 

exciting the bath with two frequencies permits non-stationary walking speed. In these two cases, the 

non-trivial solution arises from the complex bouncing and not from a dynamical feature of the horizontal 

motion itself. 

In this letter, we report the co-existence of free states based on wave interference where the drop vertical 

motion is synchronized with the bath. We evidence the pivotal role of the memory depth to drive the 

system into oscillatory or chaotic regimes. We study experimentally and numerically the transient 
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regime of the walk to reveal the process of the memory build-up. We leverage this exploration of the 

phase space to investigate numerically and experimentally the coexistence of stable non-stationary 

walking states. 

The dynamics of the walkers is successfully described by the path-memory model as soon as the vertical 

and horizontal motions of the droplet are decoupled [25]. The droplet dynamics is driven by successive 

kicks that are proportional to the local slope of the global wave field. This wavefield is a coherent 

superposition of standing waves centered along the droplet trajectory and sustained for a time  owing 

to a critical slowdown at the vicinity of the Faraday instability. This parametric instability originates 

from the modulation of the apparent gravity at the fluid interface. The decay time of the stationary waves 

is given by 𝜏 ∝ 𝑇Far(1 − 𝛾𝑚 𝛾𝐹⁄ )−1 [12,15,16] with 𝛾𝑚 the vertical acceleration amplitude of the bath 

and 𝛾𝐹 the Faraday acceleration threshold (𝛾𝐹 ≈ 5 g in our experiments). The drop hits the bath every 

Faraday period 𝑇Far = 40 ms. The total guiding wavefield ℎ(𝒓, 𝑡𝑛) at position 𝒓 and time 𝑡𝑁  resulting 

from successive impacts at time 𝑡𝑘 and position 𝒓𝑘 is 

ℎ(𝒓, 𝑡𝑁) = ℎ0 ∑ 𝑒−
(𝑡𝑁−𝑡𝑘)

𝜏 𝐽0(𝑘𝐹|𝒓 − 𝒓𝑘|)𝑁
𝑘=1 ,      (Eq. 1) 

where 𝐽𝑛 denotes the 𝑛th Bessel function of first kind and ℎ0 is the field amplitude. Each of the previous 

positions of the drop leaves a wave footprint on the liquid surface and acts as secondary sources. The 

system possesses a quantifiable amount of “memory” about its past trajectory, to which it is sensitive at 

all times. The memory parameter Me =
𝜏

𝑇Far
  measures the mean number of previous bounces 

contributing to the dynamics of the walker. The walker dynamics is modeled by an iterative numerical 

scheme that includes a damping force and propelling force proportional to the local slope of the surface 

field. The algorithm has already been described and benchmarked in Refs [25-28]. If we denote by 

𝑣(𝑡𝑁) the 1D horizontal speed of the drop and 𝑥(𝑡𝑁) its position at time 𝑡𝑁 = 𝑁Δ𝑡, with Δ𝑡 = 𝑇Far then 

the speed at the next bounce 𝑡𝑁+1 = 𝑡𝑁 + Δ𝑡 is given by  

 𝑣(𝑡𝑁+1) = 𝑣(𝑡𝑁) + Δ𝑡[−𝜂𝑣(𝑡𝑁) + ℱwave],        (Eq. 2) 

where the wave force per unit mass is   
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ℱwave = 𝐶 ∑ Δ𝑡𝑒−
(𝑡𝑁−𝑡𝑘)

𝜏 𝐽1(𝑘𝐹(𝑥𝑁+1 − 𝑥𝑘))𝑁
𝑘=1       (Eq. 3) 

and 𝜂 is an effective friction coefficient. We choose the range of parameters 𝐶 = 0.2 − 1.5 m/s3 and 

𝜂 = 2 − 5 𝑠−1 consistently with the hydrodynamic description [15,17]. Note that the exact value 

crucially depends on the fluid viscosity and drop size [15,17]. Equations (2) and (3) are reminiscent of 

the integrodifferential equation proposed in Refs [16,19] obtained by taking the continuous time limit 

Δ𝑡 →0. Oza et al. [16] demonstrated with this continuous time model that the straight line with constant 

speed is linearly stable to tangential perturbations. Note that this continuous model does not exclude the 

possibility of other regimes but we find that keeping a finite size step Δ𝑡 is important for the validity of 

the result presented hereafter (see Supplemental Material Figure S1).  

