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Abstract

In rough elastohydrodynamic lubricated contacts the geometry often exhibits

two clearly separated scales: a macroscopic scale –the one of the bearing– and

a microscopic scale, that of the surface roughness. In numerical simulation of

lubricated contacts, this difference in scales leads to large systems of equations

to solve. Assuming periodicity or pseudo-periodicity of the small scale, several

methods to decouple the macro scale from the micro scale have been proposed,

the formal approach being the homogenization theory. However, the approxi-

mation errors due to the classical asymptotic assumptions can be considerable.

In this work we introduce a homogenized model which takes into account the

non-negligible pressures and deformations of the micro scale, thus extending the

applicability of the classical asymptotic homogenized approaches.
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Nomenclature

h H film thickness

δ ∆ elastic body surface normal displacement

l ε, ε0 roughness wavelength

A roughness amplitude

ξ ξ roughness phase

um u entrainment velocity

W normal load per unit width

δδδ ∆∆∆ displacement field in the equivalent solid

p P pressure

ρ ρ fluid density

η η fluid viscosity

R equivalent curvature radius

a contact half-width of Hertzian theory

ph maximum pressure of Hertzian theory

ρh3

12η ε constitutive parameter

x1 X1 slow tangential spatial variable

Y1 fast tangential spatial variable

M , L Moes-Venner parameters

The symbol in the second column is the non-dimensional version of the one in

the first column.

1. Introduction

Surface roughness has an impact on lubricated contacts, especially for those

operating in severe conditions. Understanding the influence of the microgeome-

try of the surfaces in contact in the elastohydrodynamic (EHL) regime is essen-

tial for the design of improved bearings and mechanical transmissions. From the5

numerical point of view this constitutes a challenge, given the physics involved

and the difference in scales imposed by the geometry of the bearing and the one

of the surface roughness. This problem has been handled in two ways: a direct
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resolution of the problem up to the microscopic scale, which is called in the

literature the deterministic approach, and also by means of averaging methods.10

A recent paper by Pei et al [1] develops a deterministic multiscale computa-

tional method (finite cell method, FCM) to solve rough lubricated contacts; it

is however limited to conformal hydrodynamics contacts.

As pointed out by Gropper et al [2], direct simulation becomes too costly

for state of the art simulations of EHL contacts, and thus it is restricted to very15

small domains, such as Hertzian contacts. State of the art modeling involves

non-Newtonian fluids, thermal (TEHL) and piezoviscous effects as well as solid

deformations for problems that are innately transient. This leads to hundreds

of thousands of degrees of freedom, as well as very fine discretizations in time in

order to capture the characteristic times of the problem [3]. Earlier works such20

as the one by Sadeghi and Sui [4] assessed the effects of surface roughness in the

form of a sinusoidal waviness, a line of work followed by many others [5, 6] and

more recently by Wang et al [7]. Hooke [8] developed a perturbation analysis of

the Reynolds equation as a fast analysis to access the global behavior of rough

EHL contacts, under the assumption of small perturbation with respect to the25

smooth case.

Recent efforts have been focused on representing the surface as it is, that

is, inputing the shape of realistic measured surfaces as data in the simulations,

both for line and point contacts. Morales-Espejel at al [9] presented a fine-scale

EHL model where the evolution of the surface is considered. TEHL contacts30

where both waviness and realistic surfaces are assessed were presented by Wang

et al [10]. Simulations with measured machined rough surfaces at different

orientations were carried out by Zhu et al [11], considering transient effects in

TEHL contacts with a non-Newtonian lubricant. This line of work has also been

followed by [12, 13].35

In all of these works the size of the contact region ranges from a few hundred

micrometers to one milimeter, thus potentially holding hundreds of asperities.

For other lubricated devices, such as the piston skirt/liner contact the number

of asperities can rise to the thousands due to the dimensions of the domain,
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as shown by Zhu et al [14]. Stochastic methods, averaging techniques and flow40

factors emerged to solve this issue and decouple the microscopic scale from

the macroscopic scale, thus reducing the computational cost. From those, the

most commonly adopted are Patir and Cheng’s [15] flow factors, which are still

commonly used in EHL [16, 17, 10].

All of these techniques are heuristic solutions to the formal approach which45

is homogenization. Averaged equations are developed with coefficients being

computed in periodic cells (the so-called local problems) with the dimensions

of the roughness wavelength. Furthermore, the flow factors can be formally

defined, as done by Bayada [18]. The first homogenized results in EHL are due

to Bayada et al [19, 20], where the authors dealt with a Newtonian fluid with50

piezoviscous effects and density variations. The linearity of the local problems,

which is essential for the classic definition of the flow factors, relied on the

asymptotic assumption.

Even though the surface roughness wavelength can be smaller in some or-

ders of magnitude compared to the dimensions of the contact, the asymptotic55

assumption can lead to significant differences compared to the fine-scale solution.

As shown by Venner and Lubrecht [21], high frequency roughness is almost un-

deformed by the fluid pressure, while the large wavelengths are largely affected.

In an effort to incorporate the effects of a not-so-small wavelength, some authors

have considered the deformations taking place in the local problems. This is the60

case of Budt et al [22], who decoupled the microscopic from the macroscopic

scale using a FE2-type technique. Other authors preferred, in a more heuristic

approach, to redefine the Patir and Cheng’s flow factors considering the local

deformations [23, 24]. A precise definition of the homogenized EHL problem

with finite-wavelength roughness and the corresponding flow factors is given by65

Scaraggi et al [25, 26]. However, they developed their approach for low contact

pressures, and hence the lubricant properties are pressure-independent.

