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A B S T R A C T

In this paper, numerical schemes are introduced for the efficient res-
olution of anisotropic equations including high order differential oper-
ators. The model problem investigated in this paper, though simpli-
fied, is representative of the difficulties encountered in the modeling of
Tokamak plasmas. The occurrence of high order differential operators
introduces specific difficulties for the design of effective numerical meth-
ods. On the one hand, regular discretizations of the problem provide
matrices characterized by a condition number that blows up with in-
creasing anisotropy strength. On the other hand, matrices issued from
Asymptotic-Preserving methods preserve a condition number bounded
with respect to the anisotropy strength, nonetheless it scales very poorly
as the mesh is refined. Both alternatives reveal to be inoperative in this
specific framework to address the targeted values of anisotropy on re-
fined meshes. We therefore introduce two successful methods offering
the advantages of each approach: a condition number unrelated to the
anisotropy strength and scaling as favorably as standard discretizations
with the mesh refinement.

c© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the study of Asymptotic-Preserving numerical methods for the resolution
of equations incorporating high order differential operators. This class of numerical methods have been
introduced for the efficient resolution of singular perturbation problems, initially for diffusive limit of kinetic
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equations [24, 25, 22] and then extended to other frameworks, including plasma physics (see for instance
[23, 9, 10] for reviews), the context addressed by the present work. The specific applications targeted here
are indeed related to simulation of tokamak plasmas by means of fluid models [30] and more specifically by
reduced models [36, 20, 33, 21, 7, 19] derived for the investigation of the plasma edge dynamics in the so-called
scrape-of-layer [38]. These equations are characterized by large anisotropies due to the intense magnetization
of the plasma. The particles are indeed bounded to the magnetic field lines in the directions perpendicular
to the magnetic field while their motion is almost free along this direction. On the macroscopic level, this
is translated by operators with an anisotropy all the more severe than the magnetic field is intense. This
feature originates difficulties in the derivation of efficient numerical methods. This is particularly evident
when the boundary conditions imposed at each magnetic field line end translate either the periodicity of
the torus or the Bohm criterion [37, 40, 38]. In these specific frameworks, the operator associated with
the parallel dynamics does not define, by itself, a well posed problem. Since, direct discretizations of these
problems are only able to capture the parallel dynamics for large anisotropies, they give rise to a system
matrix with a large condition number, hardly invertible (see for instance [8, 18, 35]).

Similar problems have been investigated in precedent realizations (see [12, 5, 41] and [13, 31]). These
works are devoted to the derivation of Asymptotic-Preserving methods for anisotropic elliptic or diffusion
equations. The purpose is to derive system matrices with a condition number uniformly bounded with
respect to the ansitropy strength. This is achieved thanks to the introduction of an auxiliary variable. By
this means the stiffness of the problem is cancelled and the degeneracy of the equation in the limit of infinite
anisotropy prevented. One way to implement these ideas is referred to as the Micro Macro decomposition
introduced in [13, 31]. The purpose here is therefore to develop the concept of AP methods for the numerical
resolution of the vorticity equation proposed in [40]. In this model, the electric potential is solution to an
equation with a fourth order differential operator along the transverse directions. The transposition of the
Micro Macro decomposition into this framework was first proposed in [3] and then resumed in [29]. However,
this approach revealed to be inoperative, leading to a matrix condition number scaling badly with respect
to the mesh refinement, precisely 1/h6 if h is the typical mesh size. This trend is to be compared to the
conditioning of standard discretizations proportional to both 1/h4 and ε−1/h2, ε−1 being the anisotropy
strength. The issue raised here is therefore twofold. On the one hand, standard discretizations suffer from
a bad condition number for large anisotropies. On the other hand, the proposed AP methods are only
effective for meshes with a coarse resolution.

The aim of the present work is therefore to introduce numerical methods that offer the advantage of a
condition number bounded irrespective of the anisotropy strength together with a dependency to the mesh
resolution comparable to standard methods. These methods share the Asymptotic-Preserving property but
they are derived with a different approach compared to [3, 29]. The first one consists in elaborating a
Duality Based decomposition [12, 5] for this problem. This approach is specific to coordinates aligned with
the magnetic field as proposed in some works [17]. It could also be transposed to coordinates aligned with
the main (poloidal) component of the magnetic field which are routinely used (see [39]). The advantage
of this approach is its high efficiency as outlined in [41]. The resolution of the anisotropic problems may
therefore be much more computationally efficient than the resolution of the corresponding isotropic problem.

The second method proposed herein is a two field iterated method in the spirit of [14]. This method
can address arbitrary field geometries with non adapted coordinates and meshes. These two methods are
compared against the Micro Macro decomposition proposed in [3, 29] and a standard discretization of the
problem. Beyond the computational efficiency which is assessed herin, in a two dimensional framework, we
investigate the condition number of these different methods. This is indeed a crucial property to envision
three dimensional computations. As emphasized in [41], the computational efficiency of sparse direct solvers
(used for two dimensional computations either in [3, 29] or in the present work), is poor for three dimensional
computations. The scaling of both the memory requirements and computational costs increasing extremely
non linearly with the number of unknowns. It is therefore essential to develop numerical methods with
controlled condition numbers. The simulation of plasma turbulence also requires to refine the mesh to
capture the scale at which the turbulence develops. The scaling of the numerical method with respect to
the mesh refinement is therefore an important property to investigate. This defines the main purpose of
the present work. The last purpose of this paper is to provide comprehensive arguments to highlight the
weaknesses of the methods proposed so far for this class of problems and how they are circumvented thanks
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to the ones introduced in the present paper.
The organization of this paper is the following. The definition of the problem at hand is introduced

in Sec 2, together with a simplified model problem containing the difficulty that the numerical methods
need to tackle. The degeneracy of the systems in the asymptotic of infinite anisotropy is highlighted. The
Asymptotic-Preserving formulations are stated in Sec. 3. An emphasis is made on how the degeneracy of
the system is prevented for each formulation. In particular, the Two Field Iterated method is introduced.
It advances the two component in a fixed-point sequence for which a proof of convergence is provided. The
material related to the discretization is specified in Sec 4 with analytic estimates of the condition number
outlining their dependence to both the anisotropy strength and the mesh size. The properties of these
methods are numerically investigated in Sec 5.

2. From the vorticity equation to a simplified model problem

2.1. The vorticity equation

The starting point is the vorticity equation derived in [40]. The computational domain is two dimensional
and square Ω = Ωx × Ωy = [0, 1] × [0, 1]. In a simplified magnetic field geometry, assuming a field straight
and aligned with the y axis, the electric potential φ is the solution to the problem

(MP)











































































−
∂

∂t

(

∂2φε

∂x2

)

+
∂4φε

∂x4
−

1

ε

∂2φε

∂y2
= fε , (x, y) ∈ Ω ,

∂φε

∂x
(0, y) = 0 ,

∂3φε

∂x3
(0, y) = 0 , y ∈ Ωy ,

∂φε

∂x
(1, y) = 0 ,

∂3φε

∂x3
(1, y) = 0 , y ∈ Ωy ,

∂φε

∂y
(x, 0) = ε

(

1− exp
(

Λ− φε(x, 0)
)

)

, x ∈ Ωx ,

∂φε

∂y
(x, 1) = −ε

(

1− exp
(

Λ− φε(x, 1)
)

)

, x ∈ Ωx .

(1a)

(1b)

(1c)

(1d)

(1e)

where, ε is an asymptotic parameter defining the anisotropy strength of the problem, Λ is given data to the
problem, representing a reference potential. The purpose here is to extract a minimal problem containing
the difficulty to be solved for an efficient resolution of this problem in the limit of vanishing ε. The targeted
value for the applications are defined by the range ε ∈ [10−8, 10−6]. The purpose of this paper is therefore
to derive efficient numerical methods for the resolution of this problem for these severe anisotropies. We
refer to [40] for the physical background and to [32] for the analysis of the well posedness of this problem.

The difficulty in handling this problem from a numerical point of view can easily be pointed out thanks
to the analysis of the dominant operator in the limit ε→ 0. Setting formally ε = 0 in (1) yields
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where φ0 is the limit of φε when ε → 0. This system admits an infinite number of solutions since all the
functions χ with no aligned gradient, i.e. ∂χ/∂y = 0, satisfy this system. For large anisotropies (ε≪ 1) the
system matrix issued from the discretization of the system (1) is consistent with the degenerate problem (2).
This explains a deterioration of the condition number of this matrix with vanishing ε.

