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Abstract

One of the challenges of the post-genomic era is to provide accurate function annotations for orphan
and unannotated protein sequences. With the recent availability of huge protein-protein interactions for
many model species, it becomes an opportunity to computational methods to elucidate protein func-
tion based on many strategies. In this respect, most automated computational approaches integrate
diverse kinds of functional interactions to deduce protein functions by transferring annotations across
different species by relying on similar sequence, structure 2D/3D, amino acid motifs or phylogenetic
profiles. In this work, we introduce a new approach called TANA (Transferring Annotation via Net-
work Alignment) for inferring protein function which is based on our approach MAPPIN for GNA
(Global Network Alignment). The main originality of the introduced approach stands on discovering
functional modules within the PPI network by transferring annotation via network alignment. Doing
so, we are able to discover the functions of proteins that could not to be easily described by sequence
homology. We assess the performance of our method using the standards established by the Computa-
tional Assessment of Function Annotation (CAFA) and highlight a sharp significant improvement over
other competitive methods, in particular for predicting molecular functions.

1 Introduction
The past decade has witnessed a rising in genomic and proteomic data, leading to a large variety of se-
quenced genomes and proteomes. A fundamental challenge is the interpretation of this overwhelming of
data to elucidate more accurate protein functions. The manual annotation of protein function is a daunting
task which paves the way to the emergence of successful computational predictive methods. The latter
have been applied starting from incorporating gene expression patterns [1, 2], phylogenetic profiles [3, 4],
protein sequences [5, 6], protein structures [7, 8], and protein interactions. A wealthy number of com-
putational approaches for predicting function from networks have been proposed can be organized into
two major classes: (i) those using a direct network-context: to wit the direct annotation of proteins infer
functions based on its connections in the network; (ii) those assisted by a prediction module. The latter
first identifies clusters, or modules, of related proteins and then annotates each protein based on the known
functions of its members [9].
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Combining both Gene Ontology Annotation (GOA) and protein-protein interaction (PPI) data allows
the discovery of function for unknown proteins based on three general categories of molecular function,
biological process and cellular component specified in all three Gene Ontology (GO) types. Prediction
of the protein function based on the annotation transfers via the network alignment of multiple networks
poses many thriving issues such as:

• The computational complexity, i.e., the number of proposed correspondences increases potentially
as far as the number of compared networks grows;

• The size of genomes related to the varied networks to be aligned may change widely, e.g., because
of differing degrees of gene duplication;

• The genomes or proteomes available are noisy, biased and incomplete;

• The GO only carries out positive terms, i.e., there is no data on functions that proteins do not
have which diffuse mis-annotations when homology-based approaches are applied. In addition,
not all unknown proteins have homologous proteins in databases which could give putative fake
functions to unknown proteins, e.g. the chromosomal proximity method [10], the Rosetta stone
method [10, 11, 12], the phylogenetic method [13] and the combined method [14, 15, 16].

In this paper, we introduce a new strategy to predict the functional annotation of proteins through the
comparison of multiple protein-protein interaction networks from different species. We provide a global
network alignment with k-networks, by identifying modules of related proteins and then annotate each
module based on the most frequent annotations. Our method aligns PPI from many species to discover
functionally similar or conserved protein modules between them. Two major steps are involved:

1. Discover the modules or clusters which are functionally coherent using our method based on MAP-
PIN for aligning PPI networks [17]. Nevertheless, we also introduce with some variations in order
to align the different species of the CAFA3 challenge;

2. Predict the function of unannotated proteins in a cluster using our novel strategy thoroughly de-
scribed in remainder.

To evaluate the predictions for the unannotated proteins, we compare our results versus those of pioneering
approaches dedicated to function prediction.

The amount of large scale PPI networks have emerged quickly. Simultaneously, collaborative attempts
to annotate proteins and genes using GO annotations. Knowledge bases using GO annotations, such as
the UniProt Knowledgebase (UniProtKB), provide a rich annotation data on PPI networks and afford
relevant information for discerning the biological processes that preserve cellular structure and function.
The alignment of PPI networks is a convenient strategy for comparing the networks of different species.
This comparison helps identifying functional modules that are conserved across the PPI networks. This
alignment is performed by first establishing a mapping between the nodes of the compared PPI networks
relying on biological information, commonly sequence homology.

There are many issues that have been developed to assign a function to an unknown protein:

• Gene expression pattern: protein function prediction by analyzing gene expression pattern [18].

• Phylogenetic profile: analyzing phylogenetic profile, i.e., evolutionary history of proteins [13, 19].
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• Protein sequence: protein function prediction using protein sequence, sequence similarity mea-
sures, homologies are primarily used. Applying program such as the Basic Local Alignment Search
Tool (BLAST) [20], PSI-BLAST [21] and FASTA [22] to find possible homologs in sequence
databases such as TrEMBL [23] and UniProt [24].

