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Abstract We study the optimization of the growth rate (a maximal eigen-

value) of a partially clonal population, which density follows a coupled system

of McKendrick-VonFoerster equations of evolution (extend of the model given

in [1]), with respect to probabilities of switching from sexual (resp. asexual)

to asexual (resp. sexual) way of reproducing at the boundary condition, i.e.

the newborn condition. The idea is to apply the result of the variation of the

first eigenvalue (Malthusian growth rate) [2,3] for this problem.
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Introduction

Species that reproduce asexually (such as bacteria) or by parthenogenesis (fe-

male able to produce child without male and fertilization) produce clones at

each generation, sexual beings produce half males and half females. At the

specie scale, parthenogenesis is much more prolific and cost free (no sexual

disease, no time lost in partner selection) than the sexual reproduction, and,

at the individual scale this is the most selfish way to reproduce (female do not

have to share their genetic material) and so costless than the sexual reproduc-

tion. Nevertheless, at the specie scale, variability of the genome of a specie and

ability to find a solution when arise environmental changes (new diseases, new

predators, climate...) gives a long time advantage to sexual reproduction. The

dynamic balance between the long-time evolutive advantage of sexual function

and its reproductive cost in the short-time is an enigma of sexuality [4].

Aphids are unusual organisms (partially clonal) which can both repro-

duce sexually and by parthenogenesis, which is determined by environmental

conditions. In [1], authors consider a time evolution model (using ODE) of

Aphids population. A population u splits into asexual (i.e. born by partheno-

genesis) : x and sexual (i.e. born from females fertilized by males) y. There-

fore, there are y/2 males and x + y/2 females, and so, the excess of fe-

males per male is ψ := 2x/y. Then they introduce a fecundation function,

h : ψ 7→ 1 + g tanh(ψ/g) where g = the limit number of females fertilized

per male −11. The dynamics of population x and y is driven by the following

1 for aphids around 7
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system 
x′(t) = −β(u)x+ α(u)[x+ y/2− h(ψ)y/2]

y′(t) = −β(u)y + α(u)[h(ψ)y/2]

(1)

where β is the death rate, α the birth rate and u(t) = x(t) + y(t) is the total

population. No sexual activity means that h = 0 and so, we have,
x′(t) = −β(u)x+ α(u)[x+ y/2]

y′(t) = −β(u)y

Now, let q = tanh(ψ/g)
ψ/g ∈ [0, 1] and p = h−ψq ∈ [0, 1], then we can rewrite the

system (1) as follows
x′(t) = −β(u)x+ α(u)[(1− q)x+ (1− p)y/2]

y′(t) = −β(u)y + α(u)[qx+ py/2]

(2)

Therefore, we see that q is the probability for a parthenogenetic individual to

give birth to a sexual one and p is the probability for a sexual individual to give

birth to a sexual one. And so, the limit case p = q = 0 corresponds to the case

where there is no sexual activity. In an environment with unlimited ressource,

we have the birth rate α and the death rate β which does not depend on the

size of the population andx

y


′

(t) = (−βI + αM)

x

y

 (t), (3)

with

M =

1− q (1− p)/2

q p/2

 .

Authors of [1], do not study the optimal growth rate and their optimisation

with respect to the fecundation function.
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What would be the optimal growth rate of the population with respect to the

probabilities p, q (chosen in [0, 1]2)? Since p, q ∈ [0, 1]2, solutions to the linear

system (3) are given byx

y

 (t) = e(−βI+αM)t

x

y

 (0),

and the growth rate is given by the maximal eigenvalue of (−βI +αM) which

is αλmax(p, q) − β where λmax(p, q) is the the maximal eigenvalue of M :

λmax(p, q) =
1−q+p/2+

√
(1−q+p/2)2−2(p−q)

2 . Since we have

∂

∂q
λmax = −1

2
+

(q − p/2)√
(p/2− q)2 + (1− p)

and ∂
∂pλmax = − 1

2 [ ∂∂qλmax] − 1

2
√

(p/2−q)2+(1−p)
, the maximum of λmax is

reached on the boundary of [0, 1]2. We notice that

λmax(1, q) = max(1− q, 1/2), max
q

(λmax(1, q)) = λmax(1, 0) = 1,

λmax(p, 0) = max(1, p/2), max
p

(λmax(p, 0)) = λmax(p′, 0) = 1, ∀p′ ∈ [0, 1],

λmax(p, 1) = max(1, (1− p)/2), max
p

(
p/2 +

√
(p/2)2 − 2(p− 1)

2
) =
√

2/2,

and λmax(0, q) = λmax(0, 0) = 1. Therefore, the maximum of the eigenvalue

(growth rate) is reached as q = 0, i.e., parthenogenetic gives only partheno-

genetic whatever do the sexual population. Then we have

y(t) = y(0)e(αp/2−β)t, and x(t) = (x(0) + o(1))e(α−β)t,

and so, the growth of a population which reproduces only by parthenogenesis is

larger than every other choices of reproduction function. Moreover, we observe

that the parthenogenesis/sexual population survival depends on the value of
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α and β (see fig. 1). In particular we notice that the larger eigenvalue is given

when p = 0 and q = 0 and so h = 0 which means that there is no more sex.