In the present work we propose a homogenized model for the stationary

EHL line contact problem that takes into account piezoviscous effects and den-

sity variations with pressure, and where the size of the surface roughness is70
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Figure 1: Upper and lower finite solid bodies.

assumed to be non-infinitesimal. Micro-elastohydrodynamic effects were cor-

rectly captured in cases of technological interest. Although the developments

were made for the one-dimensional stationary case in order to better assess the

performance of the model, the extension to the two-dimensional transient case

is not burdensome.75

The article is outlined as follows: in Section 2 the fine-scale problem is

presented in its non-dimensional form. Section 3 deals with generalities of the

adopted homogenization technique, the asymptotic homogenized EHL model

and the newly developed model. In order to assess the performance of the

model herein proposed, a sensitivity analysis is carried out in Section 4. Finally,80

conclusions are drawn in Section 5.

2. Problem statement

We aim to solve stationary lubricated contacts in the elastohydrodynamic

(EHL) regime considering piezoviscous effects and density variations with pres-

sure. Cavitation effects are to be taken into account too. The geometry is the85

one seen in Figure 1: two surfaces separated by a lubricating oil. As we are

addressing a stationary problem, surface roughness can be present solely in the

fixed surface.

In this work we assume an infinitely long cylinder-on-plane contact. We
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assume that the computational domain ΓR where the fluid dynamics is going

to be solved coincides with the x1 line, Figure 2. We begin by introducing the

equation for the gap in the x3 direction:

h(x1) = h0 +
x2

1

2R
+ hr(x1) + δ(x1) (1)

where R is the reduced radius of curvature in the x1 direction of the line contact

for the mean smooth surface, h0 parametrizes the translation in the x3 direction

between both solids, hr describes the surface roughness (with a zero mean) and

δ is a function representing the surface deformations due to the elastic behavior

of the solids. u1 and u2 are respectively the velocities in the x1 direction of

the upper surface (1) and the lower surface (2) with respect to the contact

center. We also assume elastic, isotropic, homogeneous solid bodies. The lower

body moves in the x1 direction with prescribed velocity while the upper one

is free to move in the x3 direction only (and thus u1 = 0), its position being

parametrized with h0. The displacements δδδ(x1, x3) = [δ(1) δ(3)]T induced by the

hydrodynamic pressure in the fluid p(x1) are given by the elastostatic equation

divσσσ = 000 (2)

where σσσ is the Cauchy stress tensor, which is given by Hooke’s law

σσσ = D


∂x1

δ(1)

∂x3δ
(3)

∂x3δ
(1) + ∂x1δ

(3)

 (3)

with

D =
E′

(1 + ν′)(1− 2ν′)


1− ν′ ν′ 0

ν′ 1− ν′ 0

0 0 1−2ν′

2

 (4)

E′ and ν′ being the Young’s modulus and Poisson’s coefficient of the equivalent

material, which in terms of the properties of the bodies 1 and 2 are given by90
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[27]:

E′ =
E2

1E2(1 + ν2)2 + E1E
2
2(1 + ν1)2

(E1(1 + ν2) + E2(1 + ν1))
2 (5)

ν′ =
E1ν2(1 + ν2) + E2ν1(1 + ν1)

E1(1 + ν2) + E2(1 + ν1)
(6)

From this it can be inferred that the deformations δ that affect the gap

between the upper and lower solids in equation (1) are

δ(x1) = δδδ(x1, 0) · e3e3e3 = δ(3)(x1, 0) (7)

where e3e3e3 is the unitary vector in the x3 direction. Equation (2) is solved in

the equivalent domain Ωs, see Figure 2. Notice that the same formulation can

be applied even when the lower surface is rough, as we are considering the

equivalent solid. The boundary conditions can be expressed as95

• Dirichlet boundary condition: δδδ = δδδD on ΓsD,

• von Neumann boundary condition: σσσ ·nnn = 000 on ΓsN ,

• coupling term with Reynolds equation: σσσ ·nnn = −pnnn on ΓR.

where the boundary of the domain ∂Ωs is split into complementary parts ∂Ωs =

ΓsD ∪ ΓsN ∪ ΓR. By taking the force exerted by the pressure along x3 only we100

disregard the deformations caused by the shear stress in the x1 direction and

we assume small perturbations for the elastic problem. Here nnn is the unitary

normal to ∂Ωs.

It is assumed also that the thin film approximation is valid, and if we select

the frame of reference on the upper surface, then the hydrodynamic pressure

p(x1) is given by the following form of the Reynolds equation [28]

∂

∂x1

(
umρh−

ρh3

12µ

∂p

∂x1

)
= 0 (8)

Here the density ρ = ρ(p) and the viscosity µ = µ(p) are functions of the

hydrodynamic pressure, and um is the mean velocity um = u2+u1

2 .105
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Figure 2: A section of the computational domain.

The load W applied on the upper solid body must be balanced by the force

exerted by the hydrodynamic pressure p:

W =

∫
ΓR

p(x1)dx1 (9)

Cavitation effects are introduced by means of a penalization method, as

in [27]. The penalization method sets a source term Kpp
− in the Reynolds

equation (8), where p− = min(p, 0), and Kp > 0 is a large penalization constant.

2.1. Non-dimensional form

We consider the following non-dimensionalizations and definitions:110

X1 =
x1

a
, X3 =

x3

a
, ∆∆∆ =

δδδ

a
(10)

H =
h

a2/R
, H0 =

h0

a2/R
, Hr =

hr
a2/R

, ∆ =
δ

a2/R
(11)

u =
um
ur
, µ =

µ

µr
ρ =

ρ

ρr
, P =

p

ph
, ΣΣΣ =

σσσ

ph
(12)

Note that the non-dimensionalization for ∆∆∆ and ∆ are not the same. For a line

contact [29] we select a as the half width of the contact and ph as the maximum

dry contact pressure of the Hertzian theory:

a =

√
8WR

πEr
and ph =

2W

πa
(13)
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with 2
Er

=
(1−ν2

1 )
E1

+
(1−ν2

2 )
E2

. Finally, ur is a reference velocity (when um is

constant, one can opportunely choose ur = um), µr and ρr are respectively the

viscosity and density at atmospheric pressure.