The limit problem is defined as the well posed system providing the limit of the solution when ε → 0.
First, from Eq. (2) we conclude that φ0 does not depend on the aligned coordinate y. Then integrating
Eq. (1a) with respect to y and owing to Eqs. (1d) and (1a), and assuming that φε(x, 1) and φε(x, 0) do not
depend on time, the limit problem can be stated as
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with
G1 = −1 + exp

(

Λ− φ0(x)
)

, G0 = 1− exp
(

Λ− φ0(x)
)

. (3d)

2.2. A simplified model problem

The aim here is to simplify the problem (1) to isolate the difficulty raised by the degeneracy of the
system for vanishing ε. First, the stationary problem will be considered. The reason for this choice is the
following. The discretization of the time derivative in Eq. (1a) provides a contribution on the diagonal of
the system matrix that may offset the anisotropy of the problem. It is therefore frequent, to adjust the value
of the time step to preserve a tractable matrix conditioning rather than setting its value according to the
physics of interest. Tackling directly the stationary system is the best way to develop numerical methods
for which the time step can be chosen with respect to the dynamic of interest and arbitrarily with respect
to the anisotropy strength.

Second, the boundary conditions Eqs. (1d) and (1e) are non linear in the unknown. A linearization is
routinely implemented for the numerical resolution of the problem, with
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where the following notations g0(x) = Λ(x, 0) and g1(x) = Λ(x, 1) are used. The simplified toy problem can
thus be stated as
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Note that the system (4) degenerates into a problem similar to (2), as the original problem (1) one does.
The limit problem related to (4) is defined as
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3. Asymptotic-Preserving formulations

3.1. Introduction

This section is devoted to the introduction of Asymptotic-Preserving methods and to a comparison
with the Micro Macro method used in [3, 29]. The anisotropic problem defined by Eqs. (4) is a singular
perturbation problem: setting ε = 0 in this system yields the ill posed problem (2). The aim of Asymptotic-
Preserving methods is to introduce reformulated sets of equations equivalent to (4) for ε > 0. However,
setting formally ε = 0 in these reformulated systems, the limit problem (5) is recovered. Therefore, the limit
ε→ 0 is regular in the reformulated systems.

The methodology operated in this work consists in cancelling the stiffness of the problem by introducing
an auxiliary variable. This auxiliary variable does not always carry any physical meaning and can therefore
be chosen arbitrarily. These choices define different numerical methods with properties making them more
or less attractive regarding their computational efficiency.

In the sequel the dependence of the solution and right hand side with respect to ε will be drop in the
notations.

3.2. The Duality Based decomposition

The Duality Based formulation consists in decomposing the solution of the problem into its mean and
fluctuating parts

φ(x, y) = φ̄(x) + φ′(x, y) , (6a)

where

φ̄ = Π(φ) :=

∫ 1

0

φ(x, y)dy , φ′(x, y) := φ(x, y)− φ̄(x) . (6b)

The component φ̄ is the mean of the solution along the magnetic field lines, while φ′ represents the fluctu-
ations of the solution around its mean value. Note that the fluctuation verifies

Π(φ′) = 0 . (6c)

The following duality property holds true for any function ψ

∫ 1

0

Π(ψ)ψ′dy = 0 . (7)

The fluctuating part ψ′ and the mean part Π(ψ) of any function ψ are orthogonal for the scalar of L2(Ωy).
This property is used (more specifically in problems with heterogeneous diffusion coefficients) to derive the
equation providing φ̄. It is derived by applying the mean operator Π onto Eq. (4a). This yields
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This finally provides the Duality Based reformulated problem consisting of a first system verified by the
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This set of equations is coupled to the system providing the mean part of the solution
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These two systems are coupled, on the one hand by the definition of the right hand side of Eqs. (8a), (8d)
and (8e) and, on the other hand, by that of Eq. (9a).

Note that the system providing φ̄ does not incorporate stiff terms any more. It defines a well posed
problem for the computation of the mean part provided that φ′ is known. The system verified by the
fluctuation is very similar to the original problem. However, setting ε = 0 into (8) yields
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which admits the null function as unique solution thanks to the zero mean constraints (10e) verified by the
fluctuation. This proves that the system (8–9) defines a well posed set of equations for the computation
of (φ̄, φ′) for ε ≥ 0. Note also that the limit problem is recovered from the “Duality Based” reformulated
system when ε = 0. Indeed, from the problem (10) we conclude that the fluctuation vanishes with ε.
Inserting φ′ = 0 into (9) yields the limit problem (5).

3.3. The Two Field Iterated formulation

The Two Field Iterated reformulation of the problem (4) is constructed by means of a different decom-
position of the solution. Indeed, the zero mean value verified by the fluctuation is difficult to discretize
when the coordinate system is unrelated to the magnetic field. To circumvent this difficulty, the solution is
decomposed into

φ(x, y) = p(x) + εq(x, y) . (11)
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In this decomposition, the solution components, namely p and q, are no more orthogonal in the sense of
Eq. (7). The auxiliary variable q is introduced to rescale the parallel derivatives, with
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this two field system is advanced alternatively, until convergence, in a fixed-point iteration process defining
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∂q(k)

∂y
(x, 0) ,

∂φ(k+1)

∂y
(x, 1) = ε0

(

−φ(k+1)(x, 1) + g1

)

+ (ε− ε0)
∂q(k)

∂y
(x, 1) ,

(13a)

(13b)

(13c)

(13d)

(13e)

Note that ε0 is a non vanishing parameter intended to verify ε ≪ ε0 < 1. Therefore, this set of equations
defines a well posed problem for φ(k+1). The equation for q consists of Eq. (12b) in which ∂2yφ is substituted

by ε (f − ∂4xφ) upgraded with ∂4xq
(k+1) on the left hand side as well as its counterpart ∂4xq

(k) on the right
hand side, to obtain

(TFI,q)















































































ε0
∂4q(k+1)

∂x4
−
∂2q(k+1)

∂y2
= f −

∂4φ(k+1)

∂x4
+ ε0

∂4q(k)

∂x4
, in Ω

∂q(k+1)

∂x
(0, y) = 0 ,

∂3q(k+1)

∂x3
(0, y) = 0 ,

∂q(k+1)

∂x
(1, y) = 0 ,

∂3q(k+1)

∂x3
(1, y) = 0 ,

∂q(k+1)

∂y
(x, 0) = φ(k+1)(x, 0)− g0 ,

∂q(k+1)

∂y
(x, 1) = −φ(k+1)(x, 1) + g1 .

(14a)

(14b)

(14c)

(14d)

(14e)

Remark 3.1 (Uniqueness of q in the Two Field Iterated formulation). In the system (14), q(k+1) is deter-
mined up to a constant. Since only the derivatives of the auxiliary variable are used to compute (φ(k))k>0,
we can choose arbitrarily this constant. The value of q in one point of the domain (x0, y0) may be set to 0
to restore the well posedness of the problem.
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The asymptotic preserving property of the Two Field Iterated system is easily verified. First, we note that
if the sequence (φ(k), q(k))k>0 converges to (φ, q) then Eq. (12b) is recovered from Eq. (14a) and Eq. (12b)
from both Eqs. (13a) and (14a). Now setting ε = 0, owing to Eq. (12b), the limit of the solution does not
depend on y. Finally integrating Eq. (13a) with respect to y the limit problem (5) is recovered.

The convergence of the fixed point iterations can be proved regardless of the initial guess (arbitrarily)
chosen to start the sequence and the anisotropy strength.

Theorem 3.1. Let V be the functional space defined as

V := {v ∈ H1(Ω) | ∂2xv ∈ L2(Ω)}.

For any (φ(0), q(0)) ∈ V ×V, the sequence (φ(k), q(k))k>0 defined by the iterative method (13-14) converges to
a fixed point (φ, q). The component φ of the stationary point solves uniquely the initial singular problem (4)
for ε > 0 and the limit problem (5) when ε = 0.

The proof of this theorem is deferred to Appendix A.