• Protein structure: the function prediction using protein structure, by using some approaches to
analyze the secondary [25, 26] and tertiary structures [27, 28, 7] of proteins.

• Protein-protein interactions (PPIs): protein function prediction using protein-protein interactions
[29, 30, 31, 32, 33, 34, 35, 36] can be deduced from the interaction of the neighborhood. Chua
et al. [36] demonstrated the useful strategies using the PPIs as a complementary approach to se-
quence homology by specifying the maximum additional coverage for the protein-protein interac-
tions. Whereas, other methods analyze a single specie’s protein network to distinguich functional
modules (as reviewed in [37]. A typical single-species appproch applying connectivity strategy to
cluster a protein network into highly connected modules, e.g., MCODE [38]. Moreover, PPI net-
works of single species have been used to extract biological pathways. The reader is referred to [9]
for a survey on the topic.

• Network alignment: the function prediction using annotation transfers via network alignment by
confering the annotations of a protein in an aligned cluster to the unannotated member of the iden-
tical cluster [39, 40]. However, a thorough analysis highlights that such automated transfers may
not always be adequate to feed correct function predictions. Integrating the global alignment results
into the function prediction strategies, using network analysis techniques, that gives more trusty
predictions [41].

Additionally, there are some additional approaches, which have been applied to predict protein function
based on the guilty by-association rules, e.g., the neighbor-counting method [42, 29] and the Chi-square
method [43]. Worthy of the mention, a thorough review on methods in automated protein function predic-
tion is provided in [44].

All of these factors have provided an increase in a varied number of automated approaches based on
a number of features (i.e., Direct or module assisted approaches) [9]. We take an example of tools for
protein function prediction as Predictprotein [45], DEEPGO [46], PFAM [47], SIFTER [48], INTERPRO
[49]. The ffpred3 [50] is an approach for protein function prediction based on the scanning of the in-
put protein sequences accross an array of Support Vector Machines (SVMs) considering the tie between
protein function and alternative motifs. GOFDR [51] is an alignment-based method for protein function
prediction from the query sequence-based multiple sequence alignment (MSA) produced by BLAST or
PSI-BLAST search. After that, it induces the functionally discriminating residues (FDRs) for a target GO
term and builds up a position specific scoring matrix (PSSM) for the FDRs. Finally, it scores the protein
target using the PSSM, and tuning the raw score into probability.

DeepGO [46] is an approach for predicting protein functions from protein sequences and PPI networks.
It applies a deep neural networks to learn sequence and PPI network elements and hierarchically classifies
it with GO classes. [52] is also an other approach to predict protein functions from a combination of
"Sequence similarity" (by using BLAST [20]), "domain architecture searches" (by using PFAM [47]) and
PPI networks data (by using STRING [53]) into a consensus prediction for each of the three GO sub-
ontologies (i.e., MF, BP and CC).

Although many computational approaches have been developed in recent years to predict protein func-
tion, most of these traditional algorithms do not take functional similarity during protein function predic-
tion process except the PINALOG approach [54]. However, the latter is only used for pairwise alignment.
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Figure 1: The different steps of TANA for scoring the prediction of GO Terms for each unannotated
protein.

In the remainder, we introduce TANA, an approach that predicts protein function exploiting PPI networks,
sequence similarity and functional similarity. TANA doesn’t only rely on homology inference to assign
function, since it is very difficult to infer homology for highly divergent proteins. We evaluated our ap-
proach according to their ability to predict terms in the Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC) ontologies established by CAFA3.

It is worth mentioning that our approach is the first one that predicts functionality of unannotated
proteins from transferring annotations via GNA with low computational complexity. Indeed, it gives us an
advantage to predict a batch of unknown proteins. Our approach aims to find a multiple global network
alignment, with k-networks, in order to find out clusters of proteins across the k-compared networks
such that these clusters depict a conserved biological function. Here, we explore the possibility of using
the GOA, i.e., functional similarity of protein between the compared networks to extract modules that
correspond to specific biological processes by increasing the number of conserved interactions.

The remainder of this paper is organized as follows. Section 2 depicts the architecture of the introduced
algorithm and presents our method for protein function prediction. Section 3 describes our evaluation
methodology and discusses experimental results. Finally, section 4 concludes with an outline of future
work.

