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A novel approach for predicting protein functions by transferring annotation via alignment networks

One of the challenges of the post-genomic era is to provide accurate function annotations for orphan and unannotated protein sequences. With the recent availability of huge protein-protein interactions for many model species, it becomes an opportunity to computational methods to elucidate protein function based on many strategies. In this respect, most automated computational approaches integrate diverse kinds of functional interactions to deduce protein functions by transferring annotations across different species by relying on similar sequence, structure 2D/3D, amino acid motifs or phylogenetic profiles. In this work, we introduce a new approach called TANA (Transferring Annotation via Network Alignment) for inferring protein function which is based on our approach MAPPIN for GNA (Global Network Alignment). The main originality of the introduced approach stands on discovering functional modules within the PPI network by transferring annotation via network alignment. Doing so, we are able to discover the functions of proteins that could not to be easily described by sequence homology. We assess the performance of our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and highlight a sharp significant improvement over other competitive methods, in particular for predicting molecular functions.

Introduction

The past decade has witnessed a rising in genomic and proteomic data, leading to a large variety of sequenced genomes and proteomes. A fundamental challenge is the interpretation of this overwhelming of data to elucidate more accurate protein functions. The manual annotation of protein function is a daunting task which paves the way to the emergence of successful computational predictive methods. The latter have been applied starting from incorporating gene expression patterns [START_REF] Zhao | Protein function prediction with the shortest path in functional linkage graph and boosting[END_REF][START_REF] Tran | Hypergraph and protein function prediction with gene expression data[END_REF], phylogenetic profiles [START_REF] Raju | Classification of phylogenetic profiles for protein function prediction: An svm approach[END_REF][START_REF] Marlene | Phylogenetic networks: simulation, characterization, and reconstruction[END_REF], protein sequences [START_REF] Sael | Structure-and sequence-based function prediction for non-homologous proteins[END_REF][START_REF] Wang | Three-level prediction of protein function by combining profile-sequence search, profile-profile search, and domain co-occurrence networks[END_REF], protein structures [START_REF] Roman A Laskowski | Protein function prediction using local 3d templates[END_REF][START_REF] Dariya | Improving structure-based function prediction using molecular dynamics[END_REF], and protein interactions. A wealthy number of computational approaches for predicting function from networks have been proposed can be organized into two major classes: (i) those using a direct network-context: to wit the direct annotation of proteins infer functions based on its connections in the network; (ii) those assisted by a prediction module. The latter first identifies clusters, or modules, of related proteins and then annotates each protein based on the known functions of its members [START_REF] Sharan | Network-based prediction of protein function[END_REF].
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Combining both Gene Ontology Annotation (GOA) and protein-protein interaction (PPI) data allows the discovery of function for unknown proteins based on three general categories of molecular function, biological process and cellular component specified in all three Gene Ontology (GO) types. Prediction of the protein function based on the annotation transfers via the network alignment of multiple networks poses many thriving issues such as:

• The computational complexity, i.e., the number of proposed correspondences increases potentially as far as the number of compared networks grows;

• The size of genomes related to the varied networks to be aligned may change widely, e.g., because of differing degrees of gene duplication;

• The genomes or proteomes available are noisy, biased and incomplete;

• The GO only carries out positive terms, i.e., there is no data on functions that proteins do not have which diffuse mis-annotations when homology-based approaches are applied. In addition, not all unknown proteins have homologous proteins in databases which could give putative fake functions to unknown proteins, e.g. the chromosomal proximity method [START_REF] Overbeek | The use of gene clusters to infer functional coupling[END_REF], the Rosetta stone method [START_REF] Overbeek | The use of gene clusters to infer functional coupling[END_REF][START_REF] Edward M Marcotte | Detecting protein function and protein-protein interactions from genome sequences[END_REF][START_REF] Enright | Protein interaction maps for complete genomes based on gene fusion events[END_REF], the phylogenetic method [START_REF] Pellegrini | Assigning protein functions by comparative genome analysis: protein phylogenetic profiles[END_REF] and the combined method [START_REF] Edward M Marcotte | A combined algorithm for genome-wide prediction of protein function[END_REF][START_REF] Zheng | Genomic functional annotation using co-evolution profiles of gene clusters[END_REF][START_REF] Pavlidis | Gene functional classification from heterogeneous data[END_REF].