3.4. A comparison with the Micro Macro formulation

The Micro Macro reformulation of the problem (4) proposed in [3, 29] is based on the decomposition (11)
but with a different choice for q. It may be understood as a generalization of the Duality Based formulation
in which

εq(x, y) = φ′(x, y)− φ′(x, 0) . (15)

By this means, q verifies a homogeneous boundary condition, the so-called ”inflow” condition [13], rather
than the zero mean condition which is more intricate to discretize with coordinates unrelated to the
anisotropy direction. Note that q is re-scaled by a factor ε, hence the name “Micro Macro” decomposi-
tion. The sets of equations is inherited from (12) with

(MM)











































































































































∂4φ

∂x4
(x, y)−

∂2q

∂y2
(x, y) = f(x, y) , (x, y) ∈ Ωx × Ωy ,

−
∂2φ

∂y2
(x, y) = −ε

∂2q

∂y2
, (x, y) ∈ Ωx × Ωy ,

∂φ

∂x
(0, y) = 0 ,

∂3φ

∂x3
(0, y) = 0 , y ∈ Ωy ,

∂φ

∂x
(1, y) = 0 ,

∂3φ

∂x3
(1, y) = 0 , y ∈ Ωy ,

∂φ

∂y
(x, 1) = ε

(

− φ(x, 1) + g1(x)
)

, x ∈ Ωx ,

∂φ

∂y
(x, 0) = ε

(

φ(x, 0)− g0(x)
)

, x ∈ Ωx ,

∂q

∂y
(x, 0) = φ(x, 0)− g0(x) , x ∈ Ωx ,

∂q

∂y
(x, 1) = −φ(x, 1) + g1(x) , x ∈ Ωx ,

q(x, 0) = 0 , x ∈ Ωx .

(16a)

(16b)

(16c)

(16d)

(16e)

(16f)

(16g)

(16h)

(16i)

Remark 3.2 (Uniqueness of q in the Micro Macro formulation). The auxiliary variable q is involved in the
set of Eqs. (16a-16h) through its aligned derivatives. Considering this subset of equations, q is determined
up to a function of the x-coordinate. The inflow condition (16i) prescribed at one end of each magnetic field
line restores the unicity of the problem providing q and the well posedness of the Micro Macro system.

As stated before, the Micro Macro method may be regarded as a generalization of the Duality Based
concepts to coordinate systems non adapted to the anisotropy direction. Note that this approach does not
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require a discretization of the limit problem (or a problem equivalent to it, as the system providing the
mean part of the solution in the Duality Based approach). In the system (16), the problem providing φ
and q are strongly coupled. The Two Field Iterated formulation allows to decouple the computation of each
field. They are advanced independently, thanks to mildly anisotropic problems. The conditioning of the
linear system issued from the discretization of these systems is parametrized by ε≪ ε0 < 1 and is therefore
bounded with respect to the anisotropy strength. These two systems are classical elliptic problems for which
very efficient solvers (e.g. Krylov subspace, multi-grid methods) can be used for their efficient resolution.
To date only direct sparse solver have been successful for the resolution of the linear system issued from the
Micro Macro formulation. The inflow condition mandatory for the unicity of q is imposed on one end of each
magnetic field lines. This prevents it from addressing closed magnetic field lines (that are not connected to
the domain boundaries). In this respect, the Two Field Iterated method is more versatile, no restrictions
on the magnetic field topology being required.

4. A finite difference space discretization

The Cartesian mesh is defined by the nodes at position (xi, yj) with I and J the sets of indices for
interior nodes and Ī and J̄ the sets for all nodes, as defined by

I = {3, . . . ,Nx − 2} , Ī = {1, . . . ,Nx} , J = {2, . . . ,Ny − 1} , J̄ = {1, . . . ,Ny} , (17)

the position of the nodes being defined, thanks to ∆x = Lx/(Nx − 4), ∆y = Ly/(Ny − 4), as

xi = (i− 5/2)∆x , yj = (j − 5/2)∆y , ∀(i, j) ∈ Ī × J̄ , ,

Finally, we introduce the bijection I: (i, j) ∈ Ī × J̄ → I(i, j) ∈ {1, . . . ,Nx ·Ny} that defines the ordering
of the unknowns. With these notations, the following discrete differential operators can be introduced. For
any vector vh ∈ RNx×Ny , we define

(∂4,hx vh)I(i,j) =
1

∆x4

(

vI(i−2,j) − 4vI(i−1,j) + 6vI(i,j) − 4vI(i+1,j) + vI(i+2,j)

)

, (18a)

(∂3,hx,+vh)I(i,j) =
1

∆x3

(

− vI(i−1,j) − 3vI(i,j) + 3vI(i+1,j) + vI(i+2,j)

)

, (18b)

(∂3,hx,−vh)I(i,j) =
1

∆x3

(

− vI(i−2,j) − 3vI(i−1,j) + 3vI(i,j) + vI(i+1,j)

)

, (18c)

(∂hx,+vh)I(i,j) =
1

∆x

(

vI(i+2,j) − vI(i+1,j)

)

, (∂hx,−vh)I(i,j) =
1

∆x

(

vI(i−1,j) − vI(i−2,j)

)

, (18d)

(∂2,hy vh)I(i,j) =
1

∆y2

(

vI(i,j−1) − 2vI(i,j) + vI(i,j+1)

)

, (18e)

(∂hy,+vh)I(i,j) =
1

∆y

(

vI(i,j+1) − vI(i,j)

)

, (∂hy,−vh)I(i,j) =
1

∆y

(

vI(i,j) − vI(i,j−1)

)

; (18f)

the same definitions being deduced for any vector w̄h ∈ RNx with for instance

(∂h,4x w̄h)i =
1

∆x4

(

w̄i−2 − 4w̄i−1 + 6w̄i − 4w̄i+1 + w̄i+2

)

. (19a)

At last, the mean value constraint is discretized as

Πh(vh) =

Ny−1
∑

j=2

vI(i,j). (19b)

Next, we define the approximation of the different system and state properties related to the conditioning
of their associated matrices.
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Definition 4.1 (Discrete Duality Based system). Let Φ̄h = (φ̄h)i denote the approximation of φ̄(xi) for
i ∈ I, and Φ′

h = (Φ′
h)I(i,k) that of φ

′(xi, yj) for (i, j) ∈ I ×J . The set of equations (8–9) are discretized by
the linear system

A
DBΦ̄

(k+1)
h = F̄DB

h + B
DB

′

(Φ′
h)

(k)
, (20a)

A
DB

′

(Φ′
h) (k + 1) = FDB

′

h + B
DBΦ̄

(k+1)
h . (20b)

Definition 4.2 (Discrete Two Field Iterated, Micro Macro and Singular Perturbation systems). Let Φh =
(φh)I(i,k) be the approximation of φ(xi, yj) for (i, j) ∈ I × J , and Qh = (Qh)I(i,k) the approximation of
q(xi, yj) for (i, j) ∈ I×J . The Two Field Iterated system (13–14) is discretized thanks to the linear systems

A
TFI,φΦ

(k+1)
h = FTFI,φ

h + B
TFI,qQ

(k)
h , (21a)

A
TFI,qQ

(k+1)
h = FTFI,q

h + B
TFI,φΦ

(k+1)
h + C

TFI,qQ
(k)
h . (21b)

The set of equations associated to the Micro Macro formulation (16) gives rise to the linear system

A
MM

(

Φh

Qh

)

=

(

FMM

h

0

)

(22a)

Finally the Singular Perturbation problem (4) is discretized by the following linear system

A
SPΦh = FSP

h . (23)

The detailed expressions of all the matrices introduced in these definitions will be omitted. They rely
on the discrete partial differential operators defined by (18-19) and refer to Appendix B for more details.
We now state some properties of these matrices.

Definition 4.3 (Discrete differential operators). We denote by

• (λi)i=3,...,Nx−2 the eigenvalues of the matrix Mnn discretizing the fourth order partial differential op-
erator (with respect to x: ∂4xψ) equipped with Neumann boundary conditions (∂xψ = 0 , ∂3xψ = 0);

• (−ℓεk)k=2,...,Ny−1 the eigenvalues of −Mrb,ε the finite differenced Laplacian (with respect to y: ∂2yφ)
equipped with the Robin boundary conditions ∂nψ+εψ = 0 (n being the outward normal to the domain);

• (−ℓDB′

k )k=2,...,Ny−1 the eigenvalues of −MDB′

the finite differenced Laplacian (with respect to y: ∂2yφ)
equipped with Robin boundary conditions and implementing the zero mean constraint.