2 Methods and Algorithms
We start this section by providing a thorough description of the algorithm.

2.1 The TANA Algorithm
In the following, we describe our approach for specifying function to an unannotated protein based on
its cluster’s functional annotation’s frequency i.e., annotation transfer across PPI networks. A functional
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cluster illustrates a subnetwork of proteins that shares a common function. The driving idea of our ap-
proach stands on the fact that the functionalities shown by more proteins member, within their cluster, is
eligible to prediction.

The algorithm implemented in our approach has five major steps:

• Step 1: The function prediction of the annotated protein can be inferred by finding enriched anno-
tations within the cluster by taking in account that each protein from the cluster may be engaged in
multiple roles and functions. We extract GOA induced by a node and its member in the same cluster
resulting from GNA.

• Step 2: Each annotated protein within its cluster is considered suitable for a possible annotation
transfer. Among the top nodes in the list, we consider the proteins that contain at least two GOA
overlaps. When modules or clusters are explored, every shared function associated with the mod-
ule, is used for transferring annotations to the unannotated protein. For this reason, the applied
clustering method is mandatory for enhancing the quality of the functional predictions. Interest-
ingly enough, instead of predicting functions for individual proteins, our approach tries, at first, to
discover consistent clusters of proteins and then assign functions to all the proteins in each cluster.

• Step 3: Therefore, each function shared by the majority of the clusters’ proteins is assigned to all
the proteins in the module or in the cluster by putting them inti the set of GO terms.

Input: Global network alignment (GNA), Gene Ontology annotation for each species (GOA).
Output: A set of predicted function for unannotated protein
for all V ∗ ∈ GNA do

for all up ∈VertexCluster(V ∗) do
Fglobal ←− /0;

4: Sti←− 0
for all pi ∈VertexClusterToPredict(up) do

Fglobal = ∪{GOT (pi) = {t1, t2, ..., tk}};
for all ti ∈ GOT (pi) do

8: Sti←− Sti +1;
end for

end for
for all ti ∈ Fglobal do

12: Scoreti ←− /0
if Sti ≥ 1.0 then

Scoreti ←−
Sti

|VertexClusterToPredict|
Sti←− 0

16: else
Scorerelevance←− RelevanceSimilarity(ti, ti+1)
if Scorerelevance ≥ 0.5 then

Scoreti ←− Scorerelevance
20: end if

end if
end for

end for
24: end for

Algorithm 1: FunctionPrediction(GNA,GOA)
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• Step 4 : Moreover, if the annotation of proteins is not shared by the cluster, then we try to compute
the semantic similarity in the context of GO [55] using Resnik [56], Lin [57], Jiang [58] or the
Relevance [59] metrics.

• Step 5: By doing so, we select the compared annotations having the highest confidence score (cf.,
Figure 1). Therefore, if the given "Relevance metric" between both of compared GO Terms is greater
than the score 0.5, then we add them to the list of the predicted terms for each unannotated protein.

TANA generates a global alignment from each discovered cluster VertexCluster belonging to the set
V ∗ =

⋃
{VertexCluster(v)} : ∀v ∈ V . We denote VertexClusterTOPredict(up) as the set of the all anno-

tated proteins aligned to the unannotated protein up ∈V . Here, the GOT (pi) denotes the set of GO terms
annotating a protein pi ∈VertexClusterToPredict(up), i.e.,

Fglobal = ∪{GOT (pi = {t1, t2, ..., tk} :
∀pi ∈VertexClusterToPredict(up) (1)

For each function ti ∈GOT (pi) of a given annotated protein pi, we assign a score based on the frequency of
its occurrence in the Fglobal set, in order to emerge the set of the shared functionalities (i.e., GO annotation
term) shown by the entire annotated protein member in the cluster or module.

Scoreti(up) =
Σpi∈VertexClusterToPredict(up)δ (pi, ti)
|VertexClusterToPredict(up)|

:

∀ti ∈ Fglobal and ∀pi ∈VertexClusterToPredict(up) (2)

• 1: (pi, f ct), if the annotated protein pi has the function f ct ∈ GOT (pi);

• 0: otherwise.

Where |VertexClusterToPredict(up)| is denoting the number of annotated protein for each predicted
cluster.

Afterwards, if the score based on the frequency for each predicted GO term ti is lower than the value
1.0 (i.e., Scoreti(up) < 1.0), then we try to compute the semantic similarity (i.e., Resnik, Lin, Jiang,
Relevance metric) between the GO term ti against the other terms ti ∈ Fglobal . Therefore, if the given
"Relevance metric" between both of compared GO terms is greater than the score 0.5, then we add them
to the list of the predicted terms for each unannotated protein up. We set the value 0.5 as the threshold,
because it yields us a confidence to ascertain the degree of similarity between the compared GO terms.
We applied this method in order to stress on the importance of GO terms that gives a good score using
the semantic similarities, even if the score of the two compared terms is low in terms of frequency (i.e.,
Scoreti(up)) (cf. Algorithm 1).

