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Abstract

A parametric investigation of radiative heat transfer is carried out, including the effects of conjugate heat transfer
between fluid and solid media. The thermal radiation is simulated using the P1-model. The numerical model and
the thermal coupling strategy, suitable for a transient solver, is described. Such numerical coupling requires that the
radiative equation is solved several times at each iteration; hence, the computational cost of the radiative model is a
crucial issue. The P1-model is adopted because of its particularly fast computation. First, a collection of benchmark
cases is presented and used to carefully validate the radiation model against literature results and to analyse the model
prediction limits. Despite the simplicity of the model, it satisfactorily reproduces the thermal radiation effects. Some
lack of accuracy is identified in particular cases. Second, a number of benchmark cases are described and adopted to
investigate fluid-solid thermal interaction in the presence of radiation. Three cases are designed, to couple radiation
with: pure conduction, conduction and forced convection, conduction and natural convection. In all the cases, the
surface radiative heat transfer strongly influences the system thermodynamics, leading to a significant increase of the
fluid-solid interface temperature. The main non-dimensional numbers, related to the mutual influence of the different
heat transfer modes, are introduced and employed in the analyses. A new conduction-radiation parameter is derived in
order to study the conductive boundary layer in absence of convective heat transfer.
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1. Introduction

In thermal and combustion engineering, the radiative
heat transfer (RHT) strongly influences the overall heat
transfer; therefore the radiative effects cannot be neglected
in accurate analyses of many practical and industrial ap-
plications. This is especially true for high-temperature
systems, like combustion devices (engines, rocket nozzles,
furnaces), solar collectors and nuclear reaction in power
plants. Yet, radiation can influence low-temperature sys-
tems, leading to non-negligible effects when combined with
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convection and conduction (electric ovens, lamp bulb en-
closures, room heating systems).

Experimental investigations of the above-mentioned
problems can be expensive and laborious. It is therefore of
interest to develop and validate accurate and fast-response
numerical simulation methods for studying such thermo-
fluid dynamics systems. Accurate simulations of thermal
radiation effects pose big challenges:

(i) from a physical point of view, radiation is a remark-
ably complex phenomenon. A mathematical model
for RHT can be only derived under simplified hy-
potheses;

(ii) particular attention must be paid to the interaction
with fluid medium. An effective coupling strategy
has to be adopted, especially in the presence of buoy-
ancy driven flow or participating medium (i.e. a
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medium that absorbs, emits or scatters radiation);

(iii) heat exchange at a fluid-solid interface often plays
a crucial role. The surface heat transfer by conduc-
tion and radiation are strongly coupled between each
other and a suitable conjugate heat transfer (CHT)
strategy needs to be adopted.

A thermo-fluid dynamic numerical solver, that takes in
consideration all these aspects, is here described and tested
in several benchmark cases. To the best of the authors
knowledge, this is the first time that an extensive study of
the interaction between thermal radiation and conjugate
heat transfer is presented.

The general theory of thermal radiation has been exten-
sively studied in the last century. A comprehensive the-
oretical background on this subject is presented by Mod-
est [23] and Howell et al. [17]. They describe the physics
of thermal radiation and derive the RHT equation. They
also address the engineering treatment of thermal radi-
ation, with a description of a number of approximation
methods that are generally used. Other milestones in the
field are the book of Viskanta [35], that deals with radi-
ation in combustion systems, and the work of Hottel and
Sarofim [15], that (albeit quite outdated) collects a large
number of details about physical measurements of radia-
tive quantities. A number of approximation methods for
RHT, each one valid only under specific assumptions, have
been proposed. We refer to Viskanta [36], Viskanta and
Mengüç [37] for a detailed review of such general meth-
ods, and to Carvalho and Farias [3] for an overview on
numerical models for combustion systems.