In this paper, we introduce a new strategy to predict the functional annotation of proteins through the comparison of multiple protein-protein interaction networks from different species. We provide a global network alignment with k-networks, by identifying modules of related proteins and then annotate each module based on the most frequent annotations. Our method aligns PPI from many species to discover functionally similar or conserved protein modules between them. Two major steps are involved:

1. Discover the modules or clusters which are functionally coherent using our method based on MAP-PIN for aligning PPI networks [START_REF] Djeddi | A novel computational approach for global alignment for multiple biological networks[END_REF]. Nevertheless, we also introduce with some variations in order to align the different species of the CAFA3 challenge;

2. Predict the function of unannotated proteins in a cluster using our novel strategy thoroughly described in remainder.

To evaluate the predictions for the unannotated proteins, we compare our results versus those of pioneering approaches dedicated to function prediction. The amount of large scale PPI networks have emerged quickly. Simultaneously, collaborative attempts to annotate proteins and genes using GO annotations. Knowledge bases using GO annotations, such as the UniProt Knowledgebase (UniProtKB), provide a rich annotation data on PPI networks and afford relevant information for discerning the biological processes that preserve cellular structure and function. The alignment of PPI networks is a convenient strategy for comparing the networks of different species. This comparison helps identifying functional modules that are conserved across the PPI networks. This alignment is performed by first establishing a mapping between the nodes of the compared PPI networks relying on biological information, commonly sequence homology.

There are many issues that have been developed to assign a function to an unknown protein:

• Gene expression pattern: protein function prediction by analyzing gene expression pattern [START_REF] Zhou | Transitive functional annotation by shortest-path analysis of gene expression data[END_REF].

• Phylogenetic profile: analyzing phylogenetic profile, i.e., evolutionary history of proteins [START_REF] Pellegrini | Assigning protein functions by comparative genome analysis: protein phylogenetic profiles[END_REF][START_REF] Wu | Identification of functional links between genes using phylogenetic profiles[END_REF].

• Protein sequence: protein function prediction using protein sequence, sequence similarity measures, homologies are primarily used. Applying program such as the Basic Local Alignment Search Tool (BLAST) [START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF], PSI-BLAST [START_REF] Stephen F Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF] and FASTA [START_REF] William R Pearson | Improved tools for biological sequence comparison[END_REF] to find possible homologs in sequence databases such as TrEMBL [START_REF] Boeckmann | The swiss-prot protein knowledgebase and its supplement trembl in 2003[END_REF] and UniProt [START_REF] Wu | The universal protein resource (uniprot): an expanding universe of protein information[END_REF].

• Protein structure: the function prediction using protein structure, by using some approaches to analyze the secondary [START_REF] Wang | Fssa: a novel method for identifying functional signatures from structural alignments[END_REF][START_REF] Ferré | Finding motifs in protein secondary structure for use in function prediction[END_REF] and tertiary structures [START_REF] Pazos | Automated prediction of protein function and detection of functional sites from structure[END_REF][START_REF] Roman A Laskowski | Profunc: a server for predicting protein function from 3d structure[END_REF][START_REF] Roman A Laskowski | Protein function prediction using local 3d templates[END_REF] of proteins.

• Protein-protein interactions (PPIs): protein function prediction using protein-protein interactions [START_REF] Schwikowski | A network of protein-protein interactions in yeast[END_REF][START_REF] Brun | Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network[END_REF][START_REF] Deng | Prediction of protein function using proteinprotein interaction data[END_REF][START_REF] Letovsky | Predicting protein function from protein/protein interaction data: a probabilistic approach[END_REF][START_REF] Pratim | Predicting protein functions from redundancies in large-scale protein interaction networks[END_REF][START_REF] Vazquez | Global protein function prediction from protein-protein interaction networks[END_REF][START_REF] Hon Nian Chua | Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions[END_REF][START_REF] Hon Nian Chua | An efficient strategy for extensive integration of diverse biological data for protein function prediction[END_REF] can be deduced from the interaction of the neighborhood. Chua et al. [START_REF] Hon Nian Chua | An efficient strategy for extensive integration of diverse biological data for protein function prediction[END_REF] demonstrated the useful strategies using the PPIs as a complementary approach to sequence homology by specifying the maximum additional coverage for the protein-protein interactions. Whereas, other methods analyze a single specie's protein network to distinguich functional modules (as reviewed in [START_REF] Bork | Protein interaction networks from yeast to human[END_REF]. A typical single-species appproch applying connectivity strategy to cluster a protein network into highly connected modules, e.g., MCODE [START_REF] Gary | An automated method for finding molecular complexes in large protein interaction networks[END_REF]. Moreover, PPI networks of single species have been used to extract biological pathways. The reader is referred to [START_REF] Sharan | Network-based prediction of protein function[END_REF] for a survey on the topic.

• Network alignment: the function prediction using annotation transfers via network alignment by confering the annotations of a protein in an aligned cluster to the unannotated member of the identical cluster [START_REF] Kuchaiev | Integrative network alignment reveals large regions of global network similarity in yeast and human[END_REF][START_REF] Singh | Global alignment of multiple protein interaction networks with application to functional orthology detection[END_REF]. However, a thorough analysis highlights that such automated transfers may not always be adequate to feed correct function predictions. Integrating the global alignment results into the function prediction strategies, using network analysis techniques, that gives more trusty predictions [START_REF] Sharan | Modeling cellular machinery through biological network comparison[END_REF].

