1

MBSE, What is Wrong with SysML -First Issueby Patrice MICOUIN, Systems Engineering Practitioner & Researcher

The purpose of this paper is to introduce three reasons that led me to give up SysML TM [START_REF]SysML: OMG Systems Modeling Language TM version 1.5[END_REF], to look and to find elsewhere. It argues on the first of these reasons. The others will be presented in later papers.

They justify why, from my point of view, SysML is not the most efficient vehicle for conducting a Model-Based Systems Engineering process (MBSE) and why, in my opinion, simulation languages are generally much more fitted to support Systems Engineering Processes based on Modeling & Simulation (M&SBSE).

In this first paper, I explain why the SysML Requirement Diagrams do not belong to MBSE paradigm but in fact to the "old world" of document-centric systems engineering and consequently why a SySML-Based Systems Engineering remains a Colossus with feet of clay.

In a second paper, I will explain why a SySML-Based Systems Engineering does not cover all the systems engineering processes. Although it covers some of them, it supports weakly requirement validation and implementation verification activities. It is therefore incomplete.

In a third paper, I will explain why a SySML-Based Systems Engineering, once completed with different tool provider specific or user-specific ad-hoc appendices to better cover validation and verification activities, becomes a process that is not as efficient ("lean") as a M&SBSE process can be.

In the beginning was the Document-Based Systems Engineering

The birth of systems engineering is often dated to the publication in 1962 by Arthur D. Hall of "A Methodology for Systems Engineering" [START_REF] Hall | A methodology for Systems Engineering[END_REF]. A contemporary reader would find only very partially the universe of his/her discourse or the systems engineering rules as they are listed thirty years later in standards such as the IEEE 1220 [START_REF]Management of the Systems Engineering Process[END_REF], the EIA 632 [START_REF]ANSI/EIA632, Processes for engineering a system[END_REF] or even ISO-15288 [5]. But some key terms of this discipline such as "system requirements" or "testing" as well as good engineering practices are already there: start by studying the problem to be treated, build a model of solution, test the model and the solution derived from it ... Thirty years later, systems engineering had been considerably clarified and refined to the point of, sometimes, defining all the documents to be delivered as part of the development of a system. Because it is a vision of engineering essentially based on documents. To spent a lot of time to write these documents and then to read them to validate their contents and to verify with respect to these documents the conformity of artifacts produced was considered as a self-evident effort.

The late 1990s and early 2000s marked the culmination of this document-based engineering vision, but its inefficiency soon became apparent to practitioners. Despite the fact that there are plenty of guides, specifications of tens of thousands, or hundreds of thousands of textual requirements abound, of very variable quality: often ambiguous, and incomplete, and sometimes contradictory. Due to the fact that they can only be validated by human eyes and brains, they are poorly validated or validated at prohibitive costs. They also make the verification of the systems difficult and expensive, because it is necessary to produce at great expense sets of test scenarios and oracles from these same documents sometimes unfit for their intended usage. Similarly, human reading of design drawings for system normal and degraded operations gives rise to many misinterpretations that can be difficult to detect under cover of fake obviousness and long to unravel. Faced with the demands of cost and time reductions, operational reliability and maturity increases at the delivery for ever more complicated systems, document-based systems engineering had reached its limits and called for a paradigm shift.

2 Model-Based Systems Engineering Promises.

Although the term is relatively, old, since it already appears as the title "Model Based Systems Engineering" [START_REF] Wymore | Model-Based Systems Engineering[END_REF] The initiative to develop a language that comes with the emergence of a new approach of systems engineering could appear as obvious and I understand why a large number of practitioners and methodologists consider that the acronyms MBSE and SysML are almost synonymous.

However, I consider that this assimilation is a bias: first, MBSE and SysML are of different levels: MBSE is a systems engineering approach which is based on the concept of models to represent systems (sociotechnological) while SysML is a language allowing this representation more or less efficiently depending on the goals of this representation. Moreover, this assimilation has the effect of concealing two essential points 1) the plurality of methods that can be used in the context of an MBSE approach 2) the plurality of languages that can be used to support MBSE.