Fig. 1 Left : Survival of species depending on the birth rate α and the death rate β. Right

: (p, q) 7→ λmax(p, q).

The same question, in the case where α, β, p, q are T−periodic functions2,

since maxSp((−β(t)I +α(t)M)) = −β(t) +α(t) for all t, gives a same answer

: the best way to reproduce is given by q = 0, i.e.,

y(t) = y(0)e(
∫ T
0

(αp/2−β)(s)t/T , and x(t) = (x(0) + o(1))e(
∫ T
0

(α−β)(s)t/T ,

and so we have again figure 1 with
∫ T
0
αds/T (resp.

∫ T
0
βds/T ) instead of α

(resp. β). To include specificities of both species in the model, we have to deals

with the difference of birth and death rate of both sub-population. We add

an age-structure in the model (McKendrick-VonFoerster model [5,6,2,3,7,8])

for both population, at time t and age x, the density of asexual subpopulation

nA(t, x) and the density of the sexual population nS(t, x) have their time

2 seasonal variations
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evolution driven by the systems of transport equation (with loss due to death

term) : 
∂
∂tnA(t, x) + ∂

∂xnA(t, x) + d(t)nA(t, x) = 0,

∂
∂tnS(t, x) + ∂

∂xnS(t, x) + d(t)χx>x0nS(t, x) = 0,

(4)

where d(t) is the death rate (due to environment and time periodic due to

seasonal variation). The only difference for death for both subpopulations is

during the first stage development and we consider that, for age x less than x0

a sexual individual is an egg which have a null death rate and the same death

rate for individuals (not in an egg). Newborns appear at age 0 and leads to

the following boundary condition.

nA(t, x = 0) =

∫
x′≥0

pS→A(t)BS(x′)nS(t, x′) dx′

+

∫
x′≥0

pA→A(t)BA(x′)nA(t, x′) dx′,

nS(t, x = 0) =

∫
x′≥0

pS→S(t)BS(x′)nS(t, x′) dx′

+

∫
x′≥0

pA→S(t)BA(x′)nA(t, x′) dx′.

(5)

with

pA→A(t) + pA→S(t) = pS→A(t) + pS→S(t) = 1, ∀t.

Parthenogenetic female can give birth, with a birth rate depending on the age

x of the female : BA(x) to parthenogenetic female, with probability pA→A(t)

at time t, and to sexual female with probability pA→S(t). Respectively, sexual

female can give birth, with a rate BS(x) (which is < BA(x)) depending on

the age x (in particular for eggs BS(x) = 0 for x ∈ [0, x0]), with probability

pS→A(t) at time t to a parthenogenetic female and with probability pS→S(t)

to sexual female (5).



Bang-Bang growth rate optimization in a coupled McKendrick model 7

Since parthenogenesis is much more prolific and cost free than the sexual

reproduction we assume that

BA(x′) > BS(x′). (6)

We set that for T > 0 (here T = 365 days)

t 7→ d(t),∈ L∞(R) T − periodic, (7)

x 7→ BA(x), (resp BS(x)) ∈ L∞(R) and vanishing for x large enough,

(8)

Remark 0.1 We consider an environment with unlimited ressource. This means

that we assume that the death rate and the birth rate do not depend on the

population itself (only on time fr death rate : season and more precisely for

Aphids : temperature and only on age for birth rates). Therefore, we expect

that the population has an exponential growth or decay [9,6].

We are expecting that the best way (to give an optimal growth rate) is

to switch from sexual to asexual when it is profitable to do so (and so a

Bang-Bang principle). Proving that the optimal growth rate with respect to

pS→A, pA→A ∈ [0, 1]R+ is reached for pS→A, pA→A ∈ {0, 1}R+ now much more

complex than in the example above (2) where solutions are explicit and the

eigenvalue in computable.

In section 1, we give first results on the dynamics of (nA, nS) solution to

(4)-(5) and we show that the dynamic is time-exponential and is driven by an

eigenvalue/eigenfunction. Then, in section 2, we study the optimization of this
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eigenvalue (to improve the growth of population) with respect to the switching

probabilities (which could be a measure the ability of a population to invade

(or replace) a less fitted population, i.e., with a smaller Malthusian growth

rate, see [10,7,8,2,3,11–14]. Finally, in section 4, we discuss and conclude this

work.

1 First mathematical results

We have the following results on the dynamic (and more precisely on the long

time behavior) of this system of Partial Differential Equation. The proposition

1.1 cares about the long time behavior of the solution and we prove that it is

characterized by a time exponential growth rate (positive : growth, negative :

decay) which corresponds to the larger (in real part) eigenvalue. Whereas the

proposition 1.2 deals with the variation of the eigenvalue with respect to the

probability transition t 7→ (pA→A(t), pS→S(t)).