Additionally, there are some additional approaches, which have been applied to predict protein function based on the guilty by-association rules, e.g., the neighbor-counting method [START_REF] Fellenberg | Integrative analysis of protein interaction data[END_REF][START_REF] Schwikowski | A network of protein-protein interactions in yeast[END_REF] and the Chi-square method [START_REF] Hishigaki | Assessment of prediction accuracy of protein function from protein-protein interaction data[END_REF]. Worthy of the mention, a thorough review on methods in automated protein function prediction is provided in [START_REF] Hawkins | Function prediction of uncharacterized proteins[END_REF].

All of these factors have provided an increase in a varied number of automated approaches based on a number of features (i.e., Direct or module assisted approaches) [START_REF] Sharan | Network-based prediction of protein function[END_REF]. We take an example of tools for protein function prediction as Predictprotein [START_REF] Yachdav | Predictproteinâ ȂŤ an open resource for online prediction of protein structural and functional features[END_REF], DEEPGO [START_REF] Kulmanov | Deepgo: predicting protein functions from sequence and interactions using a deep ontology-aware classifier[END_REF], PFAM [START_REF] Robert D Finn | Pfam: the protein families database[END_REF], SIFTER [START_REF] Sayed M Sahraeian | Sifter search: a web server for accurate phylogeny-based protein function prediction[END_REF], INTERPRO [START_REF] Mitchell | The interpro protein families database: the classification resource after 15 years[END_REF]. The ffpred3 [START_REF] Cozzetto | Ffpred 3: feature-based function prediction for all gene ontology domains[END_REF] is an approach for protein function prediction based on the scanning of the input protein sequences accross an array of Support Vector Machines (SVMs) considering the tie between protein function and alternative motifs. GOFDR [START_REF] Gong | Gofdr: a sequence alignment based method for predicting protein functions[END_REF] is an alignment-based method for protein function prediction from the query sequence-based multiple sequence alignment (MSA) produced by BLAST or PSI-BLAST search. After that, it induces the functionally discriminating residues (FDRs) for a target GO term and builds up a position specific scoring matrix (PSSM) for the FDRs. Finally, it scores the protein target using the PSSM, and tuning the raw score into probability.

DeepGO [START_REF] Kulmanov | Deepgo: predicting protein functions from sequence and interactions using a deep ontology-aware classifier[END_REF] is an approach for predicting protein functions from protein sequences and PPI networks. It applies a deep neural networks to learn sequence and PPI network elements and hierarchically classifies it with GO classes. [START_REF] Damiano Piovesan | Inga: protein function prediction combining interaction networks, domain assignments and sequence similarity[END_REF] is also an other approach to predict protein functions from a combination of "Sequence similarity" (by using BLAST [START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF]), "domain architecture searches" (by using PFAM [START_REF] Robert D Finn | Pfam: the protein families database[END_REF]) and PPI networks data (by using STRING [START_REF] Franceschini | String v9. 1: protein-protein interaction networks, with increased coverage and integration[END_REF]) into a consensus prediction for each of the three GO subontologies (i.e., MF, BP and CC).

Although many computational approaches have been developed in recent years to predict protein function, most of these traditional algorithms do not take functional similarity during protein function prediction process except the PINALOG approach [START_REF] Hang | Pinalog: a novel approach to align protein interaction networksâ ȂŤ implications for complex detection and function prediction[END_REF]. However, the latter is only used for pairwise alignment. In the remainder, we introduce TANA, an approach that predicts protein function exploiting PPI networks, sequence similarity and functional similarity. TANA doesn't only rely on homology inference to assign function, since it is very difficult to infer homology for highly divergent proteins. We evaluated our approach according to their ability to predict terms in the Molecular Function (MF), Biological Process (BP) and Cellular Component (CC) ontologies established by CAFA3.

It is worth mentioning that our approach is the first one that predicts functionality of unannotated proteins from transferring annotations via GNA with low computational complexity. Indeed, it gives us an advantage to predict a batch of unknown proteins. Our approach aims to find a multiple global network alignment, with k-networks, in order to find out clusters of proteins across the k-compared networks such that these clusters depict a conserved biological function. Here, we explore the possibility of using the GOA, i.e., functional similarity of protein between the compared networks to extract modules that correspond to specific biological processes by increasing the number of conserved interactions.

The remainder of this paper is organized as follows. Section 2 depicts the architecture of the introduced algorithm and presents our method for protein function prediction. Section 3 describes our evaluation methodology and discusses experimental results. Finally, section 4 concludes with an outline of future work.

Methods and Algorithms

We start this section by providing a thorough description of the algorithm.

The TANA Algorithm

In the following, we describe our approach for specifying function to an unannotated protein based on its cluster's functional annotation's frequency i.e., annotation transfer across PPI networks. A functional cluster illustrates a subnetwork of proteins that shares a common function. The driving idea of our approach stands on the fact that the functionalities shown by more proteins member, within their cluster, is eligible to prediction.

The algorithm implemented in our approach has five major steps:

• Step 1: The function prediction of the annotated protein can be inferred by finding enriched annotations within the cluster by taking in account that each protein from the cluster may be engaged in multiple roles and functions. We extract GOA induced by a node and its member in the same cluster resulting from GNA.