To explore the influence of the dynamical exchange between the wave field and the drop in regimes far 

from constant velocity steady states, we first focus on the transient regime starting from an immobile 

drop and increase sharply the bath acceleration. As a result, the memory time increases drastically and 

the bath starts storing positional information of the drop impacts. Both experiments and numerical 

simulations have been performed. The experimental set up is sketched in Fig. 1(a). We consider a drop 

of silicone oil of kinematic viscosity 50 cSt bouncing on a 7 mm deep bath of the same liquid in a square 

tank of 14 cm long and free of inner obstacles. The tank is vertically vibrated at 50 Hz with an 

acceleration amplitude gamma  𝛾𝑚≈ 4.5g. As shown in Fig. 1(b), we suddenly increase the acceleration 

amplitude to a value above the walking threshold 𝛾𝑊  for which the horizontal motion is observed. Two 

cameras filming from above and from the side record respectively the horizontal and the vertical motions 

of the drop. 

A snapshot of the experimental transient is shown in Fig. 1(c). The high-speed film reveals how the 

horizontal motion starts. Immediately after the acceleration increase, the drop bounces a few times on 

the spot before it starts moving in the horizontal plane. Simultaneously the amplitude of the wave-field 

increases without changing its form: during the following first bounces, the wave field remains mostly 

circular, while the drop goes away from the center. As the drop moves forward, the wave-field is 



6 

 

deformed and the original bump fully vanishes after the drop has traveled a distance of the order of the 

wavelength. 

The drop positions and speeds are measured and compared with the model [Eq. (2)]. Figure 2(a) shows 

the time evolution of the horizontal speed for increasing memory parameter Me = 7, 36, and for 

different drops. At short memory, Me = 7, the drop moves shortly after the acceleration amplitude of 

the bath  𝛾𝑚 is set above the walking acceleration threshold  𝛾𝑊 ≃ 4.8 g. The time 𝑡0 needed to start 

moving is randomly distributed and depends on the details of the initial conditions. It remained in the 

range 0.1 – 0.7 s (i.e. 3 to 17 drop bounces) and neither dependence on memory nor on drop size of the 

average delay have been established from our experiments. For 𝑡0 ≤ 𝑡 ≲ 1 s  the drop accelerates 

sharply and steadily until it reaches a constant velocity  𝑣f = 6.5 ± 0.2 mm/s for 𝑡 ≳ 1 s. At a larger 

memory, Me = 36, the situation changes qualitatively and quantitatively. The drop accelerates more 

vigorously than for Me = 7 and the speed exhibits oscillations that last for typically few seconds. The 

speed oscillations are damped in time and the drop speed finally converges to a constant value  𝑣𝑓 =

14.6 ± 0.1 mm/s. For large enough memory, typically Me ≳ 20, the final speed in simulations depends 

very little on the memory parameter, and mainly on the ratio  𝐶/𝜂 as expected from previous 

investigations [11,15,16,19].  

The temporal variation of drop speed is a consequence of the propelling force modulations which results 

from the variations of density of secondary sources. To evidence the origin of this dynamical interplay 

we investigate experimentally the evolution of the frequency of oscillation𝑠 𝜈 with Me and with the final 

drop speed 𝑣f. Varying the drop size essentially changes the final drop speed that is an easily measurable 

quantity. Figure 2(b) shows the experimental evolution of 𝜈 with the final speed of the drop. It reveals 

that 𝑣f/𝜈 is constant. The memory parameter does not influence significantly the period of oscillations, 

so that the characteristic length does not depend on memory. The system presents one single intrinsic 

relevant length that is the Faraday wavelength of the propelling wave  𝜆𝐹 = 2𝜋 𝑘𝐹⁄ = 6.1 mm. We find 

𝑣f

𝜈
≈ 𝜆𝐹  within an uncertainty of ±3 × 10−2. We interpret it as an interplay between the dynamical 
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buildup of the wave and the drop oscillations leading to a situation where the motion length scale of the 

particle 𝑣f/𝜈 self-adapts with the unique wave lengthscale 𝜆𝐹.  