Proposition 1.1 Under assumptions (7)-(8) and for all nA(0, .), nS(0, .) ∈

L1(R+,R+), there exists an unique (nA, nS) ∈ L∞([0, T ], (L1(R+,R+))2) so-

lution to (4)-(5). Moreover, we have (nA(t, x), nS(t, x)) behaves as

Cst eλt(NA(t, x), NS(t, x)), (as ∼t→∞) where Cst ≥ 0, λ ∈ R and

(NA(t, x), NS(t, x)) are T− periodic L∞([0, T ], (L1(R+,R+))2) solutions to the



Bang-Bang growth rate optimization in a coupled McKendrick model 9

following eigenproblem



( ∂∂t + ∂
∂x +

d(t) 0

0 d(t)χx>x0

)

NA(t, x)

NS(t, x)

+ λ

NA(t, x)

NS(t, x)

 = 0,

NA(t, 0)

NS(t, 0)

 =

∫
x′≥0

pA→A(t)BA(x′) pS→A(t)BS(x′)

pA→S(t)BA(x′) pS→S(t)BS(x′)

NA(t, x′)

NS(t, x′)

 dx′.

(9)

Proof This is direct [6–8]. This a generalization of Floquet [15] results on linear

periodic Ordinary Differential Equation, using the General relative Entropy.

ut

The next result allow us to differentiate the eigenvalue λ (of the proposition

1.1) with respect to parameters of the model. We follow the same proof as in

[2,3].

Proposition 1.2 There exists a positive solution

(
ΦA(t, x) ΦS(t, x)

)
∈ L∞([0, T ], (L∞(R+,R+))2) and T− periodic to the dual eigenproblem (of

(9)) :

L∗
(
ΦA(t, x) ΦS(t, x)

)
= λ

(
ΦA(t, x) ΦS(t, x)

)
, (10)

which satisfies for all t > 0

∫ (
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

 dx = 1, (11)
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where

L∗ :

(
ΦA(t, x) ΦS(t, x)

)
7→ ∂

∂t

(
ΦA(t, x) ΦS(t, x)

)

+
∂

∂x

(
ΦA(t, x) ΦS(t, x)

)
−
(
ΦA(t, x) ΦS(t, x)

)d(t) 0

0 d(t)χx>x0



+

(
ΦA(t, 0) ΦS(t, 0)

)pA→A(t)BA(x) pS→A(t)BS(x)

pA→S(t)BA(x) pS→S(t)BS(x)

 . (12)

Moreover, if we assume that pA→A(t) =
∑
j p

A
j χIj (t), pS→S(t) =

∑
j p

S
j χIj (t),

where (IJ)j is a partition of [0, T ] and (pj)j is a sequence of real number (in

[0, 1])

∂

∂pAj
λ =

∫∫
R+×[0,T ]

(ΦA(t, 0)− ΦS(t, 0))BA(x)NA(t, x)χIj (t)dxdt/T, (13)

and

∂

∂pSj
λ = −

∫∫
R+×[0,T ]

(ΦA(t, 0)− ΦS(t, 0))BS(x)NS(t, x)χIj (t)dxdt/T. (14)

Proof Existence of a solution is given in [6,9]. Now, following the same proof

as [2,3], we have

∫
L∗
(
ΦA(t, x) ΦS(t, x)

)
= λ

∫ (
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

 dx = λ,
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and so, by differentiating with respect to any parameter u we find that

∂

∂u
λ =

∫
∂

∂u

[
L∗
(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx

=

∫ [
(
∂

∂u
L∗)

(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx

+

∫ [
L∗ ∂
∂u

(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx

+

∫ [
L∗
(
ΦA(t, x) ΦS(t, x)

)
∂

∂u

NA(t, x)

NS(t, x)

]dx.
Since we have

∫ [
L∗ ∂
∂u

(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx

=

∫ [ ∂
∂u

(
ΦA(t, x) ΦS(t, x)

)
L

NA(t, x)

NS(t, x)

]dx

= λ

∫ [ ∂
∂u

(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx,
and

∫ [
L∗
(
ΦA(t, x) ΦS(t, x)

)
∂

∂u

NA(t, x)

NS(t, x)

]dx

= λ

∫ [(
ΦA(t, x) ΦS(t, x)

)
∂

∂u

NA(t, x)

NS(t, x)

],
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we obtain that

∫ [
L∗ ∂
∂u

(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

]dx

+

∫ [
L∗
(
ΦA(t, x) ΦS(t, x)

)
∂

∂u

NA(t, x)

NS(t, x)

]dx

= λ
∂

∂u

∫ (
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

 dx = 0.