Nowadays, the most popular numerical solution ap-
proaches for RHT in participating media, are subdi-
vided into the following families: discrete ordinates meth-
ods (DOM), spherical approximation (PN ) methods and
Monte Carlo methods (MCM). The RHT equation is an
integro-differential equation that depends on the direc-
tion of the radiation propagation. In the DOM approach,
the equation is discretised along a finite number of direc-
tions, and the integral term is approximated by numerical
quadrature. It can lead to very accurate results, but its
accuracy strongly depends on the quadrature scheme used.
Moreover, a correct resolution requires a fine angular and
spatial discretisation; thus, it is highly computational de-
manding (see Hassanzadeh and Raithby [14], Modest [23]).
The general strategy of the PN approach is to expand the
radiative functions in series of spherical harmonics, and
to use their orthogonality properties over a sphere to con-
vert the RHT equation to a relatively simple partial dif-
ferential equation. Compared to the DOM, this method
is computationally cheaper but it has some intrinsic draw-
backs: generally speaking, it tends to overestimate the
RHT and it can lose accuracy, for example, in the case of
collimated irradiation or for a strongly anisotropic radia-
tive source [23]. The MCM provides a statistical approach
to the problem. For an overview on this method we refer
to Howell [16] and Howell et al. [17]. The MCM is found

to be accurate and requires a small computational effort.
However, the non-deterministic nature of the model leads
to some compatibility problems with the deterministic nu-
merical solvers, while the stochastic noise can introduce
stability issues when radiation is coupled with other pro-
cesses (such as convection and conduction). Recently, also
the lattice Boltzmann method has been applied to RHT
problems by Asinari et al. [1] and Mishra et al. [21].

Different implementations of the aforementioned ap-
proaches give rise to a number of radiative models, that
have been used in a wide range of engineering case sim-
ulations. The validation of such radiative models in fluid
dynamic systems poses some problems. There are few ex-
perimental studies available for comparison purposes, and
often validation has to be performed against other numer-
ical simulation results. In this respect, two cases have
been studied to a large extent: natural convection in a
plain vertical channel with radiative walls [31, 11, 4, 38, 2];
buoyancy driven flow in a two-dimensional cavity with dif-
ferently heated walls [12, 19, 24, 39, 40].

Concerning the fluid-solid heat transfer, we refer to
Dorfman and Renner [8] for a review of the CHT tech-
niques, while Duchaine et al. [9, 10] give a detailed de-
scription and an analysis of stability and efficiency of some
coupling strategies. The fluid-solid heat transfer by con-
duction has been studied in some archetypal cases. Among
the others, Tiselj et al. [32] and Garai et al. [13] studied
the effects of CHT in two-dimensional channel flow, while
Cintolesi et al. [6] investigated the influence of conduc-
tive solid boundaries on the fluid dynamics of a differently
heated square cavity.

To summarise, different radiation models have been de-
veloped in the past and used in numerical solvers where
the solid wall is treated as a boundary condition to the
fluid domain and the interaction with the solid medium
is not considered. On the other hand, recently, the CHT
problem has been studied by several authors, in presence
of conduction and convection but neglecting radiation.
Here we develop a methodology aimed at the simulation
of heat transfer in solid-fluid interacting media, consider-
ing the three mechanisms, namely conduction, convection
and radiation. Specifically, the first-order spherical har-
monics approximation (P1-model) for the RHT equation
is adopted. It is coupled with the Neumann-Neumann
CHT technique for a complete resolution of thermo-fluid
dynamics problems, that involve participating fluid media
and conductive solid boundaries. The numerical solver has
been developed within the OpenFOAM framework. First,
the numerical model and the coupling between the surface
radiation and the Neumann-Neumann CHT are described.
Second, the prediction capabilities and the limits of the ra-
diative model adopted are investigated in several reference
situations. Such test cases involve statistical steady-state
simulations combining conduction, convection and radi-
ation in participating media. Third, a number of new
benchmark cases including conduction, convection, ther-
mal radiation and CHT with solid walls are introduced.
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To the best knowledge of the authors there are no such
cases available in the open literature, and they thus form
a new set of benchmark cases. The cases are used in the
present work for unique parametric investigations of RHT
with fluid-solid surface heat transfer.

Three non-dimensional numbers describing the rela-
tive importance of the heat transfer modes in fluid
medium, i.e. convection-conduction, radiation-convection
and radiation-conduction, are derived. They are used to
perform a parametric study of thermal radiation effects
and to investigate the mutual interaction among the heat
transfer mechanisms, together with the surface heat trans-
fer. Notably, the heat fluxes ratio numberHf is introduced
to investigate the conductive boundary layer.