These elementary matrices are defined in Appendix B by Eqs. (B.1), (B.3), (??) and (B.7). A first
result related to these matrices can be stated.

Lemma 1 (Eigenvalues of the elementary matrices). The elementary matrices introduced in Definition 4.3
satisfy the following properties:

• Mnn is semi-positive definite with

(λi)i=3,...,Nx−2 ≥ 0 , and







min
i
λi = 0 ,

max
i
λi ∼

1

∆x4
;

(24a)

• Mrb,ε is positive definite for ε > 0 and semi-positive definite for ε = 0 with

(ℓεk)k=2,...,Ny−1 ≥ 0 , and







min
k
ℓεk ∼ ε ,

max
k

ℓεk ∼
1

∆y2
;

(24b)
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• MDB′

is definite positive:

(ℓDB′

k )k=2,...,Ny−1 > 0 ,







min
k
ℓDB′

k ∼ 1 ,

max
k

ℓDB′

k ∼
1

∆y2
.

(24c)

This makes possible to precise the condition number of the matrix issued from the Singular Pertubation
problem discretization.

Proposition 4.1. The eigenvalues of the matrix ASP denoted (ΛSP
i,k )(i,k)∈{3,...,Nx−2}×{2,...,Ny−1} are defined

thanks to (λi)i=3,...,Nx−2 and (ℓεk)k=2,...,Ny−1 as

ΛSP
i,k = λi +

1

ε
ℓεk , (i, k) ∈ {3, . . . ,Nx − 2} × {2, . . . ,Ny − 1}.

The matrix ASP is positive definite for ε > 0, and its corresponding condition number is stated as follows

Cond(ASP ) =
max

i
λi +

1

ε
max

k
ℓεk

1

ε
min
k
ℓεk

∼
1

(∆x)4
+

1

ε

βSP

(∆y)2
, (25)

βSP being a constant uniformly bounded with respect to ε, ∆x and ∆y.

Note that the matrix ATFI,φ can be obtained by substituting ε by ε0. This gives rise to the following
result.

Corollary 4.1. The eigenvalues of the matrix ATFI,φ denoted (ΛTFI,φ
i,k )(i,k)∈{3,...,Nx−2}×{2,...,Ny−1}

ΛTFI,φ
i,k = λi +

1

ε0
ℓε0k , (i, k) ∈ {3, . . . ,Nx − 2} × {2, . . . ,Ny − 1}.

The condition number of the matrix ATFI,φ is

Cond(ATFI,φ) =
max

i
λi +

1

ε0
max

k
ℓε0k

1

ε0
min
k
ℓε0k

∼
1

(∆x)4
+

1

ε0

βTFI,φ

(∆y)2
, (26)

βTFI,φ being a constant uniformly bounded with respect to ε0, ∆x and ∆y.

Proposition 4.2. The eigenvalues of the matrix ADB′

denoted ΛDB′

i,k , (i, k) ∈ {3, . . . ,Nx−2}×{2, . . . ,Ny−

1} can be expressed thanks to (λi)i=3,...,Nx−2 and (ℓDB′

k )k=2,...,Ny−1 thanks to

ΛDB′

i,k =
1

(∆x)4
λi +

1

ε

1

(∆y)2
ℓDB′

k , (i, k) ∈ {3, . . . ,Nx − 2} × {2, . . . ,Ny − 1}.

The matrix ADB′

is positive definite for ε > 0, and its corresponding condition number is stated as follows

Cond(ADB′

) =
max

i
λi +

1

ε
max

k
ℓDB′

k

1

ε
min
k
ℓDB′

k

∼
ε

(∆x)4
+
βDB′

(∆y)2
, (27)

βDB′

being a constant uniformly bounded with respect to ε, ∆x and ∆y.

The demonstration of these results is provided in Appendix B. This series of results is concluded by
two conjectures. The first one originates from the analysis carried out in [27]. The inf-sup condition issued
in this work demonstrate that the condition number of the matrix stemming from the Micro Macro system
can be estimated thanks to the eigen systems of the perpendicular and parallel operators.
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Conjecture 4.1. The condition number of the matrix AMM satisfies, for ε≪ 1

Cond(AMM ) ∼
1

(∆x)4
1

(∆y)2
. (28)

The second conjecture is related to the matrix ATFI,q stating properties similar to that of ATFI,φ.

Conjecture 4.2. The matrix ATFI,q is positive definite with

Cond(ATFI,q) ∼
1

(∆x)4
+

1

ε0

βTFI,q

(∆y)2
, (29)

βTFI,q being a constant uniformly bounded with respect to ε0, ∆x and ∆y.

From (25), it is clear that the condition number of ASP is not bounded with respect to ε. Conversely,
from Corollary 4.1, we conclude that the condition number of the matrix ATFI,φ is uniformly bounded with
respect to ε, for any given ε0. This property also holds true for the matrix ATFI,q. This will be assessed
by numerical investigations in the next section. Finally, the Asymptotic-Preserving property of the Duality
Based formulation is also manifest thanks to Prop. 4.2 and noting that the problem (9) providing φ̄ does
not depend on ε.

5. Numerical investigations of the schemes properties

5.1. Setup definition

An analytic solution is manufactured in order to validate the numerical methods by comparison with
the exact solutions. The following solution

φ(x, y) = cos (2πx) (1 + ε sin (2πy)) , (30)

is used to compute analytically the right hand side of Eqs. (4a), (4d) and (4e).
The precision of a numerical method is evaluated by computing the error between the numerical approx-

imation Φh = ((φh)i,j) and the exact solution evaluated in (xi, yj) in a norm specified in the sequel.

5.2. System matrices condition number

The conditioning of the system matrices issued from the discretization of the numerical methods intro-
duced in Sec. 3 is analyzed numerically and compared to that of the original problem and to their analytic
expression.

First the deterioration of the conditioning of the matrix ASP issued from the Singular Perturbation
problem discretization is illustrated on Fig. 1. The first investigations illustrated on Fig. 1(a) are carried
out with meshes equally refined in both directions and for strong anisotropies (ε ≤ 10−6). The condition
number of the matrix ASP is observed to be dominated by the aligned differential operator and scales as
1/(∆y2). The meshes used for these computations are not refined enough (in the perpendicular direction)
for the transverse operator to influence the matrix condition number. The outputs plotted on Fig. 1(b) are
related to meshes with different resolutions along the parallel and perpendicular directions. The number of
nodes in the perpendicular direction is denoted Nx, Ny being that of the parallel direction. The outputs of
this figure are carried out by setting either Nx or Ny to a prescribed value and then increasing the resolution
in the other direction. The behaviour of the condition number derived in Prop. 4.1 is recovered from these
numerical investigations. For meshes with a coarse resolution along the aligned coordinate but a larger
number of nodes in the perpendicular direction, the condition number is influenced by the fourth order
operator and scales as 1/(∆x4). The condition number of the matrix ASP increases linearly with ε−1 with a
condition number hardly tractable for the targeted anisotropy strengths (ε < 10−6) even with coarse meshes.
This motivates the needs to develop numerical methods with condition numbers bounded with respect to ε.

The properties of the matrix AMM issued from the discretization of the Micro Macro formulation are
ivestigated on Fig. 2. The Asymptotic-Preserving property of the methods is also verified thanks to the
computations of Fig. 2(a), the condition number being unaffected by the anisotropy strength value (ε = 10−10
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Fig. 1. Condition number of the matrix A
SP issued from the discretization of the Singular Perturbation problem

as a function of the grid size (N) for different anisotropy strengths ε−1.
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(b) Condition Number as a function of N = Nx (Ny = 50) or
N = Ny (Nx = 50) for ε = 10−20.