As this paper is dedicated to the SysML language, I will not talk anymore about method to focus on languages, pointing out that the language used in an MBSE approach is a vehicle for embedding abstractions representing the system in development. For such a representation there are many candidate languages, and to name but a few of the best known: SysML, OPM [START_REF]Object Process Methodology[END_REF], AADL [START_REF]Architecture Analysis and Design Language[END_REF], Mathworks languages [START_REF]Mathworks Languages include Matlab, Simulink, Stateflow, Simscape[END_REF], Modelica [START_REF]A Unified object-oriented language for systems modelling language specification[END_REF], VHDL-AMS [START_REF]Language Reference Manual, IEEE 1076[END_REF][START_REF]IEEE Standard VHDL Analog and Mixed-Signal Extensions[END_REF], and therefore the reduction of MBSE to the SysML language is illegitimate and a priori disqualifications of such or such a language have no rational basis. The only true criterion of selection is the comparative efficiency of these languages in supporting the requirements definition, validation of these requirements, design and implementation verification activities -a T1 technique is more efficient than T2 if it is effective (that it makes it possible to reach the goal) and if it makes it possible to reach it in a time and for a lower cost than T2-

SysML Requirement Diagrams and Text-Based Requirements

With many practitioners, methodologists and authorities [START_REF]IEEE Standard VHDL Analog and Mixed-Signal Extensions[END_REF], I support the basic assumption that the System Requirements Specification (whatever its form -document or model -) is the cornerstone of industrial development processes of systems. This is a basic rule of scientific approach applied to systems engineering: before to start the design of a solution, the problem shall be well-defined [2, p 19]. This is not necessarily relevant for innovation, but it is mandatory for industrial development.

System development process will be all the better controlled as these foundations will be strong, because this is on these bases that the processes are built: verification of designs, allocation of requirements to subsystems and verification of physical implementations as well as processes of cooperation with acquirers and suppliers. The weaker these bases are, the greater the risks concerning the control of costs, deadlines, contractual relations and the maturity of system on delivery.

Moreover, as mentioned above, this is the "Achilles'heel" of document-based systems engineering. Concerning this foundational engineering document, the main criticisms generally formulated are:

-Despite countless aids and guides, the production of low-quality text requirements with gaps, overlaps and inconsistencies remains very common.

-The textual requirements lead to a poor quality and excessively expensive validation when this validation activity of requirements is not simply ignored textual specifications poorly frame future developments (design, allocation and verification) -textual specifications are not appropriate for the preparation of test cases which is expensive and errors prone. and, unfortunately, SysML requirements diagrams are not the cornerstone for MBSE but just a "bridge" between the "old world" (document-based) and the "new world" (MBSE): "The requirements constructs for modeling are designed to provide a bridge between traditional management tools and the other SysML models » ([START_REF]SysML: OMG Systems Modeling Language TM version 1.5[END_REF], p 161). The end of the chapter is only devoted to ways to link these textual requirements with each other or with other modeling elements.

Property-based Requirements (PBRs) and SysML Profiles

When the concept of PBR was invented in 2008 [START_REF] Micouin | Toward a property-based requirement theory: system requirements structured as a semilattice[END_REF], it aroused interest in the SysML community to the point that the opportunity to integrate it into SysML was raised [START_REF]SYSML17 -Property Based Requirements[END_REF]. and a working group has been created for this purpose (SysML 1.5 Property Based Requirements Working Group). Its conclusions which are included in the current standard, in a dedicated annex E.8 and untitled « Building Non-Normative Extensions for Property-Based Requirement », seem rather equivocal:

First, it confirms the weaknesses of textual requirements with the following "expressing requirements as text strings alone fundamentally limits their ability to be evaluated and verified"(([1], p 322).