The paper is organised as follows: §2 presents the math-
ematical model adopted and the numerical implementation
within the OpenFOAM framework; §3 describes the non-
dimensional numbers that govern the heat transfer modes
in presence of thermal radiation; §4 validates the radia-
tive model for a set of available benchmark cases without
surface heat exchange; §5 introduces new benchmark cases
for coupling of RHT and surface radiative heat exchange
(SRHT), and provides a parametric study of RHT-SRHT;
§6 gives the concluding remarks.

2. Simulation methodology

This section describes the complete thermodynamic
model, including thermal radiation, conduction, convec-
tion and fluid-solid heat transfer. We limit the description
to the thermodynamic solver, since it is independent of
how the velocity field is solved.

The subscripts specify the particular use of a generic
variable. If φ is the generic variable, then: φf is related to
fluid region; φs is related to solid region; φw is the variable
evaluated at the fluid-solid interface.

2.1. Radiative model

A detailed mathematical derivation of the P1-model for
RHT is given by Modest [23] and it is not repeated here.
However, the physical hypotheses behind the radiative
model are briefly recalled: the medium is considered grey
(no wavelength dependency of the emission, absorption
and scattering coefficients) and diffusive (the coefficients
do not depend on the direction of propagation); the enclo-
sure surfaces are considered opaque (the rays penetrating
into the body are internally absorbed) and grey diffusive
(surface reflection is not taken into account).

The radiative model has to reproduce several phenom-
ena: (i) RHT field in a participating medium; (ii) thermal
radiation contribution on fluid medium temperature; (iii)
SRHT at the solid conductive boundaries. A description
of the mathematical model for the three above-mentioned
items follows.

2.1.1. Radiative heat transfer

The governing equation and the boundary condition of
the P1-model for RHT with absorption, emission and lin-
ear anisotropic scattering from the medium read, respec-
tively

∇2G(r) = κ(3κ+ 3σs − σsA)
[
G(r)− 4σT 4(r)

]
(1)

∂

∂n
G(rw) = ε

3κ+ 3σs − σsA
2(2− ε)

[
G(rw)− 4σT 4(rw)

]
(2)

Here G is the total incident radiation function; T is the
absolute temperature; r and rw represent a point in the
medium and onto the solid boundary, respectively; n is
the solid boundary normal versor. Equation (2) accounts
for the radiation emitted/absorbed by the boundaries and
it is known as the Marshak’s boundary condition for the
P1-approximation. The constant coefficients are physical
radiative parameters, namely: κ the total, linear absorp-
tion/emission coefficient; σs the total isotropic scattering
coefficient; A the linear anisotropic scattering factor; ε the
solid surface emissivity; σ = 5.670× 10−8 W/(m2K4) the
Stefan-Boltzmann constant.

For comparison purposes with literature results, the ra-
diative heat flux onto the enclosure surface is computed
as

Qrad = − 1

3κ+ 3σs −Aσs
∂

∂n
G(rw). (3)

2.1.2. Radiative heat source into the fluid medium

The thermal energy evolution is governed by the con-
vective, conductive and radiative terms. The temperature
equation is

∂Tf
∂t

+
∂ ujTf
∂xj

= αf
∂2Tf
∂xj∂xj

+ Srad, (4)

where uj is the j-component of the fluid velocity field, αf

is the thermal diffusion coefficient of the medium, and Srad

the heat source/sink due to the presence of thermal radi-
ation in a partecipating medium. The source/sink term
reads

Srad(r) =
κ

(ρCp)f

[
G(r)− 4σT 4(r)

]
, (5)

where ρ is the density of the medium, and Cp is the
medium heat capacity at constant pressure.

2.1.3. Radiative heat flux onto solid boundaries

Thermal radiation leads to an energy flux through the
solid conductive boundaries. That flux can be converted
into an explicit source/sink term Sw, to be added to the
temperature equation for the solid medium, as

∂Ts
∂t

= αs
∂2Ts
∂xj∂xj

+ Sw, (6)

where Sw is non-zero only in the boundary cells, i.e. the
solid medium cells that have at least one face at the fluid-
solid interface. The source/sink term is computed as:

Sw = − 1

(ρCp)s
∇ · qw, (7)
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i.e. the divergence of the thermal radiation heat flux qw
divided by the thermal inertia of the solid material. The
equation for surface flux can be derived from the governing
equation of the P1-approximation [23], and it reads

qw(rw) = −1

2

(
ε

2− ε

)[
G(rw)− 4σT 4(rw)

]
n (8)

on the fluid-solid interface, while it is set to be zero else-
where.