Table 1 provides an example for the prediction process, by our approach, for the two unannotated
proteins "O97121" and "A5JYW2". As Table 1 depicts, the shared function "GO:0030170 (pyridoxal
phosphate binding)" from the biological process (mentioned with orange color) is assigned to the unan-
notated proteins "*O97121" "A5JYW2". Moreover, our approach assigns four probable functions (i.e.,
GO:0019343 (cysteine biosynthetic process via cystathionine), GO:0019346 (transsulfuration), GO:0071266
(’de novo’ L-methionine biosynthetic process) and GO:0019450 (L-cysteine catabolic process to pyru-
vate)) from the biological process, and three functions (i.e., GO:0004121 (cystathionine beta-lyase activ-
ity), GO:0004123 (cystathionine gamma-lyase activity) and GO:0080146 (L-cysteine desulfhydrase activ-
ity)) from the molecular function since their respective scores are greater than 0.5 (the seven functions are
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Figure 2: Functional annotation yield by TANA. This shows clusters of proteins composed from unanno-
tated proteins as well as annotated ones

mentioned with blue color in Table 1). It is important to mention that, the GO terms with a value less than
0.5 are omitted. A sample of these omitted functions is indicated in Table 1 with a barred text highlighted
with gray color.

We perform the prediction task by assuming that the GNA results is with a higher evaluation in terms
of total coverage and consistency between clusters [17]. Therefore, to assess the biologically relevance
of the clusters, we consider the clusters having at least two annotated proteins (using the GO biological
process or molecular function annotations) as well as the cluster that yields a good scores on two key
dimensions: coverage and consistency. Then, the evaluation is of paramount importance in order to as-
certain the biologically relevance to be used to transfer annotations, after the evaluation of the all PPI
network alignment paradigms. Figure 2 depicts the three cases encountered by our approach to predict the
function of the unannotated protein; Case 1: When TANA encounters a cluster with 6 proteins, only two
of them are with one known shared function (i.e., yellow ovals). Then, our approach blindly assigns the
shared function to the four unannotated proteins (i.e., white ovals). Case 2: When TANA encounters a
cluster with 6 proteins, five of them are annotated with two known shared functions (i.e., yellow and blue
ovals). Then, our approach blindly assigns both of the shared functions to the unannotated protein. Case
3: When TANA encounters a cluster with seven proteins, six of them are annotated with two known shared
functions (i.e., yellow and blue ovals) and two different functions (i.e., green and red ovals) but they are
related semantically with the other shared functions by applying the different functional similarities (i.e.,
Resnik, Lin, Jiang or Relevance similarity). Then, our approach blindly assigns the two shared functions
to the unannotated protein and semantically the two other functions (i.e., green and red ovals).

3 Results and Discussion

3.1 Test Datasets
As a dataset for our prediction process, we tried to use :

• The Gene Ontology (GO) released in 2016_05;
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Table 1: The prediction process by TANA for the two unannotated proteins ’O97121’ and ’A5JYW2’

Step 1: Finding Cluster

Number of the selected cluster from the alignment is 430: Protein marked with *, is an Unannotated protein.
The Number of annotated proteins in the cluster is equal to two proteins

P55216 *A5JYW2 P06721 *O97121

Step 2: Finding shared Gene Ontology Annotation
430->P55216|GO:0003962|IBA(spec=1)(MF) (score=0.5)(frequency GOT=1)
430->P55216|GO:0019343|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1)
430->P55216|GO:0030170|IBA(spec=1)(MF) (score= 1)(frequency GOT=2)
430->P55216|GO:0071266|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1)
430->P55216|GO:0019346|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1)
430->P06721|GO:0004121|IDA(spec=3)(MF) (score= 0.5)(frequency GOT=1)
430->P55216|GO:0004123|IBA(spec=1)(MF) (score= 0.5)(frequency GOT=1)
430->P06721|GO:0019450|IBA(spec=3)(BP) (score= 0.5)(frequency GOT=1)
430->P06721|GO:0030170|IDA(spec=3)(MF) (score= 1)(frequency GOT=2)
430->P06721|GO:0080146|IMP(spec=3)(MF) (score= 0.5)(frequency GOT=1)
430-> *O97121(spec=2)
430-> *A5JYW2(spec=1)