Fig. 2. Condition number of the matrix A
MM issued from the Micro Macro formulation as a function of grid

size N for severe anisotropy strengths ε−1.

and ε = 10−20). The plots for intermediate anisotropies (ε ∼ 10−6) are omitted since they are very similar
to those actually presented. The bad scaling of the Micro Macro matrix condition number with respect
to the mesh refinement is particularly manifest with the discretization of high order differential operators.
The condition number is shown to deteriorate rapidly with the grid size. Indeed, if h denotes the typical
mesh size, the conditioning of the matrix is proportional to 1/h6. The variations of the condition number
with respect to a mesh refinement either in the direction perpendicular or parallel to the magnetic field
is illustrated in Fig. 2(b). These results are in perfect agreement with Conjecture 4.1 stating a condition
number proportional to both (1/∆x4) and (1/∆y2).

For the Duality Based formulation, only the matrix providing the fluctuating part of the solution, namely
ADB′

is analysed here. Indeed, the mean part φ̄ is a one dimensional unknown (to be compared to the two
dimensional component φ′), therefore the numerical cost needed for its computation is negligible. The plots
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relating the properties of the matrix ADB′

are presented on Fig. 3. The condition number of the matrices
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Fig. 3. Condition number of the matrix A
DB′

issued from the discretization of the fluctuation equation (8) of
the Duality Based formulation as functions of the parallel (left) and perpendicular (right) mesh sizes (N) for
different anisotropy strengths (ε−1).

at hand are computed for isotropic as well as anisotropic problems with the following trends emerging. For
a given value of Ny the condition number is proportional to both ε and 1/(∆x)4 (see Fig. 3(b)). Therefore
the deterioration of the matrix conditioning due to the fourth order discrete operator may be offset by
the anisotropy: the condition number of the matrix improves with the anisotropy strength. For severe
anisotropies, defined by ε = 10−10 for these computations, the influence of the fourth order differential
operator on the condition number is completely balanced by the anisotropy strength and only depends on
1/(∆y)2 (see also Fig. 3(a)). Conversely, for vanishing anisotropies (ε ∼ 1), the variations of the conditioning
are totally correlated with the discretized fourth differential operator. This is totally in line with the analytic
expression stated in Prop. 4.2

The condition number of the matrices ATFI,φ and ATFI,q solved for the Two Field Iterated formulation
is analysed on Figs. 4 and 5. The asymptotic preserving property is manifest also for this formulation, with
both matrices conditioning uniformly bounded with respect to the values of ε as depicted by the plots of
Fig. 4. The condition numbers of both matrices scale as 1/(∆x)4 when the mesh is refined in the direction
perpendicular to the magnetic field and to 1/(∆y)2 when the mesh is refined along the aligned direction. The
condition number of these matrices deteriorates with the vanishing of ε0, the conditioning being proportional
to 1/(ε0∆y

2) as stated by Conjecture 4.2 and illustrated by the plots of Fig. 5. This latter property is similar
to that of the matrix ASP issued from the discretization of the Singular Perturbation problem (with a trend
equal to 1/(ε∆y2)). However, for the typical values of the anisotropy strength ε = 10−8 − 10−6 and ε0
(10−3) the condition number of the TFI formulation is improved by three to five order of magnitudes.

A synthesis of the condition numbers for the different numerical methods is proposed in Tab. 1. The
analytic estimates are gathered with two asymptotic regimes. The first one provides the condition number in
the limit of infinite anisotropy. This provides a clear overview of the Asymptotic-Preserving property. The
second regime is related to mild anisotropies but with refined meshes and is somehow more representative of
the applications. From these outputs, it appears that either the discretized Singurlar-Perturbation problem
or the Micro Macro formulation are not well suited to address severe anisotropies on refined meshes. The
Duality Based as well as the Two Field Iterated formulations define better choices in this context.

5.3. Convergence of the fixed-point iterations

The properties of the different methods with respect to the system matrices condition number show
clear advantages to use either the Duality Based or the Two Field Iterated formulations. Both methods
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Fig. 4. Condition number of the Two Field Iterated formulation (ε0 = 10−3) as a function of the perpendicular
and parallel mesh sizes.
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Fig. 5. Condition number of the matrix A
TFI,q providing the auxiliary variable q in the TFI scheme as a

function of ε0 for different refinement of the perpendicular and parallel mesh sizes.

define an iterative computation of the solution. For the Duality Based method a direct computation of both
component may be proposed. However, solving each problem at once gains different advantages outlined
in the next lines. The system providing φ̄ is a one dimensional problem. Its numerical resolution is cost-
less compared to that of the fluctuation φ′ which is a two dimensional problem. This property has been
harnessed in [41] to improve the computational efficiency of the Duality Based method and render its cost
comparable to, or lower than, the resolution of an isotropic problem. Another advantage should be outlined
here. The system matrix providing Φ′

h has a condition number scaling as 1/h2. This means that the two
dimensional problem resolution required for the iterative process offers a better conditioning scaling than
a full system matrix providing (Φ̄h,Φ

′
h) which is expected to be at least that of the system providing Φ̄h,

hence 1/h4. The only linear system with a condition number scaling as 1/h4 is limited to the resolution of
the one dimensional problem giving Φ̄h in the iterative resolution proposed herein.
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Table 1. Condition number of matrices issued form the discretization of the Singular problem (SP) as well as
the Duality Based, Micro Macro and Two Field iterated formulations: General expression of the condition
number, asympotics for vanishing mesh steps (h := ∆x = ∆y → 0, assuming mild anisotropies) as well as for
vanishing anisotropies ε → 0.
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The questions of interest now are therefore: how fast the iterations defined by those schemes are con-
verging and how to easily control the convergence of the iterates ?

The control of the fixed point iterations is managed thanks to a stopping criterion. It consists in
monitoring the error between two consecutive iterates of the solution related to the norm of the iterate and
to consider that the convergence is reached, when

‖Φ
(k+1)
h − Φ

(k)
h ‖∞

‖Φ
(k+1)
h ‖∞

≤ Tol , (31)

k denoting the iterate number and Tol ≪ 1 is a given value prescribing the desired precision. In Table 2,
the influence of this tolerance parameter on the approximation precision is investigated for the Two Field
Iterated method. This table relates the number of iterations required to meet the stopping criterion defined

Table 2. Control of the TFI fixed-point iterations by the criteria defined by Eq. 31: Its is the number of fixed
point iterations, Error the error in ℓ∞-norm. The computations are carried out on a mesh with Nx = Ny = 300
with ε = 10−8.

ε0 = 10−2 ε0 = 10−3 ε0 = 10−4

Tol Its Error Its Error Its Error

10−4 11 6.24× 10−4 3 8.70× 10−5 1 7.74× 10−5

10−5 25 1.31× 10−4 4 7.81× 10−5 2 7.51× 10−5

10−6 40 7.99× 10−5 6 7.52× 10−5 3 7.50× 10−5

10−7 54 7.55× 10−5 8 7.50× 10−5 3 7.50× 10−5

10−8 72 7.50× 10−5 10 7.50× 10−5 4 7.50× 10−5

10−9 91 7.50× 10−5 19 7.50× 10−5 18 7.50× 10−5

by Eq. (31) with the values of the parameter Tol specified in first column. The number of iterations hardly
depends on ε (therefore only the computations carried out with ε = 10−8 are presented), but increases with
tighter precision requirements (smaller values of Tol). Note that, imposing a too restrictive convergence
criterion induces a large number of iterations without improving the quality of the numerical approximation.
Over the full set of computations performed, the optimal value is Tol = 10−7 for the most refined meshes.
For this value the minimal error norm is obtained in a moderate number of iterations (less than 10) for
ε0 ∼ 10−3.

The same conclusion, regarding the choice of Tol, can be drawn from the investigations carried out
with the Duality Based formulation as reported on Tab. 3. The convergence of the fixed point iterations is
observed to be very fast, within a couple of iterations to a tight convergence (Tol=10−6) for intermediate
mesh sizes. Furthtermore, the number of iterations to convergence does not depend on anisotropy strength.
Computations carried out on more refined meshes (with 1000× 1000 nodes) show that the convergence rate
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is hardly affected by the mesh size. To reach the tightest precision on those refined meshes the number of
fixed point iterations is marginally increased to at most 4 to 5.

Table 3. Number of fixed-point iterations (Its) for the Duality Based method: Its is the number of fixed point
iterations, Error the error in ℓ∞-norm. The computations are carried out on a mesh with Nx = Ny = 300 with
ε = 10−8.