2.2. Conjugate heat transfer

The temperature equations (4) and (6) are provided
with boundary conditions accounting for the fluid-solid
heat transfer mechanism. The Neumann-Neumann CHT
at the fluid-solid interface Γ is implemented imposing the
continuity of temperature and the balance of the heat
fluxes:

Ts
∣∣
Γ

= Tf
∣∣
Γ
, (9)

ks

(
∂Ts
∂n

)
= kf

(
∂Tf
∂n

)
, (10)

where k is the thermal conductivity. The balance of both
(9) and (10) is enforced below a prescribed tolerance.
For more details on the coupling methodology herein em-
ployed, we refer to Sosnowski [29] and Sosnowski et al. [30].

We can notice that the surface radiative heat flux (8) can
be directly included in the boundary condition (10), in-
stead of being transformed in an explicit source/sink term
(7) in the solid medium temperature equation. The latter
approach is preferred to the former because it is found to
be more numerically stable.

2.3. Numerical implementation

The numerical solver is implemented in the framework
of OpenFOAM - version 2.1, an open-source toolbox writ-
ten in C++. The solver performs a three-dimensional un-
steady simulation of the system thermodynamics. As al-
ready mentioned, the present discussion is independent of
the way in which the fluid dynamics is solved. Hence, the
fluid resolution technique is not discussed here.

The new thermodynamic solver is named
coupledRadiationFoam, and this name is used to
label the results reported in the plots of the following
sections. The solver is an extension of the code used
by Cintolesi et al. [6], where the CHT technique was
validated against experimental data for the case of natural
convective flow in differently heated square cavity. The
above-described P1 radiative model has been integrated
in that solver and used in the present investigation.

The code works with unstructured meshes and uses the
finite volume method. Equations are discretised with a
second-order central difference scheme in space, and a
second-order backward difference scheme in time; thus en-
suring a global accuracy of second order.

∆ f ∆ s

T
s

T
f

T
Ws

T
Wf

Fluid Solid

Γ

Figure 1: Scheme for fluid-solid conjugate heat transfer
computation at the interface Γ: Ts/f is the solid/fluid tem-
perature stored in the centroid of the boundary cell; TWs/f

is the solid/fluid temperature at the boundary; ∆s/f is the
distance between the solid/fluid centroid and the bound-
ary.

CHT implementation

The numerical implementation of the CHT technique,
described in §2.2, is briefly presented; details were given by
Sosnowski [29]. The heat exchange between different me-
dia is obtained through the imposition of suitable bound-
ary conditions for temperature equations. The derivation
of such conditions follows.

Consider two computational cells at the fluid-solid inter-
face Γ. Figure 1 sketches the boundary cells centre points
(centroids) and the interface. If the temperature is stored
in the centroid of the boundary cells, the discretisation of
equations (9) and (10) gives

TWf = TWs

kf
Tf − TWf

∆f
= ks

TWs − Ts
∆s

(11)

We denote TW = TWf = TWs as the value of the boundary
temperature at instantaneous local thermal equilibrium.
Solving the system, we obtain

TW =
kf∆sTf + ks∆fTs
kf∆s + ks∆f

. (12)

The Neumann condition in the fluid domain is given by

kf

(
∂T

∂n

)
Wf

= ks
Ts − TW

∆s
, (13)

and an analogous condition is valid for the solid domain.
When CHT is simulated, first the interface temperature
(12) is calculated, then the Neumann condition (13) is ex-
plicitly set in each of the solid and fluid domains.

Algorithm steps

The thermodynamic solution algorithm is now briefly
summarised:
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1. fluid region: incident radiation equations (1-2) and
temperature equation (4) are solved for the fluid
medium;

2. thermal-radiation coupling: the coupling between T
and G is performed with a temperature-radiation sub-
loop. The temperature and radiative fields are solved
iteratively n times, until the coupling condition

max
cells
|Tn − Tn−1| < ε0 (14)

is globally satisfied (empirically, a tolerance ε0 = 10−6

is recommended);
3. solid region: the temperature field is solved for the

solid medium;
4. fluid-solid coupling: the CHT loop is performed iter-

ating steps 1-2-3 until the fluid-solid coupling condi-
tions (9) and (10) are verified under a fixed tolerance
given by

max
Γ−cells

|Tf − Ts| < ε1 , (15)

max
Γ−cells

∣∣∣∣kf Tf − TWf

∆f
− ks

TWs − Ts
∆s

∣∣∣∣ < ε2 , (16)

where the maximum is computed on the boundary
cells at the interface. The values ε1, ε2 = 10−6 are
used.