Step 3: Comparing the set of the all GO terms belonging to each annotated protein using different semantic metrics
>Prediction of GO terms by transferring shared annotation to unannotated protein (marked with *) in cluster 430
MF:
GO:0080146 vs GO:0003962(Resnik =0.955594, Lin =0.115966, Jiang =0.0642288, Relevance =0.0713676)
GO:0080146 vs GO:0004123(Resnik =6.61275, Lin =0.785493, Jiang =0.21684, Relevance =0.784438)
GO:0080146 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0)
GO:0080146 vs GO:0004121(Resnik =6.61275, Lin =0.770104, Jiang =0.202095, Relevance =0.769069)
GO:0003962 vs GO:0004123(Resnik =0.955594, Lin =0.118383, Jiang =0.0656476, Relevance =0.0728551)
GO:0003962 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0)
GO:0003962 vs GO:0004121(Resnik =0.955594, Lin =0.115966, Jiang =0.0642288, Relevance =0.0713676)
GO:0004123 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0)
GO:0004123 vs GO:0004121(Resnik =6.61275, Lin =0.785493, Jiang =0.21684, Relevance =0.784438)
GO:0030170 vs GO:0004121(Resnik =-0, Lin =0, Jiang =0, Relevance =-0)
BP:
GO:0019450 vs GO:0071266(Resnik =5.48696, Lin =0.619381, Jiang =0.129138, Relevance =0.616817)
GO:0019450 vs GO:0019346(Resnik =6.46474, Lin =0.748859, Jiang =0.187403, Relevance =0.747692)
GO:0019450 vs GO:0019343(Resnik =6.46474, Lin =0.729755, Jiang =0.172769, Relevance =0.728618)
GO:0071266 vs GO:0019346(Resnik =5.48696, Lin =0.685321, Jiang =0.165593, Relevance =0.682484)
GO:0071266 vs GO:0019343(Resnik =6.13526, Lin =0.745258, Jiang =0.192519, Relevance =0.743644))
GO:0019346 vs GO:0019343(Resnik =6.46474, Lin =0.807446, Jiang =0.244898, Relevance =0.806188)

Step 4: Transferring annotations across species to unannotated proteins
The process is performed by selecting only the GO terms with Relevance similarity > 0.5 or with frequency score >=1.0

*O97121 *A5JYW2
GO:0019343 [BP] 0.728618 GO:0019343 [BP] 0.728618
GO:0019346 [BP] 0.747692 GO:0019346 [BP] 0.747692
GO:0071266 [BP] 0.616817 GO:0071266 [BP] 0.616817
GO:0019450 [BP] 0.616817 GO:0019450 [BP] 0.616817
GO:0004121 [MF] 0.769069 GO:0004121 [MF] 0.769069
GO:0004123 [MF] 0.784438 GO:0004123 [MF] 0.784438
GO:0080146 [MF] 0.784438 GO:0080146 [MF] 0.784438
GO:0030170 [MF] 0.80 GO:0030170 [MF] 0.80

Note:
(spec=1): Arabidopsis PPIs network has 26337 proteins and 8311584 interactions.
(spec=3): Drosophila melanogaster PPIs network has 13471 proteins and 3901815 interactions.
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• In addition to protein sequences similarity computed from the Blast, we use protein-protein interac-
tion (PPI) networks for multiple species from the STRING database [60];

• The datasets from UniProtKB-GOA released in 2016_05 for the compared species from the CAFA3
challenge. Moreover, we select the proteins with annotations with experimental evidence code (EXP,
IDA, IPI, IMP, IGI, IEP, TAS and IC);

• The protein targets released on 05 June 2017 that had no function annotations at the time of training.
The dataset contains 1367 proteins and 3619 annotations. It is available for download at https:
//biofunctionprediction.org/cafa/.

3.2 Experimental Setup
We applied a TANA version which excludes sequence similarity with low similarity, since they lead to an
uncoherent prediction. Furthermore, we replace the low sequence similarity for each compared protein
with the functional similarity between them, in the case where the value of the functional similarity is
high.

Therefore, to get the prediction from the alignment of the target species, the approach computes the
semantic similarity between two GO terms using the functional similarity proposed by Schlicker et al.
[59]. Moreover, to avoid the unreliability of mis-annotation in the Uniprot database, we exclude the GOA
with evidence code IEA (inferred from electronic annotation) and GO annotations derived from Cellular
Component.

We have set to 0.3 the value of the Alpha parameter, since it gives the best biological alignment quality
in terms of CV, ME, MNE and time ratio [17].