This leads also to the following non-dimensional number:

λ =
12urµrR

2

a3ph
(14)

Then the complete problem to be solved reads:

Problem 1. Fine-scale reference problem. Given the constants (boundary condi-115

tions, geometry, material) PD, ∆∆∆D, u, λ, Kp, E
′/ph and ν′, the known functions

Hr(X1), ρ(P ) and µ(P ), find H0, P (X1) and ∆∆∆(X1, X3) satisfying:

• Reynolds equation:

∂

∂X1

(
u ρH − ε ∂P

∂X1

)
+KpP

− = 0 (15)

where ε = ρH3

µλ , P− = min(P, 0) and H(X1) = H0+
X2

1

2 +Hr(X1)+∆(X1),

and with the boundary conditions: P (X1) = PD on ΓR.

• Load balance: ∫
ΓR

P dX1 =
π

2
(16)

• Elastostatic problem:

∆(X1) =
R

a
∆∆∆(X1, 0) · e3e3e3 on ΓR (17)

where ∆∆∆ = (∆(1),∆(3)) is the solution of

divΣΣΣ = 000 (18)

with ΣΣΣ the Cauchy stress tensor

ΣΣΣ =
1

ph
D


∂X1∆(1)

∂X3
∆(3)

∂X3
∆(1) + ∂X1

∆(3)

 (19)

and boundary conditions ∆∆∆ = ∆∆∆D on ΓsD, ΣΣΣ ·nnn = 000 on ΓsN and

ΣΣΣ ·nnn = −Pnnn on ΓR (20)
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Figure 3: Separating the macroscopic scale from the microscopic scale.

2.2. Separation of scales120

Assuming a periodic roughness of dimensional spatial period l, Figure 3

illustrates that the surface is composed of a slow-varying part (dashed line) and

a fast varying part (full line). With this in mind, the equation for the gap (1)

can be rewritten as

H(X1) = H̃(X1) + Ĥ(X1) (21)

where H̃(X1) represents the smooth, larger scale of the gap H

H̃(X1) = H0 +
X2

1

2
+ ∆̃(X1) (22)

and Ĥ(X1) the smaller scale, with periodicity ε = l/a which is the non-dimensional

wavelength of the roughness. ε is also the scale ratio, expected to be small, be-

tween the roughness and the overall contact. Then Ĥ can be expressed as

Ĥ(X1) = Hr(
X1

ε
− ξ) + ∆̂(X1,

X1

ε
− ξ) (23)

Here Hr represents the undeformed shape of the roughness, which we assume

is periodic in ε, and ξ is a phase shift. Both ∆̃ and ∆̂ represent solid deformations

in the large and small scale respectively, although their precise definition is

postponed.

3. Homogenization of the elastohydrodynamic lubrication problem125

The periodic roughness introduces a new variable

Y1 =
X1

ε
− ξ (24)
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which we can define in a non-dimensional domain Υ = [0, 1] (see Figure 2).

Then, the expression for the gap between the lubricated surfaces becomes

H(X1, Y1) = H̃(X1) + Ĥ(X1, Y1) (25)

In the method of asymptotic expansions it is assumed that the hydrodynamic

pressure can be expanded as:

P = P (X1, Y1) = P0(X1, Y1) + εP1(X1, Y1) + ε2P2(X1, Y1) + . . . (26)

where P0, P1, . . . are periodic in Y1, and following (24) the derivative with

respect to X1 is replaced with

∂

∂X1
+

1

ε

∂

∂Y1
(27)

As the term P− of the penalization method is not smooth, it cannot be

expanded easily; the cavitation condition will be treated separately and is not

considered at this point. Introducing (26) and (27) into equation (15) and

considering the leading terms in the resulting expansion, that is, the terms in

ε−2, ε−1 and ε0 respectively we have

∂

∂Y1

(
ε
∂P0

∂Y1

)
= 0 (28)

∂

∂Y1
(ρ uH)− ∂

∂X1

(
ε
∂P0

∂Y1

)
− ∂

∂Y1

(
ε
∂P0

∂X1

)
− ∂

∂Y1

(
ε
∂P1

∂Y1

)
= 0 (29)

∂

∂X1
(ρ uH)− ∂

∂X1

(
ε
∂P0

∂X1

)
− ∂

∂X1

(
ε
∂P1

∂Y1

)
− ∂

∂Y1

(
ε
∂P1

∂X1

)
− ∂

∂Y1

(
ε
∂P2

∂Y1

)
= 0

(30)

and in the solid body, we have through the boundary conditions

ΣΣΣ ·nnn = −(P0 + εP1 + . . .)nnn on ΓR (31)

The linearity in this last equation and in the solid deformations problem

allows us to expand the displacements ∆∆∆ into

∆∆∆ = ∆∆∆(X1, Y1) = ∆∆∆0(X1, Y1) + ε∆∆∆1(X1, Y1) + ε2∆∆∆2(X1, Y1) + . . . (32)
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where each ∆∆∆i is due to Pi, i = 0, 1, 2, . . . respectively, by expanding the linear

elastic problem with respect to ε, and is Y1-periodic. These developments allows

the problem to be split as described in the following sections.

The load balance equation (16) is also expanded, leading to:130 ∫
ΓR

P0 dX1 =
π

2
(33)

〈P1〉 = 0 (34)

where 〈·〉 denotes the average over the Υ domain.

