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The bifurcation of two-dimensional gravity-capillary waves into solitary waves when
the phase velocity and group velocity are nearly equal is investigated in the presence
of constant vorticity. We found that gravity-capillary solitary waves with decaying
oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found
that the presence of vorticity influences strongly (i) the solitary wave properties and (ii)
the growth rate of unstable transverse perturbations. The growth rate and bandwidth
instability are given numerically and analytically as a function of the vorticity.

Keywords: NLS equation, gravity-capillary solitary waves, transverse
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1. Introduction
We consider the bifurcation of gravity-capillary waves propagating at the free surface

of a vertically sheared current of constant vorticity when the phase and group velocities
are nearly equal. In the absence of vorticity, the existence of steadily propagating solitary
gravity-capillary waves on deep water was proved numerically by Longuet-Higgins (1989).
Iooss & Kirchgässner (1990) investigated the problem mathematically and found it was a
1:1 resonance phenomenon. Later on, Vanden-Broeck & Dias (1992) established the link
between the numerical calculation of Longuet-Higgins (1989) and the rigorous analysis
of Iooss & Kirchgässner (1990). Dias et al. (1996) investigated numerically the behavior
of these waves in arbitrary depth away from their bifurcation point. Longuet-Higgins
(1993) and Akylas (1993) demonstrated that gravity-capillary solitary waves occur when
the phase velocity of the carrier wave is equal to the group velocity of the envelope-
soliton of the NLS equation. Note that the linear dispersion relation of gravity-capillary
waves has a minimum in phase velocity which is equal to the group velocity. For values
of the phase velocity less than this extremum the NLS equation admits envelope-soliton
solutions such that the wave crests are stationary in the frame of reference of the wave
envelope. Later on, steady three-dimensional gravity-capillary solitary waves have been
investigated by several authors, among them Parau et al. (2005), Kim & Akylas (2005)
and Milewski (2005).
Gravity-capillary solitary waves have been observed experimentally in wind waves gen-
erated in a wind wave facility by Zhang & Cox (1994). During laboratory experiments
(Zhang (1995)) and field experiments (Zhang (1999)) on wind waves on deep water,
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gravity-capillary solitary waves were observed and found to closely match numerical
profiles obtained by Longuet-Higgins (1989) and Vanden-Broeck & Dias (1992). Longuet-
Higgins & Zhang (1997) generated experimentally gravity-capillary solitary waves on deep
water by the resonant excitation of surface waves at a velocity below the minimum of
gravity-capillary waves. The mechanism of generation is due to a jet of air impinging on
the surface of steady current. Forced three-dimensional gravity-capillary solitary waves
on deep water (called lumps) have been investigated experimentally by several authors
(Dorio et al. (2011), Masnadi & Duncan (2017a), Masnadi & Duncan (2017b) and Park
& Cho (2016)).
To the best of our knowledge, there is no study regarding the effect of constant vorticity
on the transverse instability of two-dimensional envelope solitons. On the contrary, many
investigations on the transverse instability have been carried out in the absence of vortic-
ity. Zakharov & Rubenchik (1974) and Saffman & Yuen (1978) demonstrated that plane
gravity envelope solitons are unstable to long wave transverse perturbations. Later on,
Ablowitz & Segur (1979) extended their analyses to show equivalent results in the case of
finite depth. Deconinck et al. (2006) obtained a variety of transverse instabilities of gravity
envelope solitons in infinite depth. Within the framework of the fully nonlinear potential
flow equations Kim & Akylas (2007) found that plane gravity-capillary solitary waves of
depression are unstable to transverse perturbations. Kim (2012) verified the long wave
transverse instability within the framework of the weakly nonlinear third-order truncation
model. The presence of transverse instability suggests the existence of solitary lumps
which are the three-dimensional counterpart of plane gravity-capillary solitary waves.
Our purpose is not to consider three-dimensional localized solitary gravity-capillary
waves. Akers & Milewski (2009), Akers & Milewski (2010), Wang & Milewski (2012)
and Milewski & Wang (2014) used several model equations to investigate numerically
the stability of two-dimensional and three-dimensional gravity-capillary solitary waves
in deep water. Regarding two-dimensional waves they found that both gravity-capillary
solitary waves of elevation and depression are unstable to transverse perturbations.
The purpose of the present paper is twofold: (i) to revisit the problem of two-dimensional
gravity-capillary waves of solitary type on deep water when the effect of an underlying
vertically sheared current is taken into account and (ii) to investigate the stability of
one-dimensional gravity-capillary solitons, solution of the NLS equation, to transverse
perturbation in the presence of constant vorticity.