3.3 Evaluation Metrics
To evaluate the quality of protein function prediction, we apply the protein centric maximum F-measure
which are used in the CAFA3 challenge [61]. Here, we compute the F-measure for a threshold t ∈ [0,1]
using the average precision for proteins for which we predict at least one term and average recall for all
proteins. Then, we select the maximum F-measure value of all thresholds. We compute the Fmax measure
using the following formulas:

pri (t) =
∑ f I ( f ∈ Pi (t)∧ f ∈ Ti)

∑ f I ( f ∈ Pi (t))
(3)

rci (t) =
∑ f I ( f ∈ Pi (t)∧ f ∈ Ti)

∑ f I ( f ∈ Ti (t))
(4)

AvgrPr (t) =
1

m(t)
.

m(t)

∑
i=1

pri (t) (5)

AvgrRc(t) =
1
n
.

n

∑
i=1

rci (t) (6)

Fmax = max
t
{2 . AvgrPr (t) . AvgrRc(t)

AvgrPr (t)+AvgrRc(t)
} (7)

In these measures, f is GO term, Pi (t) denotes the set of terms for a protein i applying a threshold t, and Ti
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Table 2: Statistics on the species used by CAFA3
Domain TaxonomyName Counts BP

(LIM-
ITED)

CC
(LIM-
ITED)

MF
(LIM-
ITED)

FULL NO

Eukaryota 9606 Homo sapiens 20197 4282 1905 5021 4647 8266
Eukaryota 10090 MOUSE 16806 2296 2994 5221 3005 6850
Eukaryota 10116 RAT 7963 824 1112 1354 1920 3781
Eukaryota 284812 SCHPO 5120 2939 67 3745 679 582
Eukaryota 3702 ARATH 14754 2727 2136 5084 1899 6464
Eukaryota 44689 DICDI 4131 198 315 587 218 3203
Eukaryota 559292 YEAST 6721 430 983 1704 2426 1801
Eukaryota 7955 DANRE 2967 42 709 672 49 2113
Eukaryota 8355 Xenopus laevis 3402 72 230 201 84 2996
Archaea 243232 Methanocaldococcus

jannaschii
1787 22 45 5 3 1739

Archaea 273057 Sulfolobus solfataricus
P2

469 4 14 0 0 455

Bacteria 160488 Pseudomonas putida
KT2440

705 3 16 0 0 689

Bacteria 170187 Streptococcus pneumo-
niae serotype 4

501 5 4 1 0 496

Bacteria 223283 Pseudomonas syringae
pv. tomato

678 0 1 1 0 677

Bacteria 224308 Bacilus subtilis 4185 51 166 83 8 3987
Bacteria 243273 Mycoplasma genitalium 483 0 2 1 0 481
Bacteria 321314 Salmonella choleraesuis 882 0 0 0 0 882
Bacteria 83333 Escherichia coli 4434 978 1105 1130 1056 1242
Bacteria 85962 Helicobacter pylori 593 7 17 12 0 573
Bacteria 99287 Salmonella ty-

phimurium
1789 11 36 22 7 1733

Note:
FULL : Number of proteins that have experimental annotation in all three ontologies (BP, MF or CC ontology);
NO: Number of proteins that have no experimental annotation in any ontology.
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Table 3: Performance of TANA on the Human specie (Partial evaluation)

Organisms BP MF CC
BC Fmax Smin n −

smin
BC Fmax Smin n −

smin
BC Fmax Smin n −

smin
No-knowledge (NK)
Human 68 0.40 21.12 0.57 73 0.53 5.52 0.46 53 0.46 6.50 0.56
Limited-Knowledge (LK)
Human 163 0.30 31.07 0.58 93 0.53 6.64 0.49 68 0.24 4.6 0.69

Note:
BC: refers to the benchmark count used to test the accuracy of the prediction for each ontology category;
n-smin: refers to minimum normalized semantic distance.

Table 4: Evaluation of TANA, DeepGO, FFPred3 and GoFDR methods on a CAFA3 preliminary evalua-
tion set (Full evaluation)

Methods BP MF CC
Fmax AvgPr AvgRc Fmax AvgPr AvgRc Fmax AvgPr AvgRc

TANA 0.42 0.45 0.40 0.54 0.60 0.49 0.26 0.39 0.19
FFPRed3 0.26 0.30 0.23 0.38 0.35 0.40 0.44 0.46 0.43
GoFDR 0.20 0.27 0.15 0.52 0.89 0.36 0.40 0.40 0.41
DeepGO 0.34 0.31 0.37 0.47 0.61 0.39 0.52 0.55 0.49

Note: Best results are indicated in bold with respect to each column.

denotes the corresponding ground-truth set of terms for a protein i. Precision is averaged over the proteins
with at least one predicted score greater than or equal to t and m(t) is the number of such proteins. The
parameter n stands for the number of targets used in such evaluation.