3.1. The classical homogenized asymptotic (H-A) model

These classical results in asymptotic homogenization on the EHL problem

are due to Bayada et al [19] and are briefly recalled here. If we assume an

infinitesimal ε, and also that the terms in ε, ε2, . . . in equation (26) are negligible

with respect to P0, then expanding H, ρ and ε, it can be proven that equations

(28) to (30) become
∂

∂Y1

(
ε0
∂P0

∂Y1

)
= 0 (35)

∂

∂Y1
(ρ0 uH)− ∂

∂X1

(
ε0
∂P0

∂Y1

)
− ∂

∂Y1

(
ε0
∂P0

∂X1

)
− ∂

∂Y1

(
ε0
∂P1

∂Y1

)
= 0 (36)

∂

∂X1
(ρ0 uH)− ∂

∂X1

(
ε0
∂P0

∂X1

)
− ∂

∂X1

(
ε0
∂P1

∂Y1

)
− ∂

∂Y1

(
ε0
∂P1

∂X1

)
− ∂

∂Y1

(
ε0
∂P2

∂Y1

)
= 0

(37)

with

ρ0 = ρ(P0), µ0 = µ(P0), ε0 =
ρ0H

3

µ0λ
(38)

H = H̃ +Hr, H̃ = H0 +
X2

1

2
+ ∆0 (39)

3.1.1. Microscopic problem

From equation (35) it can be inferred that P0 = P0(X1), and thus ∆̃ =

∆0(X1) are macroscopic displacements computed on Ωs. Notice that there are

only macroscopic deformations in the expression for the clearance H (39), i.e.

∆̂ = 0. Taking this into account, equation (36) becomes linear on P1:

∂

∂Y1
(ρ0 uH)− ∂

∂Y1

(
ε0
∂P0

∂X1

)
− ∂

∂Y1

(
ε0
∂P1

∂Y1

)
= 0 (40)
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This problem for the microscopic pressure P1 is determined up to a constant

of X1. This constant is fixed using the micro load balance equation (34).135

3.1.2. Macroscopic problem

Averaging (37) leads to:

∂

∂X1
(ρ0 u〈H〉)−

∂

∂X1

(
〈ε0〉

∂P0

∂X1

)
− ∂

∂X1

(
〈ε0

∂P1

∂Y1
〉
)

= 0 (41)

This is the equation for the macroscopic pressure P0. Since H0 is also an

unknown in the expression of the film thickness H, an additional equation to

close the problem is the macro load balance (33).

As mentioned previously, the elastostatic problem is only derived at macroscale:

∆0(X1) = R
a∆∆∆0(X1, 0) · e3e3e3 on ΓR, where ∆∆∆0 = (∆

(1)
0 ,∆

(3)
0 ) is the solution of

divΣΣΣ
0

= 000 (42)

with

ΣΣΣ
0

=
1

ph
D


∂X1∆

(1)
0

∂X3∆
(3)
0

∂X3
∆

(1)
0 + ∂X1

∆
(3)
0

 (43)

and boundary conditions ∆∆∆0 = ∆∆∆D on ΓsD, ΣΣΣ
0
·nnn = 000 on ΓsN and

ΣΣΣ
0
·nnn = −P0nnn on ΓR (44)

3.1.3. Relocalization140

Although the homogenized asymptotic model is developed for a infinitesi-

mal ε, it is still expected that it can approximate the solution of the reference

problem with a finite wavelength ε0 in certain situations, such as when ε0 and

roughness amplitude are small enough. Thus, the hydrodynamic pressure can

be reconstructed as

P (X1) ' P0(X1) + ε0P1(X1, Y1) = P0(X1) + ε0P1(X1, X1− ε0

⌊
X1

ε0

⌋
− ξ) (45)

where b·c is the floor function, returning the greatest integer less or equal than

(·).
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3.2. The homogenized µ-EHL model

The classical asymptotic homogenization does not involve piezoviscous ef-

fects nor elasticity at the microscopic scale. It is only valid if ε0P1 is very small

when compared to P0. This constitutes a limitation of this approach, leading to

inaccurate solutions for severe loading conditions, i.e., when the film thickness

is not very large when compared to the roughness amplitude. The homogenized

µ-EHL model is intended to overcome these limitations. We assume the same

expansion of equation (26), however, we will not develop the constitutive laws

ρ, µ and the coefficient ε in equations (28) to (30). For those terms, we will

consider the finite roughness wavelength ε0 such that

ρ = ρ(P0 + ε0P1), µ = µ(P0 + ε0P1), ε =
ρH3

µλ
(46)

and

H = H̃ + Ĥ, H̃ = H0 +
X2

1

2
+ ∆0, Ĥ = Hr + ε0∆1 (47)

with ∆1 being microscopic displacements to be fully defined in the following

sections. Here the higher order terms in ε2
0, ε3

0, . . . , are still neglected.145

3.2.1. Microscopic problem

As in the classical asymptotic model, from equation (35) it can be deduced

again that P0 = P0(X1) and thus ∆0∆0∆0 = ∆0∆0∆0(X1) too. The microscopic problems

for the pressure are now the non-linear equation in P1

∂

∂Y1
(ρ uH)− ∂

∂Y1

(
ε
∂P0

∂X1

)
− ∂

∂Y1

(
ε
∂P1

∂Y1

)
= 0 (48)

Again, the problem is determined up to a constant of X1, however, contrary

to the homogenized asymptotic model this constant affects also the solution of

the macro pressure P0, as can be seen from the dependency of µ and ρ with P1.

The assumption of a non-negligible ε0P1 term leads to non-negligible dis-150

placements ε0∆1. An elastic problem (yet to be defined) must be solved, with a

boundary condition with pressure P1 on Υ× {0}. Notice that P1 = P1(X1, Y1)

introduces the fast variable Y1 in the elastic deformations problem.
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Due to the zero average of P1 over Υ, Saint Venant’s principle implies that

the deformations induced by this force will be localized, i.e., they won’t prop-155

agate far away from the area of application of P1. This assumption allows us

to solve these micro-deformations in a reduced domain Υ × [0, d] (see Figure

2), where the length d is determined by the roughness wavelength ε0 and the

equivalent Poisson’s coefficient ν′ (assuming ν′ not close to 0.5 for witch Saint

Venant’s principle is not valid).160

This new problem in Υ × [0, d] (see Figure 2) is in the variables Y1 and

Y3 = X3/ε0. Notice that at each point X1 an independent problem has to be

solved in Υ × [0, d], which is parametrized by P0, H̃ and ∂X1
P0 in contrast

with the microscopic problems of the classical model, which only depend on

two parameters, H̃ and ∂X1
P0. Then the equation for the elastic deformations

∆1∆1∆1(X1, Y1, Y3) = (∆
(1)
1 ,∆

(3)
1 ) is

divY ΣΣΣ
1

= 0 (49)

where divY is the divergence operator with respect to the coordinates (Y1, Y3),

and ΣΣΣ
1

is the micro Cauchy stress tensor in the solid Υ× [0, d]:

ΣΣΣ
1

=
1

ph
D


∂Y1

∆
(1)
1

∂Y3
∆

(3)
1

∂Y3∆
(1)
1 + ∂Y1∆

(3)
1

 (50)

In {0}× [0, d] and {ε0}× [0, d] the only requirement that we have is periodicity

of ∆1∆1∆1 in the Y1 variable:

∆1∆1∆1(X1, 0, Y3) = ∆1∆1∆1(X1, ε0, Y3) (51)

We assume that Υ×{d} is sufficiently far away from the localized deforma-

tions at Υ× {0}, so that we can set the Dirichlet boundary conditions:

∆1∆1∆1 = CCC on Y × {d} (52)

where CCC is a constant to be determined with 〈∆1〉 = 0, and the boundary

condition coupling the micro-elastostatics to the micro Reynolds equation:

ΣΣΣ
1
·nnn = −P1nnn on ΓR (53)
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Particularly, we are interested at the deformations at the surface Υ× {0}

∆1(X1, Y1) = ε0
R

a
∆1∆1∆1(X1, Y1, 0) · e3e3e3 (54)

where the factor ε0 stands from the difference between the scaling factors of

the elastic problem and the gap H in the microscopic Reynolds equation in e3e3e3

direction.

3.2.2. Macroscopic problem

Taking the average of equation (37) we now obtain:

∂

∂X1
(u〈ρH〉)− ∂

∂X1

(
〈ε〉 ∂P0

∂X1

)
− ∂

∂X1

(
〈ε∂P1

∂Y1
〉
)

= 0 (55)

We assume the pressure boundary conditions PD to be only a function of

the slow variable X1, so it reads

P0(X1) = PD on ∂ΓR (56)

The macroscale displacements ∆0 come from the solution of the elastostatic165

equation with P0 as von Neumann boundary conditions, as in the classical

asymptotic model.

3.2.3. Dealing with cavitation in the two-scale model

For the homogenized models we propose to introduce penalization terms in

both the microscale and the macroscale equations, taking into account that the

condition for cavitation P0 + ε0P1 ≥ 0 can be traduced into a restriction for the

microscopic pressure

P1 ≥ −
P0

ε0
(57)

However, imposing the cavitation condition only in the microscopic pres-

sure is not feasible. A physical argument against it is that the large negative

pressures arising in the divergent part of the lubricated contact could not be

suppressed by the small pressures developed in small or even moderately small

roughness. Hence, constraints will be set both on the macroscopic and micro-

scopic pressures. Then, the penalization term for the macroscopic equation is

16



KpP
−
0 with

P−0 = min(P0, 0) (58)

and the one for the microscopic equation is KpP
−
1 , with P−1 defined with

P−1 = min(P1 +
P0

ε0
, 0) (59)

while it is not necessary that the constant Kp be the same for both penalization

terms. It should be noticed that the penalization method allows small negative170

pressures to take place. If P0 ≤ 0 at a certain point in the domain, the condition

set by the equation (57) will lead to an incompatibility with 〈P1〉 = 0. In order

to avoid this we will set P1 ≡ 0 at all the points X1 of the macroscopic domain

where P0 ≤ 0. This is consistent with the straight application of cavitation

unilateral constraint: indeed when a macro cavitation takes place (i.e. P0 = 0)175

the constraint 〈P1〉 = 0 together with P1 ≥ −P0

ε0
= 0 leads also to P1 = 0.

Thus, we can summarize the µ-EHL model as:

Problem 2. Homogenized µ-EHL problem. Given the constants (boundary con-

ditions, geometry, material) PD, ∆∆∆D, u, ε0, λ, Kp, E
′/Ph and ν′, the known

functions Hr(Y1), ρ(P0 + ε0P1) and µ(P0 + ε0P1), find the macroscopic quanti-180

ties H0, P0(X1), ∆0(X1) and the microscopic corrections P1(X1, Y1), ∆1(X1, Y1)

(with 〈P1〉 = 〈∆1〉 = 0 and Y1-periodicity) satisfying:

• the two-scale Reynolds equations with ε = ρH3

µλ :

∂

∂X1
(u〈ρH〉)− ∂

∂X1

(
〈ε〉 ∂P0

∂X1

)
− ∂

∂X1

(
〈ε∂P1

∂Y1
〉
)

+KpP
−
0 = 0 (60)

∂

∂Y1
(ρuH)− ∂

∂Y1

(
ε
∂P0

∂X1

)
− ∂

∂Y1

(
ε
∂P1

∂Y1

)
+KpP

−
1 = 0 (61)

this last one being superseded by P1(X1, Y1) ≡ 0 if P0(X1) ≤ 0, and the

film thickness H being (47).

• the load balance equation (33)185

• the two-scale elastostatic problem (42, 43, 44) and (49, 50, 53)

17



4. Validation of the homogenized µ-EHL model

Let us first outline the fine-scale reference problem. The non-dimensional

computational domain for the Reynolds equation is defined in ΓR = [−4, 2]; the

elastic body is defined on Ωs = [−35, 25]× [−60, 0], see Figure 4.190

The boundary conditions are set as PD = 0, ∆∆∆D = 0; the velocity is set to

u = 1.

The non-dimensional expression for the laws governing the compressibility

of the fluid and the piezoviscosity chosen for the numerical tests are

ρ = 1 +
cA p

1 + cB p
(62)

µ =

(
µ∞
µr

)1−(1+ p
γ )c

(63)

the first one being a proposal of Dowson and Higginson [30] and the former

by Roelands [31], where µ∞ = 6.31 × 10−5 Pa.s and γ = 1.961 × 108 Pa are

constants of the model. Here we have chosen cA = 6×10−10 Pa−1, cB = 2×10−9
195

Pa−1, µr = 0.004 Pa.s, and c = 0.5.