It is found that 2−5 iterations of sub-loop 2 are sufficient
to achieve thermal-radiation coupling, while 2 iterations
are usually needed to reach the fluid-solid interface ther-
mal equilibrium. A detailed description of the radiative
model implementation was given by Cintolesi [5], while
more details on the CHT coupling loop were given by Sos-
nowski [29] and Sosnowki et al. [30].

It can be notice that for each time iteration, a number
of thermal-radiation coupling loops have to be performed.
Therefore, the computational power required to solve the
radiative equation is multiplied by the number of loops,
eventually leading to unfeasible simulations if the RHT
model is highly computing demanding. The P1-model is
here adopted since it is computationally fast with respect
to the other RHT models.

3. Parameters and non-dimensional numbers

Radiation

Two scaling parameters characterise RHT problems.
The linear scattering albedo, defined as

ω =
σs

κ+ σs
, (17)

is the ratio between the scattering coefficient and the ex-
tinction coefficient. In participating media, it represents
the relative importance of scattering with respect to ab-
sorption/emission. Two scattering regimes can be iden-
tified: ω ∼ 0 represents either the case of high absorb-
ing/emitting material, or of no scattering medium; ω ∼ 1
represents a highly scattering medium.

The optical thickness (or opacity) can be interpreted as
the ability of a medium to attenuate radiation. It is defined
as:

τL = (κ+ σs)L, (18)

where L is the characteristic length of the medium layer.
Four physical regimes of interest can be identified: non
participating medium τL ∼ 0; optically thin medium
τL � 1, where RHT is ruled by the boundaries emission
and radiation from the medium is limited; self-absorbing
medium τL ∼ 1, where boundaries and internal radia-
tion contributions balance; optical thick medium τL � 1,
where radiation is essentially a local phenomenon and the
radiative transport behaves as a diffusion process (like
molecular transport).

Heat transfer modes

A few non-dimensional numbers reflect the mutual im-
portance of the heat transfer modes. The Stark number,
also named conduction-radiation parameter, characterises
the relative importance of energy transported by conduc-
tion and radiation. It reads

N =
(κ+ σs)k

4σ∆T 3
, (19)

where ∆T 3 = T 3
b − T 3

a is the power three of the char-
acteristic difference of temperatures of the system. The
Stark number can be derived in the dimensional analysis
of energy transfer equations, e.g. in the case of a layer
of conducting-radiating medium between parallel black
walls as reported by Howell et al. [17], §13.2.2.1 - pp.
667. Viskanta [34] gives a brief discussion on this non-
dimensional number. When N decreases, radiative effects
increase. Three characteristic regimes for N = 1, 0.1, 0.01
are usually investigated.

The non-dimensional numbers related to the other heat
transfer modes can be derived as the ratio between the heat
fluxes due to convection, radiation and forced conduction,
that reads

Qconv = UρCp∆T, (20)

Qradi = (κ+ σs)σ∆T 4, (21)

Qcond = k∆T/L, (22)

respectively.
The Boltzmann number determines the relative impor-

tance of energy transported by radiation and forced con-
vection, and is given by

Bo =
Qconv

Qradi
=

UρCp∆T

(κ+ σs)σ∆T 4
, (23)

where U is the characteristic velocity of the flow. Venkate-
shan [33] gives more details on this non-dimensional num-
ber. Three regimes are investigated for Bo = 0.1, 1, 10,
corresponding to an increasing influence of convective with
respect to radiative heat transfer.
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The convection-conduction number is the ratio between
heat flux generated by forced convection and radiation,
given by

Cn =
Qconv

Qcond
=
UρCp

k
L, (24)

where L is the characteristic length of the system along
the direction of heat conduction. The values herein used
are Cn = 1, 10, 100, corresponding to increasing relevance
of convective heat transfer.