Section 2 is devoted to the computation of the bifurcated gravity-capillary solitary wave
on deep water in the presence of constant vorticity. In section 3 the stability of its envelope
to infinitesimal transverse perturbations is investigated.

2. Gravity-capillary solitary waves with constant vorticity
We consider envelope soliton bifurcation from a uniform gravity-capillary wave train

in the presence of vorticity. Our study is confined to two-dimensional water waves
propagating in infinite depth. The fluid is considered inviscid and incompressible. The
waves move along the x-axis and the z-axis is oriented upwards opposite to the gravity
g = (0,−g). The origin z = 0 is the undisturbed free surface. The waves are travelling
at the surface of a vertically sheared current of constant vorticity. In the fixed frame the
underlying current is given by U(z) = U0 +Ωz where Ω is the shear intensity and U0 is
the current velocity at the surface. Note that the vorticity is −Ω. We choose a reference
frame moving with the horizontal velocity U0. Consequently, in this frame of reference
the current at the surface vanishes and the underlying current is given by U(z) = Ωz.
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Very recently, Hsu et al. (2018) derived a nonlinear Schrödinger equation for the envelope
of two-dimensional gravity-capillary waves propagating on arbitrary depth at the free
surface of a vertically sheared current of constant vorticity −Ω. Herein, we consider the
case of infinite depth. This NLS equation for the complex envelope of the elevation is
written as follows

iaτ + αaξξ = γ∗ | a |2 a, (2.1)
where a is the complex envelope of the free surface elevation which depends on slow vari-
ables ξ = ε(x− cgt) and τ = ε2t. The group velocity of the carrier wave of wavenumber,
k, and frequency, ω, is cg. We consider weakly nonlinear waves and consequently we set
ε� 1.
The dispersion coefficient α reads

α = − ω

k2(2 +Ω/ω) (ρ2 − κ

1 + κ
α1),

with
α1 = (1 +Ω/ω)(1 + 2ρ) + 2(ρ− 2 κ

1 + κ
(1 +Ω/ω)),

where

ρ = 1 +Ω/ω

2 +Ω/ω
(1 + 2κ

1 + κ
).

The inverse of the Bond number is

κ = k2T

ρwg
,

where T is the surface tension coefficient and ρw the water density.
The nonlinear coefficient γ∗ is

γ∗ = g2

4ω2 ( 1 + κ

1 +Ω/ω
)2γ,

where

γ = k4

2ω(1 +Ω/ω)(2 +Ω/ω)

[
− 3κ

1 + κ
(1 +Ω/ω)2

+ (1 +Ω/ω)(8 + 6Ω/ω) + 1 +Ω/ω

1− κ(2 + 3Ω/ω)γ1

+ 2 (1 +Ω/ω)(2 +Ω/ω)2

ρΩ/ω − (1 +Ω/ω)/(1 + κ) (Ω/ω)2
]
,

and

γ1 = 12κ+ 10(1 + 4κ)Ω/ω + 6(3 + 7κ)(Ω/ω)2 + 2(4 + 7κ)(Ω/ω)3 + (1 + κ)(Ω/ω)4.

Equation (2.1) admits the following solution

a = ±a0sech{a0(−γ
∗

2α )1/2ξ} exp(− i2γ
∗a2

0τ),

and the elevation of a weakly nonlinear wave train of envelope a(ξ, τ) writes

ζ = ±1
2εa0sech{a0(−γ

∗

2α )1/2ξ} exp[ikx− i(ω + 1
2γ
∗ ε2a2

0)t] + c.c.,
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where k and ω are the carrier wavenumber and carrier frequency, ε� 1 and c.c. denotes
the complex conjugation. The wave height at the origin is εa0.

The crests of the wave group travel at phase velocity

c = ω

k
+ 1

2γ
∗ ε2a2

0/k,

whereas the envelope travels at group velocity cg .