The non-dimensional penalty method constant here taken is Kp = 1000 for

every simulation.

On the upper surface we set sinusoidal periodic textures, given by the equa-

tion:

Hr(X1) = A sin

(
2π(

X1

ε0
− ξ)

)
= A sin(2πY1) = Hr(Y1) (64)

where A is the non-dimensional roughness amplitude.

In order to define a maximum value for the amplitude A of the roughness in

the simulations, we will use the film thickness ratio

Λ =
Hmin

σ
(65)

where σ is the root mean square value of the non-dimensional combined rough-200

ness of both surfaces in contact, and thus here equal to σ =
√

2
2 A. The minimum

film thickness is Hmin = min
ΓR

H.

18
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Figure 4: A finite element mesh on the equivalent solid (domain Ωs) and on the domain where

the Reynolds equation is solved (ΓR).

For elastohydrodynamic lubrication some authors [28, 32] suggest 3 < Λ <

10. Here we will take a minimum film thickness ratio of Λ = 5.66, which gives

us A = 0.25Hmin. As Hmin is not known a priori, then the maximum A will

be taken as a fraction of Hmin,A=0, that is, the minimum film thickness of the

smooth problem (no surface roughness):

Arel =
A

Hmin,A=0
(66)

To assess the differences between the reference, the homogenized asymptotic

and the homogenized µ-EHL models, several values of the roughness wavelength

ε0 and amplitude A will be explored.205

What remains to define the problem are three non-dimensional quantities:

λ, E′/ph and ν′. The λ parameter is a measure of the relevance of the fluid

dynamics effects compared to the solid deformations, while E′/ph gives us a

measure of the importance of the solid deformations. A larger E′/ph means a

stiffer solid or a lower load imposed on the lubricated contact. In every numerical

19
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Figure 5: Numerical tests were carried out for the M , L (λ, E′/ph) values marked by the blue

circles. The dashed lines represent configurations of constant E′/ph and λ. At each point

several roughness configurations (Arel, ε0, ξ) were assessed.

test we will adopt a fixed value of ν′ = 0.3, while the other two parameters will

take values corresponding to cases of technological interest. This choice is based

on the fact that the Poisson ratio of typical metallic materials is around 0.3 and

that the solution will not vary significantly for those values. In order to put the

results into the perspective of the tribology community, along with the λ, E′/ph

and ν′ parameters that define each problem we will provide the Moes-Venner

parameters [33]

M =
W√

2umErRµr
, L = αE3/4

r

(
2umµr
R

)1/4

(67)

with α = c ln(µr/µ∞)/γ being the pressure-viscosity coefficient. Figure 5 shows

the Moes parameters for which simulations were ran, with

HM
m =

Hmin

a2/R

√
Er

2umµrR
(68)

At each point a substantial number of roughness configurations were appraised.

To illustrate this in a more tangible manner, these values are consistent with

the parameters of Table 1.

The Reynolds and the elastostatic equations were discretized by means of the

finite element method, with second order Lagrange elements. The microscopic210
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M L λ E′/ph ph /GPa a /m R /m ur /(m/s)

100 0.66 3.7× 10−4 400 0.25 0.025 5.51 1

100 1.33 3.7× 10−4 200 0.50 0.031 0.34 1

100 2.65 3.7× 10−4 100 1.00 3.9× 10−3 0.022 1

100 5.30 3.7× 10−4 50 2.00 4.9× 10−5 1.3× 10−3 1

31.6 1.18 3.7× 10−3 400 0.25 0.025 5.51 10

31.6 2.36 3.7× 10−3 200 0.50 3.1× 10−3 0.34 10

31.6 4.72 3.7× 10−3 100 1.00 3.9× 10−4 0.022 10

31.6 9.43 3.7× 10−3 50 2.00 4.9× 10−5 1.3× 10−3 10

63.3 0.83 9.3× 10−4 400 0.25 0.025 5.51 2.5

63.3 6.67 9.3× 10−4 50 2.00 4.9× 10−5 1.3× 10−3 2.5

Table 1: Parameters corresponding to the cases depicted in Figure 5.

problems of the homogenized models were solved at each node of the mesh of

the macroscopic problem in a FE2-homogenization manner (such as in [34]).

This leads to a large number of degrees of freedom, however, as we aim to assess

the accuracy of the model here proposed we want to eliminate sources of error,

e.g. the ones coming from the decoupling of the macro-scale equations from215

the microscopic equations. Nonetheless, this will restrict our capacity to solve

problems for small ε0 values.

A monolithic Newton-Raphson solver is used for the non-linear systems and

all linear system of equations are solved using direct methods. Results were

computed using commercial software (COMSOL MultiphysicsR version 5.2a).220

Due to the lack of existence of known analytical solutions, all simulated

cases will be compared against the reference solution computed in a very fine

mesh where the [−1, 1] region of ΓR is discretized into finite elements of size

∆X1 = 1× 10−4. This discretization leads to 743 134 degrees of freedom in the

reference problem and negligible differences in the solution with respect to even

finer meshes. For the homogenized models, the [−1, 1] region of ΓR of the macro-
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scale equations was discretized with finite elements of the size of the roughness

wavelength: ∆X1 = ε0, and enough finite elements in the micro-problems to

ensure mesh convergence. The error computed for a certain field Q is

eQ =
‖Q−Qref‖L2(Ω)

‖Qref‖L2(Ω)

(69)

where Qref is the mesh-converged fine-scale solution and the norms are L2-norms

taken in the corresponding domain Ω.

4.1. Scope of the homogenized asymptotic (H-A) and homogenized µ-EHL mod-

els

If the roughness wavelength ε0 and amplitude Arel are small enough, then225

the classical homogenized asymptotic and the µ-EHL give similar models; in

particular they are expected to be accurate approximations of the reference

problem. We are interested in the more realistic case of a small but not in-

finitesimal roughness wavelength ε0 nor amplitude Arel. To assess the model

ranges of validity, we start at a low L value of 0.66 and M = 100. Errors in230

pressure eP are presented for several ε0 and Arel pairs on Table 2.