• Step 2: Each annotated protein within its cluster is considered suitable for a possible annotation transfer. Among the top nodes in the list, we consider the proteins that contain at least two GOA overlaps. When modules or clusters are explored, every shared function associated with the module, is used for transferring annotations to the unannotated protein. For this reason, the applied clustering method is mandatory for enhancing the quality of the functional predictions. Interestingly enough, instead of predicting functions for individual proteins, our approach tries, at first, to discover consistent clusters of proteins and then assign functions to all the proteins in each cluster.

• Step 3: Therefore, each function shared by the majority of the clusters' proteins is assigned to all the proteins in the module or in the cluster by putting them inti the set of GO terms.

Input: Global network alignment (GNA), Gene Ontology annotation for each species (GOA).

Output: A set of predicted function for unannotated protein for all V * ∈ GNA do for all up ∈ VertexCluster(V * ) do F global ←-/ 0; 

Score t i ←-/ 0 if St i ≥ 1.0 then Score t i ←- St i |VertexClusterToPredict| St i ←-0 16: else Score relevance ←-RelevanceSimilarity(t i ,t i+1 ) if Score relevance ≥ 0.5 then Score t i ←-Score relevance 20:
end if end if end for end for 24: end for Algorithm 1: FunctionPrediction (GNA, GOA)

• Step 4 : Moreover, if the annotation of proteins is not shared by the cluster, then we try to compute the semantic similarity in the context of GO [START_REF] Pesquita | Metrics for go based protein semantic similarity: a systematic evaluation[END_REF] using Resnik [START_REF] Resnik | Using Information Content to Evaluate Semantic Similarity in a Taxonomy[END_REF], Lin [START_REF] Lin | An information-theoretic definition of similarity[END_REF], Jiang [START_REF] Jiang | Semantic similarity based on corpus statistics and lexical taxonomy[END_REF] or the Relevance [START_REF] Schlicker | A new measure for functional similarity of gene products based on gene ontology[END_REF] metrics.

• Step 5: By doing so, we select the compared annotations having the highest confidence score (cf., Figure 1). Therefore, if the given "Relevance metric" between both of compared GO Terms is greater than the score 0.5, then we add them to the list of the predicted terms for each unannotated protein.

TANA generates a global alignment from each discovered cluster VertexCluster belonging to the set V * = {VertexCluster(v)} : ∀v ∈ V . We denote VertexClusterT OPredict(up) as the set of the all annotated proteins aligned to the unannotated protein up ∈ V . Here, the GOT (p i ) denotes the set of GO terms annotating a protein p i ∈ VertexClusterToPredict(up), i.e.,

F global = ∪{GOT (p i = {t 1 ,t 2 , ...,t k } : ∀p i ∈ VertexClusterToPredict(up) (1)
For each function t i ∈ GOT (p i ) of a given annotated protein p i , we assign a score based on the frequency of its occurrence in the F global set, in order to emerge the set of the shared functionalities (i.e., GO annotation term) shown by the entire annotated protein member in the cluster or module.

Score t i (up) = Σ p i ∈VertexClusterToPredict(up) δ (p i ,t i ) |VertexClusterToPredict(up)| : ∀t i ∈ F global and ∀p i ∈ VertexClusterToPredict(up) (2) 
• 1: (p i , f ct), if the annotated protein p i has the function f ct ∈ GOT (p i );

• 0: otherwise.

Where |VertexClusterToPredict(up)| is denoting the number of annotated protein for each predicted cluster.

Afterwards, if the score based on the frequency for each predicted GO term t i is lower than the value 1.0 (i.e., Score t i (up) < 1.0), then we try to compute the semantic similarity (i.e., Resnik, Lin, Jiang, Relevance metric) between the GO term t i against the other terms t i ∈ F global . Therefore, if the given "Relevance metric" between both of compared GO terms is greater than the score 0.5, then we add them to the list of the predicted terms for each unannotated protein up. We set the value 0.5 as the threshold, because it yields us a confidence to ascertain the degree of similarity between the compared GO terms. We applied this method in order to stress on the importance of GO terms that gives a good score using the semantic similarities, even if the score of the two compared terms is low in terms of frequency (i.e., Score t i (up)) (cf. Algorithm 1). Table 1 provides an example for the prediction process, by our approach, for the two unannotated proteins "O97121" and "A5JYW2". As Table 1 depicts, the shared function "GO:0030170 (pyridoxal phosphate binding)" from the biological process (mentioned with orange color) is assigned to the unannotated proteins "*O97121" "A5JYW2". Moreover, our approach assigns four probable functions (i.e., GO:0019343 (cysteine biosynthetic process via cystathionine), GO:0019346 (transsulfuration), GO:0071266 ('de novo' L-methionine biosynthetic process) and GO:0019450 (L-cysteine catabolic process to pyruvate)) from the biological process, and three functions (i.e., GO:0004121 (cystathionine beta-lyase activity), GO:0004123 (cystathionine gamma-lyase activity) and GO:0080146 (L-cysteine desulfhydrase activity)) from the molecular function since their respective scores are greater than 0.5 (the seven functions are Figure 2: Functional annotation yield by TANA. This shows clusters of proteins composed from unannotated proteins as well as annotated ones mentioned with blue color in Table 1). It is important to mention that, the GO terms with a value less than 0.5 are omitted. A sample of these omitted functions is indicated in Table 1 with a barred text highlighted with gray color.