In a second time, three ways to model PBRs in SysML are suggested in this annex:

(1) PBR Profile Based on ConstraintBlock (2) PBR Profile Based on Constraint (3) PBR Profile Based on Block Basically, PBRs are conditional assertions (i.e. when given actualization conditions are fulfilled then given system properties shall satisfy specified constraints). However, in the light of the provided explanations and examples, doubts remain about the ability of these SysML user profiles to fully account for the PBR concept, in particular for its condition of actualization that has never been mentioned. This would mean that these SysML profiles offer only a very limited (unconditioned) implementation of the PBR concept, which would make it loses the major part of its benefits.

In addition, to the question: "What is a specification model?", Appendix E.8 brings a surprising answer: "the system model may be used as a model-based specification, such as when block instances with specific property values represent the requirement"([START_REF]SysML: OMG Systems Modeling Language TM version 1.5[END_REF], p 322). Strange answer that recalls a time when a piece of software code may be its own specification and that poses as many conceptual as practical problems. Conceptual: will the use of the system model as a model-based specification not introduce a quantity of design biases and undesired constraints? Practical: How to share the system model (as a model-based specification) between acquirer and suppliers when one and the others do not wish to disclose their intentions and know-how? Eventually, the annex E.8 warns the reader that "property-based requirement profiles (are) provided in this annex, (these) are not to be considered normative or even authoritative. Instead, they are intended to be illustrative of the kind of extensions that some users may find desirable. Ultimate responsibility2 for the compatibility of any property-based requirement profile with a particular requirements management process or toolset rests fully with the user" ([1], p 324). In other words, on the one hand the weaknesses of the textual requirements are confirmed and on the other hand, an alternative solution, the use of the PBRs is done incompletely and at user own risk! These zig-zags could be interpreted as follow: despite the interest for the PBRs, this attempt to integrate them in SysML (v 1.5) is not much more satisfactory than the one I suggested in 2008 ([START_REF] Micouin | Toward a property-based requirement theory: system requirements structured as a semilattice[END_REF] p 242-244). My feeling is that this is not due to the lack of imagination of the attempt authors but rather to the conceptual weakness of SysML on this topic. My opinion is rather that PBRs have no effective place in SysML because what makes the relevance and the power of the PBRs is their ability to monitor the acceptable system state space during running simulations or system testing. In other words, SysML is not the right vehicle for the PBR concept that only finds its efficiency within the framework of the M&SBSE and simulation languages.

To conclude, SysML requirement diagrams and suggested SysML profiles for PBRs do not solve the problems related to document-centric requirement engineering (reminded here page 3). The MBSE promise on this decisive point is not held by SysML. At the opposite, simulation languages [START_REF] Micouin | Property Model Methodology: A Landing Gear Operational Use Case[END_REF], such as Simulink, Modelica, VHDL-AMS and probably many more, provide efficient ways to implement PBRs and specification models in order to monitor simulation runs of system design models and to raise requirement violation alerts when the system model comes out of its specified space state. In other words, simulation languages provide a right semiotic basis to support MBSE promise about requirement engineering.

 of a book 1 published by A. Wayne Wymore in 1993, MBSE constitutes itself as an alternative to Document-Based Systems Engineering later, on the occasion the INCOSE Systems Engineering Vision 2020 [7] published in 2007. It is then defined as "a formalized application of modeling to support the engineering activities of system requirements, verification analysis design and validation beginning in the design phase and continuing in development and later phases of the life cycle » ([7], p 15). The intent is to promote models as engineering references in place of documents. To implement this MBSE vision of the future systems engineering INCOSE collaborates since 2001 with the OMG ([8] p 1) to define a specific language supporting the engineering process of a system: System Modeling Language or SysML, of which the last published version dates from 2017.

 It is therefore understandable to transfer on MBSE hopes that have been disappointed by the textual requirements engineering and document centric systems engineering Now, to appreciate SysML proposal for requirements engineering, the best is consider chapter 16 of the current standard (1.5). And page 161 almost everything is said in two sentences: first the SysML requirements are only textual requirements packaged in graphical boxes "SysML provides modeling constructs to represent text-based requirements and relates them to other modeling elements"

With a list of documents to deliver !

This is the only explicit warning of such type in all the document