As can be seen in Table 2, the errors for the classical homogenized asymp-

totic model (H-A) grow rapidly with both variables. Figures 6-(b) for ε0 = 0.05

and 6-(d) show how the model disregards the microscopic deformations at the

asperity level, which leads to microscopic pressures larger than the ones of the235

reference solution. In behalf of this, the micro-pressures grow with ε0, as shown

in Figures 6-(a) and 6-(c), which correspond to errors of 12.1% and 55.1% re-

spectively. This explains the trends displayed in Table 2. Larger values of L

induce even larger errors, which leads to the conclusion that the classical ho-

mogenized asymptotic model will return satisfactory results only for very low L240

values. This shows its inadequacy to approximate the reference solution when

ε0 is not infinitesimal. On the other hand, the errors attained with the µ-EHL

model are low, and in every computed case in Table 2 they are below 0.5%.

They tend to grow slightly with the roughness amplitude, however, due to the
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(a) H-A

Arel

0.05 0.15 0.25

ε0

0.05 2.67 7.75 12.1

0.1 6.13 17.7 27.3

0.2 13.4 35.7 55.1

(b) µ-EHL

Arel

0.05 0.15 0.25

ε0

0.05 0.12 0.21 0.37

0.1 0.11 0.23 0.29

0.2 0.11 0.22 0.30

Table 2: Percentage errors in pressure eP , relative to the reference solution for E′/ph = 400

and λ = 3.7 × 10−4 for several roughness wavelengths ε0 and amplitudes Arel. These cases

correspond to Moes parameters of M = 100 and L = 0.66.

low errors with differences in the tenths of percent a clear trend is not perceived245

while varying ε0.

4.2. A sensitivity study

The accuracy of the homogenized µ-EHL approximation is here analyzed.

As discussed in the previous section, the errors grow with the amplitude A

as expected, however, for the other parameters that define the problem the250

dependency is not trivial. First, a discussion on the influence of the roughness

phase ξ is carried on. This is done by selecting a pair λ, E′/ph, or equivalently

a pair M ,L and assessing the errors in pressure and clearance, for different ε0

values and a fixed Arel = 0.25. Thereafter, a sensitivity study on the errors in

pressure for varying λ and E′/ph is performed.255
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Figure 6: Pressure (a,c) and clearance (b,d) for the homogenized asymptotic (H-A) and the

homogenized µ-EHL model (H-µ) for parameters M = 100, L = 0.66, Arel = 0.25, ε0 = 0.05

(top) and ε0 = 0.2 (bottom). 24



4.2.1. Sensitivity in pressure and clearance to the phase ξ

The feeding conditions at the entrance of the lubricated contact are deter-

mined by the relative position of the roughness to it. This has a particular

impact on the cleareance, as shown in an extensive study in EHL line contacts

in [35]. This effect is controlled by the deformation of the roughness, which is

itself governed by the generalized wavelength (Venner et al [36])

V = ε0
M3/4

L1/2
(70)

High V values lead to higher roughness deformations. This can be achieved

either by a large wavelength ε0 or by a large M3/4

L1/2 ratio. From the parameters

in Table 1, M = 31.6, L = 9.43 attain the lowest V while M = 100, L = 0.66

the highest. Errors in pressure and clearance will be compared for this set of260

parameters.

Let us first look at the point M = 100, L = 0.66 from the Moes graph,

for Arel = 0.25 and ε0 = 0.05. Figures 7(a) and 7(b) show both the pressure

and the clearance for the reference (full lines), smooth and the homogenized

µ-EHL (dashed lines) solutions for several phase values of ξ = 0, 0.25, 0.5 and265

0.75. Curves computed for the same phase ξ appear in the same color. In

order to compute a representative error for the clearance H, we restricted eH

to the interval [−1, 1] in all cases. The approximation both in clearance and

pressure for all phases ξ is excellent, the maximum errors being eP = 0.37%

and eH = 1.13%.270

If the roughness wavelength is increased to ε0 = 0.1 we have the results

of Figures 7(c) and 7(d). The maximum and minimum errors in pressure are

eP = 0.35% and eP = 0.29% respectively. This can be seen in Figure 7(c): for

each reference solution there is a closely matching homogenized pressure curve

computed for the same ξ value. However, this is not the case for the clearance275

curves. The ones corresponding to the reference solution in Figure 7(d) present

some dispersion while the µ-EHL ones are clustered around an average, the

maximum error being eH = 4.2% and the minimum eH = 1.8%.

This behavior can be explained in the following manner: the averages taken
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Figure 7: Pressure (a,c) and clearance (b,d) for the homogenized µ-EHL model (dashed lines)

and the reference solution (full lines) for parametersM = 100, L = 0.66, Arel = 0.25, ε0 = 0.05

(top) and ε0 = 0.1 (bottom). Solutions were computed for phase ξ values of 0, 0.25, 0.5 and

0.75.
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with respect to the fast variable Y1 in order to develop the homogenized macro-280

scopic equations induce an independency on the macroscopic quantities on the

roughness phase ξ. Hence, the average values of pressure (P0) and clearance

(H̃) are insensitive to the phase. No significant differences are seen in pressure

due to the restriction imposed by the load balance equation, which sets the av-

erage value of the pressure in each periodic cell. However, there is no equivalent285

restriction for the clearance.