We perform the prediction task by assuming that the GNA results is with a higher evaluation in terms of total coverage and consistency between clusters [START_REF] Djeddi | A novel computational approach for global alignment for multiple biological networks[END_REF]. Therefore, to assess the biologically relevance of the clusters, we consider the clusters having at least two annotated proteins (using the GO biological process or molecular function annotations) as well as the cluster that yields a good scores on two key dimensions: coverage and consistency. Then, the evaluation is of paramount importance in order to ascertain the biologically relevance to be used to transfer annotations, after the evaluation of the all PPI network alignment paradigms. Figure 2 depicts the three cases encountered by our approach to predict the function of the unannotated protein; Case 1: When TANA encounters a cluster with 6 proteins, only two of them are with one known shared function (i.e., yellow ovals). Then, our approach blindly assigns the shared function to the four unannotated proteins (i.e., white ovals). Case 2: When TANA encounters a cluster with 6 proteins, five of them are annotated with two known shared functions (i.e., yellow and blue ovals). Then, our approach blindly assigns both of the shared functions to the unannotated protein. Case 3: When TANA encounters a cluster with seven proteins, six of them are annotated with two known shared functions (i.e., yellow and blue ovals) and two different functions (i.e., green and red ovals) but they are related semantically with the other shared functions by applying the different functional similarities (i.e., Resnik, Lin, Jiang or Relevance similarity). Then, our approach blindly assigns the two shared functions to the unannotated protein and semantically the two other functions (i.e., green and red ovals).

Results and Discussion

Test Datasets

As a dataset for our prediction process, we tried to use :

• The Gene Ontology (GO) released in 2016_05; Table 1: The prediction process by TANA for the two unannotated proteins 'O97121' and 'A5JYW2'

Step 1: Finding Cluster Number of the selected cluster from the alignment is 430: Protein marked with *, is an Unannotated protein.

The Number of annotated proteins in the cluster is equal to two proteins P55216 *A5JYW2 P06721 *O97121

Step 2: Finding shared Gene Ontology Annotation 430->P55216|GO:0003962|IBA(spec=1)(MF) (score=0.5)(frequency GOT=1) 430->P55216|GO:0019343|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1) 430->P55216|GO:0030170|IBA(spec=1)(MF) (score= 1)(frequency GOT=2) 430->P55216|GO:0071266|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1) 430->P55216|GO:0019346|IBA(spec=1)(BP) (score= 0.5)(frequency GOT=1) 430->P06721|GO:0004121|IDA(spec=3)(MF) (score= 0.5)(frequency GOT=1) 430->P55216|GO:0004123|IBA(spec=1)(MF) (score= 0.5)(frequency GOT=1) 430->P06721|GO:0019450|IBA(spec=3)(BP) (score= 0.5)(frequency GOT=1) 430->P06721|GO:0030170|IDA(spec=3)(MF) (score= 1)(frequency GOT=2) 430->P06721|GO:0080146|IMP(spec=3)(MF) (score= 0.5)(frequency GOT=1) 430-> *O97121(spec=2) 430-> *A5JYW2(spec=1)

Step 3: Comparing the set of the all GO terms belonging to each annotated protein using different semantic metrics >Prediction of GO terms by transferring shared annotation to unannotated protein (marked with *) in cluster 430 MF: GO:0080146 vs GO:0003962(Resnik =0.955594, Lin =0.115966, Jiang =0.0642288, Relevance =0.0713676) GO:0080146 vs GO:0004123(Resnik =6.61275, Lin =0.785493, Jiang =0.21684, Relevance =0.784438) GO:0080146 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0) GO:0080146 vs GO:0004121(Resnik =6.61275, Lin =0.770104, Jiang =0.202095, Relevance =0.769069) GO:0003962 vs GO:0004123(Resnik =0.955594, Lin =0.118383, Jiang =0.0656476, Relevance =0.0728551) GO:0003962 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0) GO:0003962 vs GO:0004121(Resnik =0.955594, Lin =0.115966, Jiang =0.0642288, Relevance =0.0713676) GO:0004123 vs GO:0030170(Resnik =-0, Lin =0, Jiang =0, Relevance =-0) GO:0004123 vs GO:0004121(Resnik =6.61275, Lin =0.785493, Jiang =0.21684, Relevance =0.784438) GO:0030170 vs GO:0004121(Resnik =-0, Lin =0, Jiang =0, Relevance =-0) BP: GO:0019450 vs GO:0071266 ( • In addition to protein sequences similarity computed from the Blast, we use protein-protein interaction (PPI) networks for multiple species from the STRING database [START_REF] Szklarczyk | String v10: protein-protein interaction networks, integrated over the tree of life[END_REF];

• The datasets from UniProtKB-GOA released in 2016_05 for the compared species from the CAFA3 challenge. Moreover, we select the proteins with annotations with experimental evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS and IC);

• The protein targets released on 05 June 2017 that had no function annotations at the time of training.