Tol= 10−5 Tol= 10−6 Tol= 10−7 Tol= 10−8

ε Its Error Its Error Its Error Its Error

10−4 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5

10−8 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5

10−15 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5 2 7.50× 10−5

This section is concluded by an analysis of the influence of the parameter ε0 on the convergence rate
of the TFI method. Indeed, this parameter plays a central role for the method efficiency. Therefore, the
convergence of this formulation with respect to different sets of parameters (ε, ε0) is investiagted in Table 4.

Table 4. Number of fixed point iterations and error in ℓ∞-norm for the Two Field iterated formulation
on different meshes. The stopping criteria is set to 10−6 (Divergence is reported by X). Test case with
Nx = Ny = 300.

ε0 = 10−2 ε0 = 10−3 ε0 = 10−4

ε Its Error Its Error Its Error

10−3 34 7.95× 10−5 1 7.51× 10−5 X X

10−4 39 8.01× 10−5 6 7.51× 10−5 1 7.50× 10−5

10−8 40 7.99× 10−5 6 7.52× 10−5 3 7.50× 10−5

10−15 40 7.99× 10−5 6 7.52× 10−5 3 7.50× 10−5

It appears that small ε0-values increase the convergence rate of the fixed point iterations and deterio-
rates the condition number of the matrices. The choice of this parameter is thus a trade off between fast
convergence of the fixed iterations and a tractable condition number for the inner problems resolution. Note
that, for ε0 = ε, the equation (13) is equivalent to the original problem (1) hence the convergence in one
iteration. The value ε0 = 10−3 seems to define the best choice and is selected in the sequel. The conver-
gence is secured in no more than 6 iterations and the matrices condition number is preserved whatever the
anisotropy strength. This latter property is mandatory to extract the optimal precision from the scheme.
Finally, we point out, that the properties obtained for this meshes remain quite the same for larger mesh
size, the number of iterations required to reach convergence on a 1000 × 1000 mesh being increased to 8
iterations with ε0 = 10−3.

5.4. A comparison of the precision and computational efficiency of the different methods

In this section, we shall focus on representative computations. To this end, the targeted anisotropy
strength (ε = 10−8) is selected and refined meshes will be used to proceed with the comparisons of the
different methods. The Duality Based formulation (8-9), the Micro Macro formulation (16) and the Two
Field Iterated formulation (13-14) are compared against the discretized Singular Perturbation problem. The
precision of the approximation carried out by the different methods is plotted on Fig. 6(c) for meshes refined
equally in both directions, on Fig. 6(d) for meshes more refined in the perpendicular direction than in the
parallel one. The condition number of the matrices issued from the different numerical methods is also
plotted on Figs. 6(a) and 6(b) for the two mesh refinements. The linear systems are solved thanks to a
direct sparse solver (MUMPS [1, 2]) which also furnishes the estimate of the matrices condition number.
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Fig. 6. Condition number of the system matrices issued from the Singular perturbation problem, Duality Based
(DB and DB′) formulation (8-9), Micro Macro (MM) formulation (16) and Two Field Iterated formulation
(13-14) as a function of the mesh step as well as error in ℓ∞-norm. These computations are carried out with
ε = 10−8 for meshes with either N = Nx = Ny with N ∈ [200, 1000] or Nx ∈ [200, 1200] and Ny = 200.

The Duality Based as well as the Two Field Iterated methods offer a precision up to the second order
accuracy of the space discretization. This is illustrated by a regular convergence rate on the plots of Fig. 6(c).
Both the discretization of the Singular-Pertubation problem and the Micro Macro method can not preserve
the accuracy of the numerical approximation. This is explained by the large condition number of the
associated system matrices. The estimate provided on Figs. 6(a) and 6(b) are not accurate for these two
methods. Indeed, the condition number of these matrices is too large to be computed accurately with the
precision of the computer arithmetic. Therefore the scaling of the Micro Macro matrix conditioning (1/h6) is
not recovered on Fig. 6(a), contrary to the computations performed on coarsest meshes (see Fig. 2(a)). The
same remark applies for the matrix issued from the distretization of the Singular Perturbation problem.
The advantages of the Two Field Iterated and Duality Based schemes are manifest on these plots. The
conditioning of the matrices issued from these two methods is manageable for very refined meshes. Note
also the property of the Duality Based approach which gives rise to matrices with a very low condition
number for the computation of the fluctuating (two dimensional) component. On the contrary, due to the
bad conditioning of the matrices issued from the Micro Macro and the discretized Singular Perturbation
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problem, the precision of the computations carried out by either method can not be guaranteed as one
observes on Fig. 6(d). This is even more sticking on Fig. 6(c) with a precision deteriorated for coarse meshes
(from 400 × 400). Note that for meshes with more than 1000 nodes in the perpendicular direction, the
condition number of the discrete fourth order differential operator is too large and deteriorates the precision
of the numerical approximation for all the methods. This explains the plateau reached by the plots on
Fig. 6(d) when refining the grid from 1000× 200 to 1200× 200 nodes.

The computational efficiency of these numerical methods are compared in Fig. 7 with the same mesh
refinement strategies. The computational times are given relative to those of the Singular Perturbation
problem. The Duality Based scheme is less than twice as expensive as the discretized Singular Perturbation
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Fig. 7. Computational time for the resolution of the Singular Pertubation (SP) problem, Duality Based (DB)
scheme (8-9), the Micro Macro method (16) and the Two Field Iterated scheme (13-14). The computation
time is relative to that of the SP problem resolution.

problem on the whole set of meshes. The Two Field Iterated schemes is roughly 2.5 times as expensive
as the singular perturbation problem. Finally the Micro Macro method is the less efficient, more than 3
times as expensive. Note that, these computations are carried out with very conservative parameters and
the efficiency of the iterative methods may be improved by more aggressive parameters. However the data
collected in Fig. 7 give the right scales.

Few concluding remarks can be stated at this point. First, when one coordinate is aligned with the
magnetic field, it makes sense to dissociate the mesh step along the aligned and perpendicular directions.
Since the gradients are expected to be small in the parallel direction it is likely that the mesh resolution
remains coarse along the y-direction. Conversely, in the perpendicular direction, the variations of the
solution call for a small mesh step to capture accurately the gradients in this direction. Therefore, the
Micro Macro formulation may be competitive compared to standard methods. Indeed, if the refinement
along the y-coordinate is coarse and the value of ε small enough (ε ≪ ∆x) , the Micro Macro formulation
is likely to give rise to a system matrix with a better condition number than a discretization of the original
system. However, in this context (adapted coordinates), it is much more efficient to use the Duality Based
decomposition.

Second, for complex magnetic field geometries and coordinates unrelated to the anisotropy direction, the
parallel and perpendicular directions are not oriented along the y or x axis. Therefore, there is no reason
to assume that ∆x and ∆y have different values. The conditioning grows as h−6 (h = ∆x = ∆y) for the
Micro Macro method (see Fig 2(a)) while standard discretizations provide a growth rate proportional to
∆x−4 + ε−1βSP∆y−2. This feature explains why, though a direct discretization of the initial problem is
not Asymptotic-Preserving, it may provide a better means of solving the problem numerically, for refined
meshes and moderate anisotropy strengths. However, in this framework too, the Two Field Iterated method
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offers a more effective way to carry out precise numerical approximations for large anisotropies on refined
meshes.

Third, to address more refined meshes a preconditioning strategy is mandatory to offset the bad scaling
of the fourth order differential operator. This is routinely implemented for standard elliptic equations. The
construction of preconditionner for the mildly anisotropic problems of the Two Field Iterated methods can
be readily implemented using classical tools for elliptic problems. This is a straightforward task for the
Duality Based method. We refer to [41] for conclusive demonstrations of this last two statements. In this
regard, the Two Field Iterated method offers a decisive advantage over the Micro Macro approach. The
discretization of the latter gives rise to an augmented system matrix, similar to those stemming from Saddle
Point problems (see for instance [4]). However, the efficient construction of preconditionner for the linear
system issued from the Micro Macro method remains an open question.