Let us turn now to the results for M = 31.6, L = 9.43 which are shown

in Figure 8. For the sake of clarity, only the solution for ξ = 0 is shown in

pressure. Figures 8-(a) and 8-(b) depict the results for ε0 = 0.05. An excellent

approximation can be seen in both pressure and clearance. The maximum error290

in pressure for the phases computed is eP = 2.3%, while it is eH = 1.5% in

clearance. The differences between the homogenized µ-EHL curves and the

reference ones are small and limited to the inlet and outlet regions in the case

of the pressure curves. Notice how in every case the micro-elastohydrodynamic

behavior is captured by the homogenized model. If we turn now to figures295

8-(c) and 8-(d) we can see again an excellent fit on the pressure (maximum

eP = 2.5%) while some small differences are seen in the clearance curves, with

a maximum error eH = 2.2%. These results, that of a higher error in clearance

with larger deformations (larger V ) correlate well with the results of Couhier

[35] and Venner [36]. It is to be noticed that the errors eP and eH are more300

sensitive to ε0 than to M and L.

4.2.2. Pressure sensitivity to λ and E′/ph

What remains to be appraised is the sensitivity on the pressure to the two

main non-dimensional parameters controlling the problem: λ and E′/ph. In

order to do that, the phase and amplitude are fixed to ξ = 0 and Arel = 0.25.305

We set fixed values of λ = 3.7 × 10−4 (M = 100) and λ = 3.7 × 10−3

(M = 31.6) and vary E′/ph. Table 3-(a) shows that for a lower λ value, errors

slightly increase when decreasing E′/ph. The sensitivity increases with larger

λ values, as can be seen in a comparison between Tables 3-(a) and (a’). The
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Figure 8: Pressure (a,c) and clearance (b,d) for the homogenized µ-EHL model (do) and the

reference solution for parameters M = 31.6, L = 9.43, Arel = 0.25, ε0 = 0.05 (top) and

ε0 = 0.1 (bottom). Solutions were computed for phase ξ values of 0, 0.25, 0.5 and 0.75. For

simplicity, the pressure curves are shown only for ξ = 0.
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largest errors in pressure, which remain lower than 3%, take place for larger λ310

and lower E′/ph values. It is worthy of note the low sensitivity to the roughness

wavelength, at least for the range of ε0 values analyzed here.

If E′/ph is fixed at values of 400 and 50 and λ varies, we have the results of

Table 4. Table 4-(a) shows that errors stay below 0.5% for E′/ph = 400, and

that they are quite insensitive to ε0. A higher sensitivity is seen for E′/ph = 50315

(Table 4-(a’)), as errors marginally increase with ε0. In summary, it can be

stated that errors are low for higher E′/ph ratios and lower λ values and almost

insensitive to ε0, while somewhat larger for lower E′/ph and higher λ.

5. Conclusions

A new homogenized approximation of the rough elastohydrodynamic lubri-320

cation problem was presented. This new approximation takes into account the

effects of a non-negligible microscopic pressure, compared to the classical peri-

odic asymptotic homogenization where these are neglected. As a result of this

assumption local deformations must be computed in the microscopic periodic

cells as well as the effects of the local pressure in density and viscosity. These325

are the main differences with the asymptotic approach. This allows to extend

the applicability of homogenization methods to more realistic conditions.

The differences of the solutions obtained with the new homogenized model

and the solution of the reference problem were assessed in parametric stud-

ies. Errors in pressure are below or equal to 2% and remarkably insensitive to330

the roughness amplitude and wavelength for a wide range of Moes parameters,

namely for L < 6. Errors in pressure grow and are slightly more sensitive to

the amplitude of the roughness and the roughness wavelength when L > 6, but

remain below 3% for the range 31.6 ≤M ≤ 100, 0.66 ≤ L ≤ 10.

Errors in clearance grow with larger M and lower L values but remain be-335

low 5%, that is with larger micro-deformations. They are more sensitive to

the roughness wavelength than to M , L. Micro-elastohydrodynamic effects are

correctly captured by the newly developed homogenized method.
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(a) Percentage errors for λ = 3.7× 10−4

E′/ph

400 200 100 50 26.5

ε0

0.05 0.36 0.41 0.52 0.90 1.41

0.1 0.29 0.37 0.43 1.12 1.52

0.2 0.30 0.25 0.39 0.88 1.40

(b) Moes parameters

E′/ph 400 200 100 50 26.5

M 100 100 100 100 100

L 0.66 1.33 2.65 5.3 10

(a’) Percentage errors for λ = 3.7× 10−3

E′/ph

400 200 100 50

ε0

0.05 0.28 0.38 1.07 2.15

0.1 0.80 1.00 1.16 2.44

0.2 1.06 1.64 2.01 2.63

(b’) Moes parameters

E′/ph 400 200 100 50

M 31.6 31.6 31.6 31.6

L 1.18 2.36 4.72 9.43

Table 3: (a, a’) Percentage errors in pressure ep relative to the reference solution for vary-

ing E′/ph values and fixed λ values. The amplitude Arel = 0.25 in all cases. (b,b’) Moes

parameters for the cases of Tables (a,a’).

30



(a) Percentage errors for E′/ph = 400

λ

ε0 3.7× 10−4 9.25×10−4 3.7× 10−3

0.05 0.36 0.28 0.39

0.1 0.29 0.80 0.60

0.2 0.30 1.06 0.52

(b) Moes parameters

λ 3.7× 10−4 9.25×10−4 3.7× 10−3

M 100 63.25 31.6

L 0.66 0.83 1.18

(a’) Percentage errors for E′/ph = 50

λ

ε0 3.7× 10−4 9.25×10−4 3.7× 10−3

0.05 0.90 1.38 2.15

0.1 1.12 1.10 2.44

0.2 0.88 1.22 2.63

(b’) Moes parameters

λ 3.7× 10−4 9.25×10−4 3.7× 10−3

M 100 63.26 31.63

L 5.30 6.67 9.43

Table 4: (a,a’) Percentage errors in pressure ep relative to the reference solution for varying λ

values and fixed E′/ph values. The amplitude Arel = 0.25 in all cases. (b,b’) Moes parameters

for the cases of Tables (a,a’).
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The model here presented was restricted to the one-dimensional case and

stationary conditions in order to better assess its efficiency. The extension to340

the two-dimensional case and transient conditions will be the object of future

research.
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