Therefore, we have

∂

∂pAj
λ =

∫∫
∂

∂pAj
L∗
(
ΦA(t, x) ΦS(t, x)

)NA(t, x)

NS(t, x)

 dxdt/T

=

∫∫ (
ΦA(t, 0) ΦS(t, 0)

)
BA(x)

 1 0

−1 0


NA(t, x)

NS(t, x)

χIjdxdt/T

=

∫∫
(ΦA(t, 0)− ΦS(t, 0))BA(x)NA(t, x)χIj (t)dxdt/T, (15)

and the same calculus holds for ∂
∂pSj

λ. ut

2 Optimization and survival analysis

In this part we focus on the optimization of the eigenvalue with respect to the

probability transitions t 7→ (pA→A(t), pS→S(t)), i.e. to find

λmax := sup
pA→A,pS→S∈[0,1]R+

λ(pA→A, pS→S), (16)

and more generally to evaluate (pA→A, pS→S) 7→ λ(pA→A, pS→S). Indeed, the

eigenvalue gives the growth rate of the population, and so, that can be used
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as a fitness characterization of the population [10,7,8,2,3,11], the larger is λ

the more invasive is a population and a negative λ implies the extinction of

the population. Therefore, questions are :

1. Do switching, i.e. bang-bang [16], form asexual to sexual gives the best

exponential growth rate?

λmax := sup
pA→A,pS→S

λ(pA→A, pS→S) = λ(pswitchA→A , pswitchS→S )?

2. What happens to population if there is no more switch?

λ(1, 1)? λ(0, 1)? λ(1, 0)?

Theorem 2.1 [Sex Bang-Bang optimization] The maximum of the eigenvalue

is reached for (almost) a couple of probabilities satisfying

pA→A(t), pS→S(t) ∈ {0, 1}, ∀t ∈ [0, T ].

More precisely, there exists (aj)j and (bj)j in [0, T ] s.t.

pA→A(t) =
∑
j

χ[aj ,bj ](t), pS→S(t) = 1−
∑
j

χ[aj ,bj ](t),

with

ΦA(aj , 0) = ΦS(aj , 0), ΦA(bj , 0) = ΦS(bj , 0),

where (ΦA, ΦS) is solution to the dual eigenproblem (10)-(11).

The proof is subdivided in two parts. Using the same argument as in propo-

sition 1.2 (more general [2,3]), we prove that we can construct a sequence that

increases the eigenvalue. Then, we prove that its limit is the ”best one”.
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Increasing sequence Let, for all τ ≥ 0,

pτA→A(t) :=
e
∫ τ
0
[(Φτ

′
A (t,0)−Φτ

′
S (t,0))]dτ ′

1 + e
∫ τ
0
[(Φτ

′
A (t,0)−Φτ′S (t,0))]dτ ′

,

pτS→S(t) :=
e−

∫ τ
0
[(Φτ

′
A (t,0)−Φτ

′
S (t,0))]dτ ′

1 + e−
∫ τ
0
[(Φτ

′
A (t,0)−Φτ′S (t,0))]dτ ′

,

with

(
ΦτA(t, x) ΦτS(t, x)

)
solution to the dual eigenproblem

L∗
(
ΦτA(t, x) ΦτS(t, x)

)
= λτ

(
ΦτA(t, x) ΦτS(t, x)

)
,

where

L∗ :

(
ΦτA(t, x) ΦτS(t, x)

)
7→ ∂

∂t

(
ΦτA(t, x) ΦτS(t, x)

)
+
∂

∂x

(
ΦτA(t, x) ΦτS(t, x)

)

−
(
ΦτA(t, x) ΦτS(t, x)

)d(t) 0

0 d(t)χx>x0



+

(
ΦτA(t, 0) ΦτS(t, 0)

)pτA→A(t)BA(x) pτS→A(t)BS(x)

pτA→S(t)BA(x) pτS→S(t)BS(x)

 .

Using the same argument as in proposition 1.2, we have

d

dτ
λτ =

∫∫
pτA→A(t)(1− pτA→A(t))(ΦτA(t, 0)−ΦτS(t, 0))2BA(x)NA(t, x)dxdt

+

∫∫
pτS→S(t)(1− pτS→S(t))(ΦτA(t, 0)− ΦτS(t, 0))2BS(x)NS(t, x)dxdt ≥ 0.

Since (pτA→A, p
τ
S→S , Φ

τ
A, Φ

τ
S) are uniformly bounded, using Banach Aologlu

theorem, we can extract a weak* convergent subsequence as τ →∞. Therefore,

at the limit, we have

0 =

∫∫
p∞A→A(t)(1− p∞A→A(t))(Φ∞A (t, 0)− Φ∞S (t, 0))2BA(x)NA(t, x)dxdt

+

∫∫
p∞S→S(t)(1− p∞S→S(t))(Φ∞A (t, 0)− Φ∞S (t, 0))2BS(x)NS(t, x)dxdt.

Finally, we have
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– p∞A→A,(resp. p∞S→S) belongs {0, 1},

or

–
∫
BA(x)NA(t, x) = 0, (resp.

∫
BS(x)NS(t, x) = 0),

or

– Φ∞A (t, 0) = Φ∞S (t, 0).