This interplay can be analyzed by comparing the instantaneous wave slope with the density of secondary 

sources. The linear density of secondary sources is given by  
1

𝑣𝑇Far
 . We define the relative source density 

as Δ𝜌 = 1/(𝑣𝑇Far)- 1/(𝑣f 𝑇Far). We compare in Fig. 2 (c) the variation of Δ𝜌 with the instantaneous 

wave force per unit mass ℱwave [see Eq. (3)]. We observe that both quantities oscillate in opposite 

phases indicating that the dynamical interplay between the drop and its waves originates in a temporal 

exchange between the horizontal momentum of the drop and the wave force.  

We now leverage the existence of non-uniform distribution of secondary sources during the transient to 

explore the possibility of long-standing non-stationary free walking states. Indeed, transient motion is a 

practical way to prepare the system in a state where the initial distribution of secondary sources is 

oscillatory. This situation explores a different region of the phase space where stable speed limit cycles 

may develop and survive. At this stage, we have only presented situations where the oscillations of the 

speed were damped in time. We investigate now the existence of parameter regimes leading to 

permanent speed oscillations. We proceed this systematic exploration with the numerical model before 

evidencing experimental coexistence of free states. We fix the wave coupling constant 𝐶 = 1.1 m/s3, 

while varying the damping constant 𝜂 and the memory parameter Me. We measure in the long time limit 

the amplitude of the fluctuations of speed Δ𝑣 (peak to peak) and construct an order parameter 𝜒 =

min{Δ𝑣 𝑣f⁄ , 1}. We show its colormap in Fig. 3(a) in the parameter diagram (𝜂, Me). To further 

characterize these dynamics Fig. 3(b) shows their two-dimensional representation in the phase space 

(𝑣, �̇�). The corresponding speed time series are given in the Supplemental Material Figure S2. For low 

values of 𝜂, the drop moves at a stable constant speed (𝜒 = 0 in Fig. 3(a) corresponding to a fixed point 

in Fig. 3(b)). For larger damping 𝜂 a finite bandwidth in which the speed oscillations are stable in time, 

exists (0 ≤ 𝜒 ≤ 1 in Fig. 3(a) corresponding to the stable limit cycle in Fig. 3(b)). Depending on the 

initial conditions, stable fix points also survive in this regime. The transition 𝜂∗(Me) between the two 

regimes is characterized by a strong divergence of the oscillation decay time suggesting a dynamical 
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phase transition. For even stronger damping and large memory, the fluctuations of speed can be of the 

same order as the final speed. In that critical case the drop stops and turns back which triggers a chaotic 

regime ( 𝜒 = 1 in Fig. 3(a) and a strange attractor Fig. 3(b)). Although, chaotic behaviors for 

synchronous bouncing states have been observed in confined situations [30-33] or in the particular cases 

mediated by complex bouncing modes [23,24], it is the first time that we observe chaotic free regimes 

of walking droplets which intrinsically rely on their horizontal dynamics. The boundaries separating the 

three distinct regimes mainly depend on the damping parameter and very little on the memory parameter. 

A different value of wave coupling, 𝐶=3.8 m.s-3 (supplementary Figure S3), did not qualitatively alter 

the phase diagram. We expect that the existence of a chaotic free walking regimes itself does not depend 

on the dimension of the motion but that exact nature of the chaos does [29]. We also note that the 

transition to chaos is here very different from the chaotic paths observed in confining potentials [30-33]. 

Figure 3(c) shows the experimental evidence of the two free states: the constant velocity solution and 

the oscillating velocity solutions (see the corresponding wavefields in the Supplemental Movie SM1). 

The two free states are attractors and stable. Experimentally, the switch between the two solutions must 

be triggered by a sufficient external perturbation. For instance, shifting between the two horizontal 

dynamical modes can occur when the walker reaches the edge of the cell. The initial conditions prescribe 

which attractor is selected (see numerical simulations in the Supplemental Figure S4). It suggests that 

this property arises here from a horizontal dynamical interplay between the kinetics of the drop and the 

energy stored in the wave in contrast with a switch of bouncing modes as in [23]. Indeed, this oscillating 

velocity mode was observed in [23]. They observe a change of the bouncing vertical dynamics of the 

droplet associated with a change of the walker speed. Our model predicts this oscillating regime even 

without taking into account the vertical dynamics. Its role and its contribution to the velocity modulation 

is still to be investigated. 