The dataset contains 1367 proteins and 3619 annotations. It is available for download at https: //biofunctionprediction.org/cafa/.

Experimental Setup

We applied a TANA version which excludes sequence similarity with low similarity, since they lead to an uncoherent prediction. Furthermore, we replace the low sequence similarity for each compared protein with the functional similarity between them, in the case where the value of the functional similarity is high. Therefore, to get the prediction from the alignment of the target species, the approach computes the semantic similarity between two GO terms using the functional similarity proposed by Schlicker et al. [START_REF] Schlicker | A new measure for functional similarity of gene products based on gene ontology[END_REF]. Moreover, to avoid the unreliability of mis-annotation in the Uniprot database, we exclude the GOA with evidence code IEA (inferred from electronic annotation) and GO annotations derived from Cellular Component.

We have set to 0.3 the value of the Alpha parameter, since it gives the best biological alignment quality in terms of CV, ME, MNE and time ratio [START_REF] Djeddi | A novel computational approach for global alignment for multiple biological networks[END_REF].

Evaluation Metrics

To evaluate the quality of protein function prediction, we apply the protein centric maximum F-measure which are used in the CAFA3 challenge [START_REF] Wyatt | Information-theoretic evaluation of predicted ontological annotations[END_REF]. Here, we compute the F-measure for a threshold t ∈ [0, 1] using the average precision for proteins for which we predict at least one term and average recall for all proteins. Then, we select the maximum F-measure value of all thresholds. We compute the F max measure using the following formulas:

pr i (t) = ∑ f I ( f ∈ P i (t) ∧ f ∈ T i ) ∑ f I ( f ∈ P i (t)) (3) 
rc i (t) = ∑ f I ( f ∈ P i (t) ∧ f ∈ T i ) ∑ f I ( f ∈ T i (t)) (4) 
AvgrPr (t) = 1 m (t) . m(t) ∑ i=1 pr i (t) (5) 
AvgrRc (t) = 1 n . n ∑ i=1 rc i (t) (6) 
F max = max t { 2 . AvgrPr (t) . AvgrRc (t) AvgrPr (t) + AvgrRc (t) } (7) 
In these measures, f is GO term, P i (t) denotes the set of terms for a protein i applying a threshold t, and T i denotes the corresponding ground-truth set of terms for a protein i. Precision is averaged over the proteins with at least one predicted score greater than or equal to t and m (t) is the number of such proteins. The parameter n stands for the number of targets used in such evaluation. Moreover, we have applied the remaining uncertainty (ru), misinformation (mi) and the resulting minimum semantic distance (S min ) to evaluate the performance of our approach. The latter metrics are defined as follows

ru(t) = 1 n n ∑ i=1 ∑ f ic( f ).1( f / ∈ P i (t) ∧ f ∈ T i ), (8) 
mi(t) = 1 n n ∑ i=1 ∑ f ic( f ).1( f ∈ P i (t) ∧ f / ∈ T i ), (9) 
S min = min t ru(t) 2 + mi(t) 2 , (10) 
where ic( f ) stands for the information content of the ontology term.

Application to protein function prediction

CAFA3 provided two types of benchmarks, no-knowledge (NK) and limited-knowledge (LK), and two modes of evaluation, full-mode (FM) by averaging over the entire benchmark sets and partial-mode (PM) by averaging over the predicted subset. The proteins having no annotation for the BP, MF and CC ontologies belong to the NK category. Whereas, proteins with LK are those that had been experimentally annotated in one or two GO ontologies (BP, MF or CC). Table 2 gives an idea about the number and characteristics of species used by the CAFA3 challenge. The BP, CC and MF column in Table 2 indicate the number of proteins that have no experimental annotation in the current ontology category, but have experimental annotations in at least one other ontology. A glance to Table 2 shows that the LK evaluation provided by TANA yielded improvement in terms of performance accuracy. Therefore, our algorithm have exploited the correlations between experimental annotations across the three ontologies in order to enhance the quality of the function prediction. The prediction of the function applied to human proteome sequences are encouraging (cf. Table 3), we confirm that TANA's alignments can be used to predict biological characteristics, i.e., GO molecular function (MF) and biological process (BP), of unannotated proteins based on their alignments with annotated ones. The human proteome sequences include 18,380 human protein sequences with 5,746, 5,850 and 9,684 human proteins annotated with experimental evidence code (EXP, IDA, IPI, IMP, IGI, IEP, TAS and IC) in BP, MF and CC categories, respectively. For the NK type, the quality for predictions of GO terms in the MF, BP, and CC category in terms of F max evaluation was 0.40, 0.53, and 0.46, respectively (cf. Table 3). Whereas for the LK type, the quality for predictions of GO terms in the MF, BP, and CC category in terms of F max evaluation was 0.30, 0.53, and 0.24, respectively (cf. Table 3).