The best. Now, using lemma 5.1, we have (Φ∞A (t, 0), Φ∞S (t, 0)) is continuous

and T - periodic, therefore, the set {t : Φ∞A (t, 0) = Φ∞S (t, 0)} = ∪jI0j is an

denumerable union of intervals (and the same holds for {t : Φ∞A (t, 0) >

Φ∞S (t, 0)} ∪j I+j and {t : Φ∞A (t, 0) < Φ∞S (t, 0)} = ∪jI−j ). We have

p∞A→A(t) =
∑
j

χI0j (t)p∞A→A(t) +
∑
j

χI+j
(t)p∞A→A(t) +

∑
j

χI−j
(t)p∞A→A(t),

and the same for p∞S→S(t). We notice that, for all constant by parts functions

p∞,JA→A and p∞,JA→A, defined as follows

p∞,JA→A(t) =
∑
j

χI0j (t)p0j +
∑
j

χI+j
(t)p+j +

∑
j

χI−j
(t)p−j ,

p∞,JA→A(t) =
∑
j

χI0j (t)q0j +
∑
j

χI+j
(t)q+j +

∑
j

χI−j
(t)q−j .

We have directly that ∂
∂p0j

[L∗(Φ)] = ∂
∂p0j

[λΦ], and so, we obtain that

(
∂

∂p0j
L∗)(Φ) + L∗( ∂

∂p0j
Φ) = (

∂

∂p0j
λ)Φ+ (

∂

∂p0j
Φ)λ.

Since we have

(
∂

∂p0j
L∗)(Φ) = 0 and (

∂

∂p0j
λ) = 0,

we find that L∗( ∂
∂p0j

Φ) = ( ∂
∂p0j

λ)Φ. Noticing that the first eigenvalue of L∗ has

its eigenspace of dimension 1 (Perron Frobenius extension [6]), there exists a
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constant C so that ∂
∂p0j

Φ = CΦ. This implies that (ΦA(t, 0)−ΦS(t, 0)) = 0 for

all p0j ∈ [0, 1]. We, thus, can choose p0j ∈ {0, 1}.

Since, this results holds for all p∞,JA→A, we can approximate p∞A→A by a sequence

of (p∞,JA→A)J and p∞A→A(t) can be chosen in {0, 1} for all t.

End of proof. To prove that

ΦA(aj , 0) = ΦS(aj , 0), ΦA(bj , 0) = ΦS(bj , 0),

when

pA→A(t) =
∑
j

χ[aj ,bj ](t), pS→S(t) = 1−
∑
j

χ[aj ,bj ](t),

it is sufficient to derivate λ with respect to ai (resp. bi). We find that

d

dai
λ = (ΦA(ai, 0)− ΦS(ai, 0))

∫
BA(x)NA(ai, x)dx.

Therefore, to be optimal, it needs to have (ΦA(ai, 0) − ΦS(ai, 0)) = 0 or no

newborn at time ai. The same holds for bi. When there is no newborn for

asexual population, we can choose pA→A = 1 without changing anything (and

the same for pS→S when there is no newborn for sexual population). Therefore,

the only case where switches appear are given by (ΦA(ai, 0)− ΦS(ai, 0)) = 0.

ut

We show in sections 2.1 and 2.2 that assumption∫
x≥0

BA(x)e−x
∫ T
0
d(s)/Tds < 1, (17)

implies that a only parthenogenetic female population has a negative Malthu-

sian growth rate, i.e., extinguish and assumption∫
x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′max

t
e
∫ t+x0
t d(w)dw < 1, (18)
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implies the extinction of the only sexual female population. Therefore, under

assumptions (17)-(18)

λ(1, 1) = max(λ(0, 1), λ(1, 0)) < 0.

Nevertheless, it suffices that the condition3

∫
x′>x0

BS(x′)e
−

∫ T
T−x′0

d|s>x0ds/Tx
′

dx′

max
t
e
∫ t+x0
t d|w>x0dw

∫
x≥0

BA(x)e−x
∫ T−x′0
0 d|s>x0/Tdsdx > 1, (19)

is satisfied, for almost a x′0 > x0, to find a, mixing way of reproducing, survival

strategy, i.e., we have λmax > 0. Therefore, we have λmax ≥ λ(pwinter switchA→A , pwinter switchS→S ) ≥

0.

2.1 Only parthenogenetic female. No sex

Assuming that

p∞A→A = 1, p∞S→S = 0, (20)

is satisfied. Then, after a living time of the individuals of the sexual popu-

lation (since there is no newborn), the sexual population (able to reproduce)

vanishes. Therefore, we only have to look for nA solution to the McKendrick

Von-Foerster equation
∂
∂tnA(t, x) + ∂

∂xnA(t, x) + d(t)nA(t, x) = 0,

nA(t, x = 0) =

∫
x′≥0

BA(x′)nA(t, x′) dx′.

(21)

3 for the survival (and more precisely the growth) of the asexual population during Spring

to Autumn
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Using proposition 1.2, to study the dynamics of nA solution to (21), it is

sufficient (see lemma 2.1) to study the eigenproblem (9), which becomes under

the assumption (20)
∂
∂tNA(t, x) + ∂

∂xNA(t, x) + d(t)nA(t, x) = −λANA(t, x),

NA(t, x = 0) =

∫
x′≥0

BA(x′)NA(t, x′) dx′.