The condition for the envelope-soliton to be a solitary wave is that the group velocity is
equal to the phase velocity cg = c

cg = ω

k
+ 1

2γ
∗ ε2a2

0/k. (2.2)

Whatever Ω, the nonlinear coefficient of the NLS equation is negative (see figure 1),
therefore the solitary wave travels at a constant velocity which is a little less than the
minimum phase velocity of linear gravity-capillary waves.
Following Longuet-Higgins (1993), we set g = 1, T = 1 and ρw = 1 which is equivalent to
use (T/ρwg)1/2 and (T/ρwg3)1/4 as unit of length and unit of time, respectively. For the
sake of clarity the same symbols are used to define the dimensionless frequency, vorticity
and wavenumber. Then, the nonlinear coefficient γ∗ becomes in dimensionless form

γ∗(k) = (1 + k2

ω +Ω
)2γ/4,

where

γ = k4

2ω(1 +Ω/ω)(2 +Ω/ω)

[
− 3k2

1 + k2 (1 +Ω/ω)2

+ (1 +Ω/ω)(8 + 6Ω/ω) + 1 +Ω/ω

1− k2(2 + 3Ω/ω)γ1

+ 2 (1 +Ω/ω)(2 +Ω/ω)2

ρΩ/ω − (1 +Ω/ω)/(1 + k2) (Ω/ω)2
]
,

with

γ1 = 12k2 + 10(1 + 4k2)Ω/ω + 6(3 + 7k2)(Ω/ω)2 + 2(4 + 7k2)(Ω/ω)3 + (1 + k2)(Ω/ω)4,

and

ρ = 1 +Ω/ω

2 +Ω/ω
(1 + 2k2

1 + k2 ).

The dimensionless linear dispersion relation is

ω2 +Ωω − k(1 + k2) = 0.

The dimensionless linear phase velocity and group velocity are equal at the linear phase
velocity minimum which occurs when k is solution of the following equation

k2 +Ω
√

2 k1/2 − 1 = 0. (2.3)

For the case Ω = 0 which was considered by Longuet-Higgins (1993) we find k = 1,
ω =
√

2 and γ∗(k) = −11
√

2/32. Then, the velocity of the solitary wave is

cg0 =
√

2(1− 11
64ε

2a2
0),

which is the equation (3.19) of Longuet-Higgins (1993).
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Equation (2.3) admits the following aproximate solution

k = 1− Ω√
2

+O(Ω2). (2.4)

Then
ω =
√

2− 3
2Ω +O(Ω2).

Negative vorticity (Ω > 0) reduces k and ω whereas positive vorticity (Ω < 0) increases
k and ω.
An approximate solution of equation (2.2) is

cg =
√

2− Ω

2 − (11
√

2
64 + 31

64Ω)ε2a2
0 +O(Ω2, ε3a3

0),

which can be rewritten as follows

cg = cg0 −
Ω

2 (1 + 31
32ε

2a2
0) +O(Ω2, ε3a3

0). (2.5)

Solitary wave velocity is increased when the vorticity is positive (Ω < 0) and reduced
when the vorticity is negative (Ω > 0).

To extend the work of Akylas (1993), we investigate the bifurcation of a train of periodic
gravity-capillary waves into a solitary wave with decaying oscillatory tail in the presence
of constant vorticity. Now, we use T/(ρwc2) and T/(ρwc3) as unit length and unit time
where c is the phase velocity of the envelope-soliton, which means that c is the reference
phase velocity scale. Note that these time and length units were used by Vanden-Broeck
& Dias (1992) and Akylas (1993). Consequently, with these new scaled variables the
dimensionless form of the NLS equation (2.1) becomes

iãτ̃ + α̃ãξ̃ξ̃ = β2γ̃∗ | ã |2 ã, (2.6)

where β = gT/(ρwc4), τ̃ = ρwc
3τ/T , ξ̃ = ρwc

2ξ/T , ã = ρwc
2a/T , α̃ = ρwcα/T and

γ̃∗ = Tcγ∗/(ρwg2).

Using ω̃ = Tω/(ρwc3), k̃ = Tk/(ρwc2), Ω̃ = TΩ/(ρwc3) and κ = k̃2/β the coefficient γ̃∗
is

γ̃∗ = ω̃k̃4(1 + k̃2/β)2

8(ω̃ + Ω̃)3(2ω̃ + Ω̃)
{−3k̃2(ω̃ + Ω̃)2

ω̃2(β + k̃2)
+ (ω̃ + Ω̃)(8ω̃ + 6Ω̃)

ω̃2 + (ω̃ + Ω̃)
βω̃ − k̃2(2ω̃ + 3Ω̃)

(βγ̃1)

+ 2(ω̃ + Ω̃)(2ω̃ + Ω̃)2Ω̃2

ω̃4(ρ̃Ω̃ − β(ω̃ + Ω̃)/(β + k̃2))
},

where

βγ̃1 = β(10∆+ 18∆2 + 8∆3 +∆4) + k̃2(12 + 40∆+ 42∆2 + 14∆3 +∆4), ∆ = Ω̃

ω̃
,

and

ρ̃ = (ω̃ + Ω̃)(1 + 2κ/(1 + κ))
2ω̃ + Ω̃

.