Moreover, we have applied the remaining uncertainty (ru), misinformation (mi) and the resulting
minimum semantic distance (Smin) to evaluate the performance of our approach. The latter metrics are
defined as follows

ru(t) =
1
n

n

∑
i=1

∑
f

ic( f ).1( f /∈ Pi(t)∧ f ∈ Ti), (8)

mi(t) =
1
n

n

∑
i=1

∑
f

ic( f ).1( f ∈ Pi(t)∧ f /∈ Ti), (9)

Smin = min
t

{√
ru(t)2 +mi(t)2

}
, (10)

where ic( f ) stands for the information content of the ontology term.

3.4 Application to protein function prediction
CAFA3 provided two types of benchmarks, no-knowledge (NK) and limited-knowledge (LK), and two
modes of evaluation, full-mode (FM) by averaging over the entire benchmark sets and partial-mode (PM)
by averaging over the predicted subset. The proteins having no annotation for the BP, MF and CC on-
tologies belong to the NK category. Whereas, proteins with LK are those that had been experimentally
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annotated in one or two GO ontologies (BP, MF or CC). Table 2 gives an idea about the number and
characteristics of species used by the CAFA3 challenge. The BP, CC and MF column in Table 2 indicate
the number of proteins that have no experimental annotation in the current ontology category, but have
experimental annotations in at least one other ontology.

A glance to Table 2 shows that the LK evaluation provided by TANA yielded improvement in terms
of performance accuracy. Therefore, our algorithm have exploited the correlations between experimental
annotations across the three ontologies in order to enhance the quality of the function prediction. The
prediction of the function applied to human proteome sequences are encouraging (cf. Table 3), we confirm
that TANA’s alignments can be used to predict biological characteristics, i.e., GO molecular function (MF)
and biological process (BP), of unannotated proteins based on their alignments with annotated ones. The
human proteome sequences include 18,380 human protein sequences with 5,746, 5,850 and 9,684 human
proteins annotated with experimental evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS and IC) in BP,
MF and CC categories, respectively. For the NK type, the quality for predictions of GO terms in the MF,
BP, and CC category in terms of Fmax evaluation was 0.40, 0.53, and 0.46, respectively (cf. Table 3).
Whereas for the LK type, the quality for predictions of GO terms in the MF, BP, and CC category in terms
of Fmax evaluation was 0.30, 0.53, and 0.24, respectively (cf. Table 3).

Table 4 depicts the results using different metrics to evaluate the prediction quality yielded by TANA1,
DeepGO, FFPred3 [50] and GoFDR [51] algorithms, on a dataset released as part of the CAFA3 challenge.
The FFPred3 [50] prediction results for CAFA3 targets are retreived from http://bioinfadmin.cs.
ucl.ac.uk/downloads/ffpred/cafa3/, the GoFDR results by the web service available at http://
gofdr.tianlab.cn/.

The four approaches produce different results to unannotated proteins for the compared species. In-
deed, the TANA algorithm outperforms, in terms of Fmax, its competitors, specially for predicting molec-
ular function and biological process for the Fmax evaluation. Whereas, DeepGo, FFPred3 and GoFDR
outperform TANA in CC GO terms for Fmax, AvgPr and AvgRc metrics.

As respectively shown, in Tables 3 and 4, predicting the BP GO terms is a critical process than pre-
dicting MF GO terms. Indeed, BP GO terms illustrate the relations between proteins, whereas those of
MF GO terms illustrate the properties of a protein. Therefore, we can conclude that the feature or prop-
erty of a given protein is determined by itself, whereas the relations of a protein with its neighborhoud is
not determined by itself, however also by other proteins. Thus, applying the sequence of a protein and
other motifs (alignment of metabolic pathway) during the prediction process helps us to correctly identify
the biological process for each target protein. The protein-centric performance measures the accuracy of
the approaches in assigning functional GO terms to an unannotated protein. The reason behind the low
performance of our method in predicting CC GO Terms category is that our approach cannot predict the
"interlog" between the proteins for a given specie. Therefore the alignment of a PPI from a myriad of
species lead to more noise prediction coming from different types of intra cellular location. Moreover,
predicting these specific terms yields to a great number of false positives and thus hampers to get a good
performance in terms of Fmax metric. Another solution to get a good evaluation, is to try to assign an-
notation with more general CC GO terms like using the annotation "organelle" (GO:0043226, level 2),
"intracellular part" (GO:0044424, level 3), and "cytoplasm" (GO:0005737, level 4). TANA flags out a
good performance in BP, MF GO terms, by relying on the transfer of annotation by only considering the
experimental annotation derived from the Uniprot-GOA. Moreover, the reason, behind the superiority of
TANA over its competitors consists in predicting the functionality of unannotated proteins from different

1Details about the prediction results of TANA are visible at: https://github.com/waritheddine/TANA/blob/
master/TANA-Prediction-CAFA.txt
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species even if the target proteins are not related by homology sequence (i.e., Difficult target).
TANA relies on the MAPPIN algorithm to generate clusters from the alignment of PPI. Thus, our ap-

proach for the protein function prediction takes roughly 8 hours to generate the alignment and performing
the function prediction process. The reason behind this required time is the given huge number of se-
quences for each compared species (about roughly 100.000 proteins used during the alignment process),
released by the CAFA3 project.