(22)

and leads to a condition on λA :

1 =

∫
x≥0

BA(x)e
∫ x
0
(−λA−

∫ T
0
d(s)ds/T )dx. (23)

We have then the following results on the survival of the parthenogenetic

population :

Proposition 2.1 Assuming that

∫
x≥0

BA(x)e−x
∫ T
0
d(s)/Tds < 1 (≥ 1). (24)

then λA < 0 (resp. λA ≥ 0), i.e., parthenogenetic population disappears (resp.

survives) in long time with a Malthusian exponential growth rate : λA.

Lemma 2.1 Solution (λA, NA) to the eigenproblem (22) is given by

NA(t, x) = e−
∫ t
0
(d(s)−

∫ T
0
d(w)dw/T )dse

∫ x
0
(−λA−

∫ T
0
d(s)ds/T )dx

where λA satisfies (23).

Proof We search a solution of the form NA(t, x) = f(t)g(x). Therefore we have
f ′(t)/f(t) + g′(x)/g(x) + (d(t)−

∫ T
0
d(s)ds) = −λA −

∫ T
0
d(s)ds,

g(0) =

∫
x′≥0

BA(x′)g(x′) dx′.
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and so, we have

f ′(t) = −f(t)(d(t)−
∫ T

0

d(s)ds/T ),

g′(x) = g(x)(−λA −
∫ T

0

d(s)ds/T ).

Finally, the boundary condition implies that (23) is satisfied. ut

2.2 Only sex. No parthenogenesis.

Assuming that

p∞A→A = 0, p∞S→S = 1, (25)

is satisfied. Then, after a living time of the individuals of the asexual popula-

tion (since there is no newborn), the asexual population vanishes. Therefore,

we only have to look for nS solution to the McKendrick Von-Foerster equation


∂
∂tnS(t, x) + ∂

∂xnS(t, x) + d(t)χx>x0nS(t, x) = 0,

nS(t, x = 0) =

∫
x′≥0

BS(t, x′)nS(t, x′) dx′
(26)

Using proposition 1.2, to study the dynamics of nS solution to (26), it is

sufficient (see lemma 2.1) to study the eigenproblem (9), which becomes under

the assumption (25)


∂
∂tNS(t, x) + ∂

∂xNS(t, x) + d(t)χx>x0
NS(t, x) = −λSNS(t, x),

NS(t, x = 0) =

∫
x′≥x0

BS(t, x′)NS(t, x′) dx′
(27)

where NS(T, .) = NS(0, .).
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Proposition 2.2 Assuming that

∫
x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′max

t
e
∫ t+x0
t d(w)dw < 1,

(resp

∫
x′>x0

BS(x′)e−
∫ T
0
d(s)ds/Tx′ dx′min

t
e
∫ t+x0
t d(w)dw > 1), (28)

then λS < 0 (resp. λS ≥ 0), i.e., sexued population disapears in long time

(resp. survive) with a Malthusian growth rate : λS.

Proof Here, the term d(t)χx>x0
leads to some difficulties. We write the prob-

lem on [0, x0] and on [x0,∞]. We define

NS(t, x) =


N0
S(t, x), x ∈ [0, x0],

N1
S(t, x), x ∈ [x0,∞],

which satisfy



∂
∂tN

0
S(t, x) + ∂

∂xN
0
S(t, x) = −λSN0

S(t, x), x ≤ x0

∂
∂tN

1
S(t, x) + ∂

∂xN
1
S(t, x) + d(t)N1

S(t, x) = −λSN1
S(t, x), x ≥ x0

N1
S(t, x0) = N0

S(t, x0)

N0
S(t, x = 0) =

∫
x′≥x0

BS(t, x′)N1
S(t, x′) dx′.

We let

M1
S(t, x) := N1

S(t, x)e
∫ t
0
(d(w)−

∫ T
0
d(s)ds/T )dw. (29)
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Then, we have

M1
S(t, x) =

∫
x′≥x0

BS(x′)M1
S(t− x, x′) dx′e

∫ t+x0−x
t−x (d(w)−

∫ T
0
d(s)ds/T )dw

︸ ︷︷ ︸
:=J(t−x)

eλSx0e(−λS−
∫ T
0
d(s)ds/T )(x−x0).