Let µ̃ = β2γ̃∗. For Ω̃ = 0, we have checked that −µ̃ is equal to the expression derived
by Akylas (1993). In figure 1 is plotted the nonlinear coefficient µ̃ as a function of Ω.
An enlargement is inserted in the figure in the vicinity of Ω ≈ −0.2 to show that this
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Figure 1. Dimensionless nonlinear coefficient, µ̃, of the NLS equation as a function of the
vorticity.

coefficient is always negative.
The dimensionless form of the dispersive coefficient is

α̃ = − ω̃2

k̃2(2ω̃ + Ω̃)
(ρ̃2 − k̃2

β + k̃2
α̃1),

where

ρ̃ = ω̃ + Ω̃

2ω̃ + Ω̃
(1 + 2k̃2

β + k̃2
),

and

α̃1 = (ω̃ + Ω̃)(1 + 2ρ̃)
ω̃

+ 2(ρ̃− 2k̃2(ω̃ + Ω̃)
ω̃(β + k̃2)

).

The dimensionless NLS equation (2.6) becomes, dropping the tildes

iaτ + αaξξ = µ | a |2 a, (2.7)

and the free surface elevation writes

ζ = ±1
2εa0sech{a0(−µ2α )1/2ξ} exp[ikx− i(ω + 1

2µ ε
2a2

0)t] + c.c.

The condition for the envelope-soliton to be a solitary wave is, due to the chosen
normalisation, cg = c = 1

1 = ω

k
+ 1

2µ ε
2a2

0/k.

Hence,

k = ω(k,Ω, β) + 1
2µ ε

2a2
0. (2.8)

For infinite depth, the dimensionless linear gravity-capillary dispersion relation in the
presence of a shear of intensity Ω is

ω2 +Ω ω − βk − k3 = 0, (2.9)
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which has a minimum in phase velocity at k = k0. At this minimum the phase velocity
is equal to the group velocity

k0 = ω(k0, Ω, β0) and ∂ω

∂k
(k0, Ω, β0) = 1.

Solving these two equations gives

k0 = 1
2 , (2.10)

and
β0 = 1

4 +Ω.

For Ω = 0 the values of Akylas (1993) are rediscovered. Note that the shear has no
effect on the dimensionless value of k0. Nevertheless, with the scaled variables used by
Longuet-Higgins (1993) equation (2.10) reduces to equation (2.4) at O(Ω).
Herein, ω > 0 and consequently ω0 = 1/2. From the dispersion relation (2.9), it can be
demonstrated that we always have −Ω < ω or −ω < Ω. In our case the carrier wave
frequency is close to ω0 and as a result the considered values of Ω are larger than a value
close to −1/2.

The wavenumber k and β are expanded about (k0, β0) as follows

k = k0 + k1ε
2 +O(ε3),

β = β0 + β1ε
2 +O(ε3).

Expanding ω(k,Ω, β) about (k0, β0) and using equation (2.8) with ∂ω/∂k(k0, Ω, β0) = 1
gives

β1 = −1
2

µ(k0, Ω, β0)
∂ω/∂β(k0, Ω, β0)a

2
0,

and

k1 = −
∂2ω
∂β∂k (k0, Ω, β0)
∂2ω
∂k2 (k0, Ω, β0)

β1.

Using

∂2ω

∂k2 (k0, Ω, β0) = 2α(k0, Ω, β0),

we obtain

k1 = −
∂2ω
∂β∂k (k0, Ω, β0)
2α(k0, Ω, β0) β1.

Let δβ be the difference between β and the critical value β0

δβ = β1ε
2 +O(ε3),

δβ = −1
2

µ(k0, Ω, β0)
∂ω/∂β(k0, Ω, β0)a

2
0ε

2.