In this letter we investigate the existence of spontaneous non-trivial free states in a wave memory driven 

dynamics. A walker is a self-propelled particle which stores information in a wave and it rereads it at a 

later time. This dynamical exchange of energy between the wave and the particle encodes a rich 

dynamics which can lead to stable speed oscillations. In contrast with the usual stick-slip, this motion is 
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not associated with frictional variations but is rather driven by oscillations of the propelling force which 

result from the variations of density of secondary sources. The existence of multiple coexisting free 

states when the memory strength is further increased is evidenced, which is a striking feature for a 

system lackings any form of intelligence. 
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Captions 

Figure 1 Experimental setup and walker’s starting up (a) Schematics of the experimental setup. A bath 

of silicon oil is vertically vibrated at 50 Hz with a tunable acceleration amplitude 𝛾𝑚. It is set to 𝛾𝑚 =

4.5𝑔 to allow a sub-millimetric drop of the same liquid to bounce in a period doubling regime. (b) Time 

evolution of the bath acceleration. For 𝑡 < 0, 𝛾𝑚 = 4.5𝑔 the bouncing drop has no horizontal motion. 

At time 𝑡 = 0, 𝛾𝑚 is suddenly increased above the walking threshold 𝛾𝑊 ≈ 4.8 g for which the drop 

self-propels on the bath surface, typically 𝛾𝑊 < 𝛾𝑚 < 𝛾𝐹 ≈ 5𝑔. (c) Snapshots of the starting up of the 

walker taken with high-speed camera (here time step is Δ𝑡 = 320 ms with an image width ≈45 mm). 

The wave profile is initially circular. The motion breaks this symmetry and accumulating secondary 

sources changes the form of the wave profile.  

Figure 2: Starting up characterization of the walker (a) Time evolution of the drop speed for short 

(Me = 7 (red)) and long memory (blue line (Me = 36)). The two cases correspond physically to two 

different drops. Experimental data (dashed lines) fitted by the model Eq. 2 (solid lines) with fitting 

parameters 𝐶 = 0.25 m s3⁄ , 𝜂 = 3.12 s−1 and 𝐶 = 1.1 m s3⁄ , 𝜂 = 4.72 s−1 respectively. The walker 
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converges to the final constant speed 𝑣f = 6.5 ± 0.2 mm/s and 𝑣𝑓 = 14.6 ± 0.1 mm/s respectively. 

(b) Experimental frequency  of the damped speed oscillation as a function of the final speed for various 

drops sizes and linear fit (slope 0.164. pink area: 95% confidence interval). (c) Time evolution of the 

experimental density of secondary sources Δ𝜌 along the trajectory (measured in 0.1 × mm−1 , black) 

and of the force exerted by the waves on the drop 𝐹wave (per unit mass, m/s−2, red) deduced from Eq. 

(3) for Me = 36. The reference Δ𝜌=0 is taken in the final constant speed limit. 

Figure 3: Existence of multiple free states. (a) Numerical color map of the order parameter 𝜒 =

min{Δ𝑣 𝑣f⁄ , 1} for 𝐶 = 1.1 m/s3 with Me and of 𝜂. Starting from an immobile particle, three distinct 

regimes are observed: constant speed (𝜒 = 0), stable oscillations (0 < 𝜒 < 1) and chaotic regime (𝜒 =

1). Depending on the initial conditions, the region of stable oscillations presents also solutions with a 

constant speed. The circles along the dashed line at 𝜂 = 6.2 s−1 at Me = 10 (black), Me = 80 (blue) 

and Me = 400 (red) correspond to the regimes in Fig. 3(b). (b) Two-dimensional representation of the 

numerical dynamics in the phase space (𝑣, �̇�). The dynamics converges to either fixed-point (Me = 10 

(black)), speed limit cycle (Me = 80 (blue)), or strange attractor (Me = 400 (red)). (c) Experimental 

evidence of coexisting free states at Me = 45. Speed of a same drop with respect to its relative position: 

the drop is locked into a limit cycle (orange diamonds). After perturbations (not shown) it converges to 

a solution with constant speed (blue square). The motion are straight but initial directions are ill-defined. 
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Figure 2  
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