3.5 Validation on the non-IEA annotation of proteins
Indeed, there are many predictions performed by TANA, that have been added to the current release as a
non-IEA annotation. Therfore, we assessed the prediction accuracy of TANA by validating on the non-
IEA annotation of proteins included in the current release from UniProtKB released in 2018_07. We tried
to use the anterior datasets from UniProtKB released in 2016_11 for the compared species. After that,
we tried to validate the prediction of unannotated protein against the last release datasets from UniProtKB
released in 2018_07. It is worth mentioning that many unannotated proteins from the anterior became in
the meanwhile annotated proteins in the last release. The predictions performed by our approach are more
accurate and roughly are the same when we compared them against the annotations of the last release. To
illustrate that, let us consider one of the unannotated proteins, to wit "Q9VRX7", which is with no function
from UniProtKB released in 2016_11. So, after using the anterior release by TANA during the alignment
process in order to predict its function, our approach predicts three GO terms in MF (i.e., GO:0000175
(3’-5’-exoribonuclease activity), GO:0004535 (poly(A)-specific ribonuclease activity) and GO:0005515
(protein binding) ) and one GO terms in BP (i.e., GO:0000289 (nuclear-transcribed mRNA poly(A) tail
shortening)). The unannotated protein "Q9VRX7" became an annotated protein, and the curator of the
database Uniprot-GOA (release 2018_07) assigned one GO terms in MF with evidence code "IDA" (i.e.,
GO:0000175 (3’-5’-exoribonuclease activity)) and two GO terms in BP with evidence code "IMP" (i.e.,
GO:0031125 (rRNA 3’-end processing) and GO:0031126 (snoRNA 3’-end processing)). Indeed, there
are many predictions performed by TANA, that have been added to the current release as a non-IEA
annotation.

4 Conclusion and Future Works
In this paper, we introduced a new approach for protein function prediction by transferring annotation via
PPI networks alignment. The approach considers that annotation from BP, MF or CC ontologies shared by
annotated protein, can be predicted from its interacting partners belonging at the same consistent cluster.
The results of the alignment and the prediction of the functionalities of proteins from different species
using both GOA and sequence homology are promising and flexible in terms of computational runtime.

As a future work, we plan to integrate the metabolic pathway for each species during the prediction
process which gives us insight on the different type of reaction involved by each compared protein. More-
over, in terms of quality scores, there is still significant improvement in all ontologies, and particularly
in BP and CC GO terms using different strategies. We also plan to assess the ability of our approach
to associate proteins with disease terms from disease gene prediction tasks using the Human Phenotype
Ontology (HPO) [8] from CAFA.
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cations for complex detection and function prediction. Bioinformatics, 28(9):1239–1245, 2012.

[55] Catia Pesquita, Daniel Faria, Hugo Bastos, António EN Ferreira, André O Falcão, and Francisco M Couto. Metrics for go
based protein semantic similarity: a systematic evaluation. In BMC bioinformatics, volume 9, page S4. BioMed Central,
2008.

[56] Philip Resnik. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In Proceedings of the XI
International Joint Conferences on Artificial, pages 448–453, 1995.

[57] Dekang Lin et al. An information-theoretic definition of similarity. In Icml, volume 98, pages 296–304, 1998.

[58] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, cmp-
lg/9709008, 1997.

[59] Andreas Schlicker, Francisco S Domingues, Jörg Rahnenführer, and Thomas Lengauer. A new measure for functional
similarity of gene products based on gene ontology. BMC bioinformatics, 7(1):302, 2006.

[60] Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund, Davide Heller, Jaime Huerta-Cepas, Milan
Simonovic, Alexander Roth, Alberto Santos, Kalliopi P Tsafou, et al. String v10: protein–protein interaction networks,
integrated over the tree of life. Nucleic acids research, 43(D1):D447–D452, 2014.

[61] Wyatt T Clark and Predrag Radivojac. Information-theoretic evaluation of predicted ontological annotations. Bioinfor-
matics, 29(13):i53–i61, 2013.

16


	Introduction
	Methods and Algorithms
	The TANA Algorithm

	Results and Discussion
	Test Datasets
	Experimental Setup
	Evaluation Metrics
	Application to protein function prediction
	Validation on the non-IEA annotation of proteins 

	Conclusion and Future Works