Knowing that

∂ω/∂β(k0, Ω, β0) = 1
2(1 +Ω) ,
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then

a2
0ε

2 = − δβ

(1 +Ω)µ(k0, Ω, β0) . (2.11)

From equation (2.11) and figure 1 we can see that the wave height decreases as positive
values of Ω increases. For negative values of Ω the wave height presents a maximum in
the vicinity of Ω ≈ −0.2. Finally,

a2
0ε

2 = 162δβ

11 + 128Ω + 464Ω2 + 512Ω3 + 192Ω4 . (2.12)

Knowing that

∂2ω

∂β∂k
(k0, Ω, β0) = Ω

(1 +Ω)2 ,

and
∂2ω

∂k2 (k0, Ω, β0) = 2α(k0, Ω, β0) = 1
1 +Ω

,

then

k1 = − Ω

1 +Ω
β1,

and

k = k0 + k1ε
2 = k0 −

Ω

1 +Ω
β1ε

2 = k0 −
Ω

1 +Ω
δβ. (2.13)

Note that in the absence of vorticity the dimensionless carrier wavenumber is unchanged
at O(ε2). Negative vorticity (Ω > 0) reduces k whereas positive vorticity (Ω < 0)
increases k.

The expression of the solitary wave is

ζ(x, t) = ±16( δβ

11 + 128Ω + 464Ω2 + 512Ω3 + 192Ω4 )1/2sech{(δβ)1/2(x−t)} cos{k(x−t)}.
(2.14)

The profile of the solitary wave is known once the bifurcation parameter δ β is fixed.
Equations (2.12) and (2.13) allows the determination of the parameter εa0 and k,
respectively. Profiles of solitary waves of elevation and depression which bifurcate at
β = β0 from a linear uniform periodic wave train of frequency ω0 and wavenumber k0,
are plotted in figures 2, 3, 4 and 5. For negative vorticity (Ω > 0), an increase of Ω leads
to a decrease of the wave height (see figures 2 and 4). For positive vorticity (Ω < 0), an
increase of |Ω| may lead to an increase (see figures 3, 5, 6 and 7) of wave height.

3. Transverse instability of the envelope of gravity-capillary solitary
waves with constant vorticity

The two-dimensional version of the NLS equation in deep water (2.1) is

iaτ + αaξξ + λaηη + 2Γ | a |2 a = 0, (3.1)

where η is the transverse coordinate and Γ = −γ∗/2.

The transverse dispersion coefficient λ reads

λ = ω′

2k = g(1 + 3κ)
4k(ω +Ω/2) .
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Figure 2. Dimensionless profiles of solitary waves of elevation: Solid line (Ω = 0) and dashed
line (Ω = 0.10).

Figure 3. Dimensionless profiles of solitary waves of elevation: Solid line (Ω = 0) and dashed
line (Ω = −0.1).

For ∂/∂η = 0, equation (3.1) admits the following solution

ā = A(ξ) exp(iΓa2
0τ), (3.2)

where

A(ξ) = a0sech{a0(Γ
α

)1/2ξ}.
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Figure 4. Dimensionless profiles of solitary waves of depression: Solid line (Ω = 0) and dashed
line (Ω = 0.10).

Figure 5. Dimensionless profiles of solitary waves of depression: Solid line (Ω = 0) and dashed
line (Ω = −0.1).

Let us perturb with an infinitesimal perturbation the solution (3.2)

a = ā+ a′ exp(iΓa2
0τ).

Linearisation of equation (3.1) about ā gives

ia′τ − Γa2
0a
′ + αa′ξξ + λa′ηη = −2ΓA2a′∗ − 4ΓA2a′. (3.3)
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Figure 6. Dimensionless profiles of solitary waves of elevation: Solid line (Ω = −0.10) and
dashed line (Ω = −0.4).

Figure 7. Dimensionless profiles of solitary waves of depression: Solid line (Ω = −0.10) and
dashed line (Ω = −0.4).

Let us consider a′ = u+ iv (with u and v reals) and substitute this expression into (3.3)

vτ = αuξξ + λuηη − (−6ΓA2 + Γa2
0)u, (3.4)

uτ = −αvξξ − λvηη + (−2ΓA2 + Γa2
0)v. (3.5)

The system (3.4)-(3.5) of linear partial differential equations with constant coefficients
admits solutions of the following forms (normal modes)

u = û(ξ) exp(iqη + στ), (3.6)
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Figure 8. Square of the dimensionless growth rate of the transverse unstable mode of the
envelope of gravity-capillary solitary waves in deep water as a function of the square of the
dimensionless wavenumber for Ω = 0 (solid line), Ω = 0.1 (◦) and Ω = −0.1 (?). The dashed
lines correspond to the analytic expression given by equation (3.9). a0 =

√
2.

v = v̂(ξ) exp(iqη + στ). (3.7)
Herein we can use the complex forms for u and v because we deal with linear equations.
Substitution of (3.6) and (3.7) into (3.5) and (3.4) gives

σv̂ = α
d2û

dξ2 − λq
2û− (−6ΓA2 + Γa2

0)û,

σû = −αd
2v̂

dξ2 + λq2v̂ + (−2ΓA2 + Γa2
0)v̂.