5.5. Towards plasma physics simulations

The model investigated in this work is simplified in order to analyze specifically the weaknesses of the AP
methods proposed so far and outline their differences with respect to standard discretizations. It is important
to note that the AP property makes possible to choose the discretization parameters independently of the
anisotropy strength, hence the motivation for developing such numerical methods. Nonetheless, further
developments are mandatory before addressing significant physics, they are examined in the following lines.

The first approximation of this study consists in considering a stationary problem. The derivation of
time discretization compliant with the asymptotic-preserving property has been studied extensively (see for
instance [34, 6, 16] or [26, 31] for implementations in a context close to the one addressed herein). The class
of time discretizations with L-stable properties guaranties an AP discretization. The present investigations
can therefore be extended to time dependent problems thanks to these methods.

The topology of the magnetic field considered for these first investigations is also crude. Though an
extension of the duality based approach to meshes unrelated to curved magnetic field lines is proposed in
[11], this method is not efficient for non aligned coordinates (see the discussion in [13]). Actually, the use
the Duality-Based approach for curved field lines should be considered together with adapted coordinates.
Nevertheless, precedent works have also demonstrated the efficiency of AP methods to cope with complex
magnetic field geometries with non adapted coordinates. The Micro Macro as well as the TFI methods have
been introduced with this specific goal: dealing with meshes and coordinates unrelated to the magnetic
field. In [31] [14] magnetic islands are for instance efficiently addressed thanks to Cartesian grids.

A last difficulty should be pointed out. In general, plasma physics is non linear and the formation of
internal layers is a common feature in this context. Such an occurrence of local areas where the solution
develops steep gradients is for instance dealt with in [15] using AP-methods. More sophisticated numerical
methods remain yet to be developed along with AP schemes to address efficiently such problems: either
local mesh refinements in the framework of unstructured grids, or patch techniques to perform local mesh
refinement for Cartesian meshes [28].
Conclusion

In this document two new numerical methods have been introduced for the numerical approximation
of the so-called vorticity equation. This is an anisotropic equation with unprecedented difficulties that are
two-fold. First, the aligned differential operator has a kernel which is not reduced to the null function.
Therefore, for severe anisotropies (ε≪ 1), the system matrix issued from the discretization of this equation
exhibits a large condition number preventing from computing an accurate approximation. Second, the
perpendicular dynamic is accounted for by a fourth order differential operator. This causes the ineffectiveness
of Asymptotic Preserving methods classically operated to overcome the difficulty originating from the aligned
differential operator. The analysis conducted within this document demonstrates that the Micro Macro
schemes proposed in [3, 29] give rise to system matrices with a condition number bounded with respect to ε,
but scaling as 1/h6, h being the typical mesh step. This destroys the advantage of this approach, compared
to a straight discretization of the original problem, as soon as the mesh is mildly refined. This calls for the
derivation of new numerical methods, as the one introduced in this work. The first approach implements
a decomposition of the two dimensional solution into a (one dimensional) mean component corrected by
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a (two dimensional) fluctuating part. This method, designed for anisotropy aligned to one coordinate, is
very efficient. Indeed, it gives rise to a system matrix with a condition number scaling as 1/h4 for the one
dimensional problem and 1/h2 for the two dimensional problem. A second method is proposed, operating a
decomposition of the solution into two (two dimensional) components. This method can address arbitrary
anisotropy, unrelated to both the coordinate system and the mesh. The condition number of the system
matrices issued for each component scales as 1/h4 and is bounded with respect to the anisotropy strength.
These methods are proved to be effective for the computation of the vorticity equation solution for arbitrary
anisotropy strength and refined meshes. These two methods are also well suited to address three dimensional
problems with iterative resolutions of the associated linear systems. These extensions, together with the
possibility to cope with complex magnetic field geometries, transient problems are mandatory to address
significant physics. Therefore they define the next steps for this work.
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Appendix A. Proof of convergence of the fixed point iterations

The convergence of the sequence (φk, qk)k≥0 is proved in this section. We only provide the main results
for the proof of Thoerem 3.1 and refer to [14] for the details.

For any function φ ∈ V,
V := {v ∈ H1(Ω) | ∂2xv ∈ L2(Ω)}

we introduce the operators ∆⊥ and ∆‖:

∆⊥φ = ∂2xφ , ∆‖φ = ∂2yφ,

along with the bilinear forms defined for (u, v) ∈ V × V by

a⊥(u, v) =

∫

Ω

∂2xu ∂
2
xv dxdy , a‖(u, v) =

∫

Ω

∂yu ∂yv dxdy.

Moreover, for ε0 ∈ R, ε0 > 0, Aε0,φ = −ε0∆
2
⊥ +∆‖ denotes the fourth order operator corresponding to the

system (13), supplemented with Robin boundary conditions and equivalent to the following bilinear form

aε0,φ(u, v) = ε0a⊥(u, v) + a‖(u, v) + ε0

∫

Γ

uv ds,

where Γ denotes the part of the boundary with imposed Robin condition.
Finally, we introduce Aε0,q = −ε0∆

2
⊥ +∆‖ the fourth order operator corresponding to the system (14)

supplemented with Neumann (instead of Robin) boundary conditions. This operator is invertible on the
space of functions with a value fixed in one point of the domain:

V1 = {v ∈ V, v(x0, y0) = 0, (x0, y0) ∈ Ω} . (A.1)

The bilinear form associated to Aε0,q is

aε0,q(u, v) = ε0a⊥(u, v) + a‖(u, v)

The proof of convergence of the iterative schemes relies on the following results.

Lemma 2 (Iteration operator). The iterative method defined by the equations (13-14) yields the following
recurrence

q(k+1) = AIq
(k) −A−1

ε0,q
∆‖

(

A−1
ε0,φ

f + Tr
(

A−1
ε0,φ

)

g
)

,

where Tr(A−1
ε0,φ

) and g are the traces of the operator A−1
ε0,φ

and the function φ on Γ, the operator AI being
defined as

AI = 1−A−1
ε0,q

∆‖

(

ε

ε0
−
ε− ε0
ε0

A−1
ε0,φ

∆‖

)

The eigenvalues of AI , denoted ℓi, are real with ℓi ∈ [0, 1]. The eigenfunctions associated to the largest
eigenvalue ℓi = 1 belong to G the kernel of the operator ∆‖.

Lemma 3 (Elementary properties). The operators Aε0,φ and Aε0,q are invertible on V and V1 respectively.
The eigenvalues of the operators A−1

ε0,φ
∆‖ and A−1

ε0,q
∆‖ are real, non-negative and bounded by 1. The eigen-

functions ν0 associated to the null eigenvalue of both operators belong to the kernel of the operator ∆‖.

Proof. The eigenvalues of the operator A−1
ε0,φ

∆‖ are solution of the following problem: find λi ∈ R and νi ∈ V
such that

A−1
ε0,φ

∆‖νi = λiνi,

that is to say

∆‖νi = λiAε0,φνi
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Multiplying by νi and integrating by parts yields

λi =
a‖(νi, νi)

a‖(νi, νi) + ε0a⊥(νi, νi) + ε0

(

∫ 1

0
νi(x, 1)2 + νi(x, 0)2dx

) .

This proves that, on the one hand λi ∈ [0, 1] and, on the other hand, ν0 the eigenfunctions associated to
the eigenvalue 0 are in G.

Similarly, the eigenvalues of the operator A−1
ε0,q

∆‖ are given by

λi =
a‖(νi, νi)

a‖(νi, νi) + ε0a⊥(νi, νi)
.

Here again λi ∈ [0, 1] with λi = 0 for any function belonging to G.

The elementary properties of the operators involved in the iteration operator allow to bound its spectrum.
Let us first remark, that the eigenvalues of the operator

ε

ε0
−
ε− ε0
ε0

A−1
ε0,φ

∆‖

are larger than ε/ε0 > 0 and smaller than 1 since the spectrum of A−1
ε0,φ

∆‖ belongs to the interval [0, 1].
The operator

A−1
ε0,q

∆‖

(

ε

ε0
−
ε− ε0
ε0

A−1
ε0,φ

∆‖

)

is therefore a product of two operators with the spectrum in the interval [0, 1] and as a consequence, the
iteration matrix AI has all its eigenvalues in the same interval.