Now, using the boundary condition and the equation (29) we find that J sat-

isfies J(t) =
∫
x′≥x0

J(t − x′)dµλS (x′)U(t), where U(t) = e
∫ t+x0
t d(w)dw (inde-

pendent of λS) and dµλS (x′) = BS(x′)e(−λS−
∫ T
0
d(s)ds/T )x′ dx′. Consequently,

assuming that (28) is satisfies, J 6= 0 and λS ≥ 0 (resp. λS ≤ 0), we find that

sup
t
J(t) < sup

t
J(t), (resp. inf

t
J(t) > inf

t
J(t)),

which is absurd, therefore, λS < 0 (resp. λS > 0). ut

3 Environment change and numerical simulations

Since parthenogenesis is much more prolific and cost free (no sexual disease, no

time lost in partner selection) than the sexual reproduction, when the death

rate does not depend on time, we have a better Malthusian growth rate for the

asexual population than for the sexual population. For Aphids, eggs produced

(by sexual reproduction) have the ability to survive to winter [17–20]. There-

fore, for numerical simulations, we consider that the death rate depends on

time t 7→ d(t) is time periodic (annual) and d|Winter ≥ d|Summer,Spring,Autumn,

moreover we consider that death rate for eggs (sexual population of age x ∈

[0, x0] [17]) is null and we chose for birth and death rate as in the figure 2.
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Fig. 2 Rates. Right : death rate on a time period. Left : birth rates (asexual in blue, sexual

in red). From 0 to 50 days there is no birth (egg time) for sexual population. The birth

rate for asexual population is higher than for the sexual population after egg time. During

winter, the death rate is higher than the death rate during other seasons.

Consequently, the end of winter, i.e., the increase of temperature, means the

end of sex as soon as a mutant that reproduce exclusively by parthenogenesis

appears. It suffices to produce only parthenogenetic female between the end of

winter and to change before the next winter to sexual female that produce eggs

(which are not sensible to the death rate that eliminate the whole population).

We observe, in figure 3, annual growth rates (eλT ) of two populations : the first

one obtained by the optimal mixing reproducing strategy finding in section 2

and the second only parthenogenetic, with respect to the death rate induced

by winter. We notice that, there exists a threshold death rate, under which

the parthenogenetic strategy is better.

Proposition 3.1 Assuming that 4

∫ ∞
0

BS(y + x0)e−d ydy <

∫ ∞
0

BA(y)e−d ydy, (30)

and

d(t) = d,

4 verified as BS(.+ x0) < BA(.)
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then

pA→A = 1, pS→S = 0,

is the best choice to have the best growth rate.

Proof We notice that solution to the dual eigenproblem (10)-(11) as pA→A = 1,

pS→S = 0 are satisfied is given by

ΦA(x) =

∫ ∞
x

BA(y)e−(d+λ)(y−x)dx,

(ΦS(x)e−d
∫ x
0
χ
y>x0

dy−λx) =

∫ ∞
x

BS(y)e−d
∫ y
x
χ
z>x0

dz−λ(y−x)dy.

Using (30) we have directly that
∫∞
0
BS(y + x0)e−d ydy <

∫∞
0
BA(y)e−d ydy.

Therefore, we have

ΦS(0) =

∫ ∞
0

BS(y)e−d
∫ y
0
χ
z>x0

dz−λydy < ΦA(0),

and so, using proposition 1.2, λ is increasing with respect to pA→A and de-

creasing with respect to pS→S . ut

Numerical simulations. For (in days) T = 365, we set

– Agemax = 90,

– Agemax reproduction = 30,

– eggstate = 50,

– BA(x) = .8χa∈[0,Agemax reproduction],

– BS = .125χa∈[eggstate,eggstate+Agemax reproduction],

– d(t) = 10χt<30 + .5χ30≤t<365 and T periodic.
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Fig. 3 Computation of eTλ, i.e. the growth of a population after a year with re-

spect to Winter death rate. We simulate (5) for (in days) T = 365, Agemax =

90, Agemax reproduction = 30, eggstate = 50, BA(x) = .8χa∈[0,Agemax reproduction],

BS = .125χa∈[eggstate,eggstate+Agemax reproduction], d(t) = Winter death rateχt<30 +

.5χ30≤t<365 and T periodic. Even if it seems to be constant (at the right), the growth

rate of the mixed reproducing strategy (in blue) is slowly decreasing (at the left).

We search for the best bang-bang strategy, i.e.,

max
pA→A(t)=χ[xa,xb]

, pS→S(t)=1−pA→A(t)
λ(pA→A, pS→S).

We observe in figure 4 that for xb to large, i.e., when the sexual population

appears to late before winter, the population disappears (zero multiplicative

growth). The same happens if the asexual population arise too late (xa too

large). Maximum is reached for xa = 21 and xb ∈ [5, 30] days. We see, on

figure 5, that the sexual population nS vanishes except before winter and

asexual population nA increases exponentially between the end of winter to

the end of autumn and then disappears just before winter.
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Fig. 4 Computation of (xa, xb) 7→ eTλ, as pA→A = χ[xa,xb]
, pS→S = 1− pA→A. At the

right, we show the decay as xb is near 0 (zoom of the highest part of left figure).

Fig. 5 Computation of nA (left figure) and nS (right figure) with respect to age and time.

In particular, in dark blue, we have the extinction of the population.