The above system can be written as follows

σ2û = −(L0 − λq2)(L1 − λq2)û, (3.8)

with

L0 = α
d2

dξ2 + 2ΓA2 − Γa2
0,

and

L1 = α
d2

dξ2 + 6ΓA2 − Γa2
0,

and the eigenfunction û vanishes as |ξ| → ∞.
The numerical method to solve equation (3.8) is outlined in the Appendix.
We set g = 1, T = 1 and ρw = 1. For moderate and small values of the vorticity
the coefficients of the NLS equation (3.1) are positive, Γ > 0, α > 0 and λ > 0. For
comparison we use herein the analytic relation of the instability growth rate given by
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Rypdal & Rasmussen (1989) which writes in dimensionless form

σ2 = 64
π2λΓq

2(1− λ

6Γ q
2). (3.9)

The maximum growth rate is

σ2
max = 96Γ 2

π2 ,

and

qmax =
√

3Γ
λ
.

The gravity-capillary solitary wave is marginally stable for q = qc with

q2
c = 6Γ

λ
. (3.10)

For small values of the vorticity the instability growth rate and marginal wavenumber
are

σ2 = q2( 11
π2 −

16
3π2 q

2) + q2(153 + 32q2

6
√

2π2
)Ω +O(Ω2),

and

qc = 33
16 + 87

33
√

2
Ω +O(Ω2).

In figure 8 is shown the numerical and analytic instability growth rates for several values
of the vorticity. The solid lines correspond to numerical solutions of equation (3.8).
Negative vorticity amplifies the rate of growth whereas positive vorticity reduces its
value. Surface elevation of the envelope of gravity-capillary solitary waves perturbed by
their most unstable modes corresponding to Ω = 0, q = 1.01 and Ω = 0.10, q = 1.08 are
shown in figure 9. These waves which are localized in the direction of propagation and
periodic in the transverse direction have been investigated by Milewski & Wang (2014).
This new solution found by the latter authors was called transversally periodic plane
solitary wave.

4. Conclusion
Within the framework of the 1D− and 2D−NLS equations, the effect of constant

vorticity on the properties and stability of gravity-capillary solitary waves in deep water
has been investigated. These two-dimensional solitary waves of elevation and depression
types bifurcate from linear uniform wavetrains at the phase speed minimum where the
phase velocity equals the group velocity. We found that negative vorticity (Ω > 0) reduces
the wave height whereas positive vorticity (Ω < 0) increases the wave height. Numerical
and analytic instability growth rates of transverse perturbations have been computed and
derived, respectively. We have shown that negative vorticity amplifies the rate of growth
and bandwidth of transverse instability whereas positive vorticity diminishes both the
rate of growth and bandwidth.

Appendix. Numerical method to solve equation (3.8)

The eigenfunctions û are computed numerically using the interpolant function (Tang
(1993); Boyd (1989); Weideman & Reddy (2000)).
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Figure 9. Surface elevations of perturbed envelopes of gravity-capillary solitary waves of
depression in deep water for Ω = 0, κ = 1, qmax = 1.01 (left) and Ω = 0.10, κ = 0.86,
qmax = 1.08 (right)

ûN (x) =
N∑
j=1

e(−x2/2)

e(−x2
j
/2)φj(x)ûj ,

where

φj(x) = HN (x)
H ′N (xj)(x− xj)

,

and HN (x) is the Hermite polynomial of degree N . The grid points x1, . . . , xN are
the roots of HN (x). Note that for continuous eigenfunctions on R vanishing at infinity
they can be uniformly approximated by functions of the form exp(−x2)p(x) where p is a
polynomial (see Lang (1991) page 62).
This spectral interpolant automatically enforces the vanishing of the eigenfunctions at

±∞. We used N = 160 grid points giving a domain half size L = 8.61 (x ∈ [−L,L]).
With this choice, we obtained |ûN (±L)| = O(10−8).
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