Table 4 depicts the results using different metrics to evaluate the prediction quality yielded by TANA1 , DeepGO, FFPred3 [START_REF] Cozzetto | Ffpred 3: feature-based function prediction for all gene ontology domains[END_REF] and GoFDR [START_REF] Gong | Gofdr: a sequence alignment based method for predicting protein functions[END_REF] algorithms, on a dataset released as part of the CAFA3 challenge. The FFPred3 [START_REF] Cozzetto | Ffpred 3: feature-based function prediction for all gene ontology domains[END_REF] prediction results for CAFA3 targets are retreived from http://bioinfadmin.cs. ucl.ac.uk/downloads/ffpred/cafa3/, the GoFDR results by the web service available at http:// gofdr.tianlab.cn/.

The four approaches produce different results to unannotated proteins for the compared species. Indeed, the TANA algorithm outperforms, in terms of F max , its competitors, specially for predicting molecular function and biological process for the F max evaluation. Whereas, DeepGo, FFPred3 and GoFDR outperform TANA in CC GO terms for F max , AvgPr and AvgRc metrics.

As respectively shown, in Tables 3 and4, predicting the BP GO terms is a critical process than predicting MF GO terms. Indeed, BP GO terms illustrate the relations between proteins, whereas those of MF GO terms illustrate the properties of a protein. Therefore, we can conclude that the feature or property of a given protein is determined by itself, whereas the relations of a protein with its neighborhoud is not determined by itself, however also by other proteins. Thus, applying the sequence of a protein and other motifs (alignment of metabolic pathway) during the prediction process helps us to correctly identify the biological process for each target protein. The protein-centric performance measures the accuracy of the approaches in assigning functional GO terms to an unannotated protein. The reason behind the low performance of our method in predicting CC GO Terms category is that our approach cannot predict the "interlog" between the proteins for a given specie. Therefore the alignment of a PPI from a myriad of species lead to more noise prediction coming from different types of intra cellular location. Moreover, predicting these specific terms yields to a great number of false positives and thus hampers to get a good performance in terms of F max metric. Another solution to get a good evaluation, is to try to assign annotation with more general CC GO terms like using the annotation "organelle" (GO:0043226, level 2), "intracellular part" (GO:0044424, level 3), and "cytoplasm" (GO:0005737, level 4). TANA flags out a good performance in BP, MF GO terms, by relying on the transfer of annotation by only considering the experimental annotation derived from the Uniprot-GOA. Moreover, the reason, behind the superiority of TANA over its competitors consists in predicting the functionality of unannotated proteins from different species even if the target proteins are not related by homology sequence (i.e., Difficult target).

TANA relies on the MAPPIN algorithm to generate clusters from the alignment of PPI. Thus, our approach for the protein function prediction takes roughly 8 hours to generate the alignment and performing the function prediction process. The reason behind this required time is the given huge number of sequences for each compared species (about roughly 100.000 proteins used during the alignment process), released by the CAFA3 project.

Validation on the non-IEA annotation of proteins

Indeed, there are many predictions performed by TANA, that have been added to the current release as a non-IEA annotation. Therfore, we assessed the prediction accuracy of TANA by validating on the non-IEA annotation of proteins included in the current release from UniProtKB released in 2018_07. We tried to use the anterior datasets from UniProtKB released in 2016_11 for the compared species. After that, we tried to validate the prediction of unannotated protein against the last release datasets from UniProtKB released in 2018_07. It is worth mentioning that many unannotated proteins from the anterior became in the meanwhile annotated proteins in the last release. The predictions performed by our approach are more accurate and roughly are the same when we compared them against the annotations of the last release. To illustrate that, let us consider one of the unannotated proteins, to wit "Q9VRX7", which is with no function from UniProtKB released in 2016_11. So, after using the anterior release by TANA during the alignment process in order to predict its function, our approach predicts three GO terms in MF (i.e., GO:0000175 (3'-5'-exoribonuclease activity), GO:0004535 (poly(A)-specific ribonuclease activity) and GO:0005515 (protein binding) ) and one GO terms in BP (i.e., GO:0000289 (nuclear-transcribed mRNA poly(A) tail shortening)). The unannotated protein "Q9VRX7" became an annotated protein, and the curator of the database Uniprot-GOA (release 2018_07) assigned one GO terms in MF with evidence code "IDA" (i.e., GO:0000175 (3'-5'-exoribonuclease activity)) and two GO terms in BP with evidence code "IMP" (i.e., GO:0031125 (rRNA 3'-end processing) and GO:0031126 (snoRNA 3'-end processing)). Indeed, there are many predictions performed by TANA, that have been added to the current release as a non-IEA annotation.