4 Conclusion and perspectives

In this work, we have proposed a partial differential equation model to study

the time evolution of a population that uses both sexual and asexual way

of reproducing in an unlimited ressource environment. Then, we show that
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the bang-bang strategy (switch from parthenogenesis to sex and from sex to

parthenogenesis) is the best in order to optimize the growth rate of the popula-

tion. Moreover, even in the case of both type of subpopulation can extinguish

(if they do not cooperate), a mixing strategy (a cooperation), i.e. sexual can

produce asexual and asexual can produce sexual, may implies survival of the

population. Nevertheless, environment variations imply adaptation of species

to these variations. Consequently, if the death rate that penalize the asexual

population (which has a higher birth rate than the sexual one) decreases, at

some point, the asexual population becomes the best (in a growth rate) way

to reproduce. Thus, a mutant, that has lost sex, can invade the population. It

could be interesting to develop the research of an optimal strategy by taking

in account the growth rate and its variations due to random variations of the

environment.

5 Annex : Dual eigenproblem

In this part, we focus on the solution to the dual eigenproblem (10)-(11) and

show that the solution is regular.

Lemma 5.1 Let

(
ΦA ΦS

)
solution to the dual eigenproblem (10)-(11) then

Φ(t) :=

(
ΦA(t, 0) ΦS(t, 0)

)
, (31)

satisfies

Φ(t) =

∫ ∞
0

Φ(t+ y)dµtλ(y), (32)
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with

dµtλ(y) :=pA→A(t+ y)BA(y)e−
∫ y
0
d(t+z)−λdz pS→A(t+ y)BS(y)e−

∫ y
0
(d(t+z)χz>x0+λ)dz

pA→S(t+ y)BA(y)e−
∫ y
0
d(t+z)−λdz pS→S(t+ y)BS(y)e−

∫ y
0
(d(t+z)χz>x0+λ)dz

 dy.

(33)

And finally, we have Φ ∈ C0(R+) and

Φ(t) = lim
n→∞

∫∫∫
Rn+

n∏
i=1

dµ
t+

∑i−1
j=1 xj

λ (xi).

Proof We have, for all t,

− d

dx

(
ΦA(t+ x, x) ΦS(t+ x, x)

)

+

(
ΦA(t+ x, x) ΦS(t+ x, x)

)d(t+ x) 0

0 d(t+ x)χx>x0



−
(
ΦA(t+ x, 0) ΦS(t+ x, 0)

)pA→A(t+ x)BA(x) pS→A(t+ x)BS(x)

pA→S(t+ x)BA(x) pS→S(t+ x)BS(x)


= −λ

(
ΦA(t+ x, x) ΦS(t+ x, x)

)
.
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Therefore, we find that

− d

dx

((
ΦA(t+ x, x) ΦS(t+ x, x)

)
e

−
∫ x
0


d(t+ y)− λ 0

0 d(t+ y)χy>x0
− λ

dy)

−
[(

ΦA(t+ x, 0) ΦS(t+ x, 0)

)pA→A(t+ x)BA(x) pS→A(t+ x)BS(x)

pA→S(t+ x)BA(x) pS→S(t+ x)BS(x)



e

−
∫ x
0


d(t+ y) + λ 0

0 d(t+ y)χy>x0
+ λ

dy]
= 0.

Thus, integrating with respect to x, we find that

(
ΦA(t+ x, x) ΦS(t+ x, x)

)
=

∫ ∞
x

(
ΦA(t+ y, 0) ΦS(t+ y, 0)

)
pA→A(t+ y)BA(y) pS→A(t+ y)BS(y)

pA→S(t+ y)BA(y) pS→S(t+ y)BS(y)



e

−
∫ y
x


d(t+ z) + λ 0

0 d(t+ z)χz>x0
+ λ

dz)
dy.
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Applying in x = 0 we finally obtain that

(
ΦA(t, 0) ΦS(t, 0)

)
=

∫ ∞
0

(
ΦA(t+ y, 0) ΦS(t+ y, 0)

)
pA→A(t+ y)BA(y) pS→A(t+ y)BS(y)

pA→S(t+ y)BA(y) pS→S(t+ y)BS(y)



e

−
∫ y
0


d(t+ z) + λ 0

0 d(t+ z)χz>x0 + λ

dz)
dy,

and (32) holds for Φ defined by equation (31) and dµtλ defined by (33). Regu-

larity comes directly from the integral equation (convolution form) (32).
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12. Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A. and van Heerwaarden,

J. S. : Adaptive dynamics: A geometric study of the consequences of nearly faithful re-

production. In van Strien, S. J. and Verduyn-Lunel, S. M., editors, Stochastic and spatial

structures of dynamical systems (Amsterdam, 1995), pages 183-231. NorthHolland (1996).

13. Metz, J.A.J., Mylius, R.M. and Diekmann, O. : When does evolution optimize? Evolu-

tionary Ecology Research, 10:629-654. (2008).

14. Metz, J. A., Nisbet, R. M. and Geritz, S. A. : How should we define fitness for general

ecological scenarios? Trends in Ecology & Evolution, 7(6):198-202.(1992).
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