Moreover, the eigenvalue of the iteration operator AI equal to one is associated to eigenfunctions in G,
the kernel of ∆‖. Following arguments similar to [14], we can prove that qn+1 − qn is orthogonal to the
kernel of ∆‖ for any n ≥ 0 with respect to the semi-norm induced by the bilinear form aε0,q. This proves
the convergence of the iterative schemes.

Appendix B. Characterization of the discrete operators eigenvalues

In this section, the properties of the matrices issued from the discretization of the different formulations
are investigated. This analysis is conducted thanks to the following result.

Lemma 4. Let M1 ∈ Mn(R) and M2 ∈ Mm(R) be two square matrices, with n and m two integers, a, b ∈ R

and a, b > 0. Then we define
Ψ := aM1Φ+ bΦM

T
2 ,

where Ψ,Φ are matrices of ∈ Mn,m(R). Reshaping Ψ and Φ into vectors Ψ′ and Φ′ ∈ Rn×m respectively,
then there exists a unique matrix A ∈ Mn×m(R) such that

Ψ′ := AΦ′.

Let (λi)i∈{1,...,n} be the eigenvalues of M1 and (ℓk)k∈{1,...,m} that of the matrix M2, then the eigenvalues of
the matrix A denoted by (Λi,k)(i,k)∈{1,...,n}×{1,...,m} verify

Λi,k = aλi + bℓk.

The condition number of the matrix A is given by

Cond2(A) =
amax

i
λi + bmax

k
ℓk

amin
i
λi + bmin

k
ℓk
.
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The next steps consist in identifying the matrices M1 and M2 for the numerical methods introduced in
Sec. 4 and characterizing their eigenvalues to highlight their properties. Let Φh = (φi,k)(i,k)∈{3,...,Nx−2}×{2,...,Ny−1}

and Mnn a matrix of MNx−4(R), then the matrix vector product MnnΦh defines a discretization of the dif-
ferential operator ∂4xφ, where

M
nn :=

1

∆x4































2 −3 1 0 . . . . . . 0

−3 6 −4 1
. . .

...

1 −4 6 −4 1
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . . 1 −4 6 −4 1

...
. . . 1 −4 6 −3

0 . . . . . . 0 1 −3 2































, (B.1)

the boundary conditions giving rise to the following identities:

φ1,k = φ4,k, φ2,k = φ3,k, φNx−3,k = φNx,k, φNx−2,k = φNx−1,k, k = 2, . . . ,Ny − 1.

The matrix Mnn is semi-positive definite, as stated by the following lemma.

Lemma 5. The eigenvalues of the matrix Mnn denoted (λi)i∈{3,...,Nx−2} are real and non negative:

λi ≥ 0 , i ∈ {3, . . . ,Nx − 2} . (B.2)

Proof of Lemma 5. Let λi ∈ R and qi ∈ RNx−4 be a couple of eigenvalue and eigenvector of the matrix Mnn.
The identity qTi Mnnqi = λiq

T
i qi gives

λi =
1

∆x4
1

qTi qi





(

(qi)3 − (qi)4

)2

+

Nx−3
∑

j=4

(

− (qi)j−1 + 2(qi)j − (qi)j+1)
2
)

+
(

(qi)Nx−3 − (qi)Nx−2

)2



 ,

It is easy to find that the eigenvalue λi is non-negative. Then taking constant eigenvector defined as
qi = (c, · · · , c)T , for any c 6= 0, yields λi = 0.

Considering now the differential operator along the y-coordinate, as the one involved in the definition of
the Singular Perturbation problem (4), the Robin boundary conditions are discretized thanks to

φi,1 + φi,2
2

−
1

ε

φi,2 − φi,1
∆y

= (g0)i,
φi,Ny−1 + φi,Ny

2
+

1

ε

φi,Ny
− φi,Ny−1

∆y
= (g1)i , i = 3, . . . ,Nx − 2,

or equivalently, with α(ε) :=
ε∆y

2

φi,1 +
α(ε)− 1

α(ε) + 1
φi,2 =

ε∆y

α(ε) + 1
(g0)i, φi,Ny

+
α(ε)− 1

α(ε) + 1
φi,Ny−1 =

ε∆y

α(ε) + 1
(g1)i , i = 3, . . . ,Nx − 2 .

The matrix associated with the second order differential operator is denoted Mrb,ε and defined as

M
rb,ε :=

1

∆y2



















1 + β(ε) −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 . . . 0 −1 1 + β(ε)



















, β(ε) =
2α(ε)

α(ε) + 1
=

2ε∆y

ε∆y + 2
. (B.3)

We can prove that the matrix Mrb,ε is positive definite for any ε > 0, while Mrb,0 is semi-positive definite.



26 / Journal of Computational Physics (2019)

Lemma 6. The eigenvalues (ℓεk)k∈{2,...,Ny−1} of the matrix Mrb,ε defined by Eq. (B.3) are real and non
negative. Furthermore, they satisfy the following property

ℓεk =
1

∆y2

(

2− 2 cos(θ)
)

(B.4)

with θ 6= mπ, m ∈ Z, such that

sin
(

(Ny − 1)θ
)

− 2
(

1− β(ε)
)

sin
(

(Ny − 2)θ
)

+
(

1− β(ε)
)2

sin
(

(Ny − 3)θ
)

= 0. (B.5)

For severe anisotropies ε≪ 1, the following estimation can be stated for the smallest eigenvalue

min
k
ℓεk ∼ ε. (B.6)

Proof of Lemma 6. The property of the eigenvalues (ℓεk)k∈{2,...,Ny−1} to be real and non negative for ε ≥ 0
is demonstrated using similar arguments to the ones developed for the proof of Lemma 5. The equations
(B.4) and (B.5) are direct consequences of [42].

To derive the estimate of the smallest eigenvalue for ε≪ 1, we assume θ ≪ 1. Expanding sin
(

(Ny−1)θ
)

,

sin
(

(Ny − 2)θ
)

and sin
(

(Ny − 3)θ
)

into Taylor series and truncating to second order, Eq. (B.5) yields

θ2 =
2β(ε) + β(ε)2(Ny − 3)

Ny − 2 + β(ε)(Ny − 2)2 − β(ε)(Ny − 2) + 1
3β(ε) +

1
6β(ε)

2(Ny − 1)3
.

Now considering that β(ε) ≪ 1, we have

θ2 ∼
2β(ε)

Ny − 2
∼ 2ε∆y2.

Finally, the smallest eigenvalue of (B.4) is estimated as

min
k
ℓεk =

4

∆y2
sin2

(

θ

2

)

∼
1

∆y2
θ2 ∼ ε.

The linear system associated with the discretization of the singular perturbation problem (4) can thus
be recast as

M
nnΦh +

1

ε
Φh(M

rb,ε)T = FSP
h ,

The above lemmas imply directly the statements of Prop. 4.1.
The discretization system of Eq. (8) providing the fluctuation component in the Duality Based decom-

position, can be written as

M
nnΦh +

1

ε
Φh(M

DB′

)T = FDB′

h ,

where the matrix MDB′

∈ MNy−2(R) is defined thanks to MDB′

nn ∈ MNy−2(R) and DDB′

∈ MNy−2(R) as

M
DB′

nn := M
DB′

nn + D
DB′

:=
1

∆y2



















1 −1 0 . . . 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

1 . . . 1 0 2



















+
1

∆y2















β
0

. . .

0
β















, β(ε) =
2ε∆y

ε∆y + 2
.

(B.7)

It is possible to characterize the eigenvalues of MDB′

in the asymptotic β → 0.
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Lemma 7. The matrix MDB′

is positive definite, with eigenvalues satisfying when (ε∆y) ≪ 1

ℓDB′

k ∼















4

∆y2
sin2

(

π(k − 1)

2(Ny − 2)

)

, k = 2, . . . ,Ny − 2,

1

∆y2
, k = Ny − 1.

(B.8)

Proof of Lemma 7. Owing to [41], the matrix MDB′

nn is positive definite, while DDB′

is a non-negative diagonal
matrix. Therefore, the matrix MDB′

is positive definite. The eigenvalues defined by Eq. (B.8) are those of
MDB′

nn . This is an approximation all the more precise than β ≪ 1. This parameter is indeed very small,
since ε≪ 1 and ∆y ≪ 1.

The Proposition 4.2 is an outcome of Lemma 7.