Conclusion and Future Works

In this paper, we introduced a new approach for protein function prediction by transferring annotation via PPI networks alignment. The approach considers that annotation from BP, MF or CC ontologies shared by annotated protein, can be predicted from its interacting partners belonging at the same consistent cluster. The results of the alignment and the prediction of the functionalities of proteins from different species using both GOA and sequence homology are promising and flexible in terms of computational runtime.

As a future work, we plan to integrate the metabolic pathway for each species during the prediction process which gives us insight on the different type of reaction involved by each compared protein. Moreover, in terms of quality scores, there is still significant improvement in all ontologies, and particularly in BP and CC GO terms using different strategies. We also plan to assess the ability of our approach to associate proteins with disease terms from disease gene prediction tasks using the Human Phenotype Ontology (HPO) [START_REF] Dariya | Improving structure-based function prediction using molecular dynamics[END_REF] from CAFA.

Figure 1 :

 1 Figure 1: The different steps of TANA for scoring the prediction of GO Terms for each unannotated protein.

  

Table 2 :

 2 Statistics on the species used by CAFA3

	Domain	Taxonomy Name		Counts BP	CC	MF	FULL NO
						(LIM-	(LIM-	(LIM-
						ITED)	ITED)	ITED)
	Eukaryota 9606	Homo sapiens		20197 4282	1905	5021	4647 8266
	Eukaryota 10090 MOUSE		16806 2296	2994	5221	3005 6850
	Eukaryota 10116 RAT		7963	824	1112	1354	1920 3781
	Eukaryota 284812 SCHPO		5120	2939	67	3745	679	582
	Eukaryota 3702	ARATH		14754 2727	2136	5084	1899 6464
	Eukaryota 44689 DICDI		4131	198	315	587	218	3203
	Eukaryota 559292 YEAST		6721	430	983	1704	2426 1801
	Eukaryota 7955	DANRE		2967	42	709	672	49	2113
	Eukaryota 8355	Xenopus laevis		3402	72	230	201	84	2996
	Archaea 243232 Methanocaldococcus	1787	22	45	5	3	1739
			jannaschii					
	Archaea 273057 Sulfolobus solfataricus	469	4	14	0	0	455
			P2					
	Bacteria 160488 Pseudomonas	putida	705	3	16	0	0	689
			KT2440					
	Bacteria 170187 Streptococcus pneumo-	501	5	4	1	0	496
			niae serotype 4					
	Bacteria 223283 Pseudomonas syringae	678	0	1	1	0	677
			pv. tomato					
	Bacteria 224308 Bacilus subtilis		4185	51	166	83	8	3987
	Bacteria 243273 Mycoplasma genitalium 483	0	2	1	0	481
	Bacteria 321314 Salmonella choleraesuis 882	0	0	0	0	882
	Bacteria 83333 Escherichia coli		4434	978	1105	1130	1056 1242
	Bacteria 85962 Helicobacter pylori	593	7	17	12	0	573
	Bacteria 99287 Salmonella	ty-	1789	11	36	22	7	1733
			phimurium					
	Note:							
	FULL : Number of proteins that have experimental annotation in all three ontologies (BP, MF or CC ontology);
	NO: Number of proteins that have no experimental annotation in any ontology.	

Table 3 :

 3 Performance of TANA on the Human specie (Partial evaluation)

	Organisms	BP BC F max S min n	-	MF BC F max S min n	-	CC BC F max S min n	-
			smin			smin		smin
	No-knowledge (NK)					
	Human	68	0.40 21.12 0.57		73	0.53 5.52 0.46		53	0.46 6.50 0.56
	Limited-Knowledge (LK)				
	Human	163 0.30 31.07 0.58		93	0.53 6.64 0.49		68	0.24 4.6 0.69
	Note:						
	BC: refers to the benchmark count used to test the accuracy of the prediction for each ontology category;
	n-smin: refers to minimum normalized semantic distance.		

Table 4 :

 4 Evaluation of TANA, DeepGO, FFPred3 and GoFDR methods on a CAFA3 preliminary evaluation set (Full evaluation)

	Methods	BP F max AvgPr AvgRc F max AvgPr AvgRc F max AvgPr AvgRc MF CC
	TANA	0.42 0.45 0.40	0.54 0.60 0.49	0.26 0.39 0.19
	FFPRed3	0.26 0.30 0.23	0.38 0.35 0.40	0.44 0.46 0.43
	GoFDR	0.20 0.27 0.15	0.52 0.89 0.36	0.40 0.40 0.41
	DeepGO	0.34 0.31 0.37	0.47 0.61 0.39	0.52 0.55 0.49

Note: Best results are indicated in bold with respect to each column.

Details about the prediction results of TANA are visible at: https://github.com/waritheddine/TANA/blob/ master/TANA-Prediction-CAFA.txt