We can point out that analogous parameters can be
derived for natural convection, substituting the expres-
sion of characteristic velocity of buoyancy driven flow
U =

√
gβT ∆TL into equation (24), where g is gravity

acceleration and βT is the thermal expansion coefficient.
Eventually, an alternative conduction-radiation is here

proposed. It is derived as the ration between radiative and
conductive heat fluxes within the medium, given by

Hf =
Qradi

Qcond
=

(κ+ σs)σ∆T 4

k∆T
L. (25)

Conversely to N , which includes only the physical charac-
teristic of the participating medium, Hf takes also into ac-
count the geometrical scale of the system. The heat fluxes
number Hf is found to be useful to study the convective
boundary layer in §5.3.

Conjugate heat transfer

In transient simulations, the characteristic diffusion
time T of solid materials is defined as:

T =
L2

αs
=

(ρCp)s
ks

L2, (26)

where α = k/ρCp and T can be interpreted as a measure
of the time required to reach thermal equilibrium in solid
media.

When heat transfer through the fluid-solid interface
takes place, the thermal activity ratio (TAR) given by

TAR =

√
(kρCp)f
(kρCp)s

, (27)

i.e. the ratio between the thermal effusivity of fluid and
solid media, can be used to quantify the interface heat
flux. High values of TAR correspond to a weak heat flux,
while small TAR values imply a large flux. Cintolesi et
al. [6] give further details on these two parameters. We
can notice that the value of the heat capacity ρCp does
not affect the final statistical steady-state configuration.
Hence, in the present work, the fluid-solid thermal inter-
action can be characterised simply by the ratio between
thermal conductivities, i.e.

Rk =
kf
ks
. (28)

Lower values of Rk lead to a stronger thermal influence of
the solid medium with respect to the fluid one.
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(b) Square enclosure.

Figure 2: Geometry of the benchmark cases for RHT vali-
dation. The presence of isothermal walls (depicted as grey
regions) is reproduced by suitable boundary conditions for
the fluid medium.

4. Benchmark cases for radiative heat transfer

In this section, the SRHT and CHT are not considered,
and only the fluid-medium thermodynamics is simulated.
A validation of the numerical implementation is carried
out, along with an investigation of the prediction capabil-
ity of the P1-model.

Two geometries sketched in Figure 2 are used for study-
ing a grey diffusive medium (a) between two parallel in-
finitely long plates, and (b) within a square enclosure.
These are, respectively, one-dimensional (in a Reynolds av-
erage sense) and two-dimensional cases extensively studied
in literature. Several results, both analytical and numeri-
cal are available for comparison purposes.

Different settings are used in order to investigate the
following points:

• Numerical implementation is checked by comparing
the numerical and the analytical solutions of the P1-
model for geometry (a), in §4.1;

• The pure radiative heat transfer mechanism (i.e. ab-
sence of conduction and convection) is investigated in
both (a) and (b) geometries, for a wide number of
combinations of radiative parameters, in §4.2;

• Combined conduction and radiation heat transfer is
analysed using geometry (b), in §4.3.

• Combined convection, conduction and radiation heat
transfer is tested in geometry (a), in §4.4.

The purpose is to carefully validate the radiative solver
and, at the same time, to investigate the theoretical limits
of the P1-model with respect to other models proposed in
literature. Table 1 reports the physical dimensions and
the grid resolution used for each simulation done.
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Section Geometry Dimension [m] Grid [pts]

§4.1 parallel plate L = 1 31

§4.2.1 parallel plate L = 1 31

§4.2.2 square cavity Lx/y = 1 96× 96

§4.3 square cavity Lx/y = 1 41× 41

§4.4 plane channel L = 2, H = 60 32× 960

Table 1: Physical dimensions and computational grids for
the test cases simulated in §4.

4.1. Numerical model validation

The validation of the numerical implementation is car-
ried out for the case of an isothermal and grey medium
slab, bounded by two isothermal black plates. The case
geometry is sketched in Figure 2a. The medium tempera-
ture is Tm, while the two plates are both at temperature
T1 = T2 = Tw. The plates are considered black (i.e. the
emissivity is set to ε = 1). The participating medium can
absorb/emit and scatter radiation whether isotropically or
linear anisotropically.

The analytical solution of the P1-equations (1-2) is pro-
vided by Modest [23] (cf. chapter 16 - example 16.2) to-
gether with an exact solution of the complete RHT equa-
tions. The analytical solution is given by

Ψana(τx) =
2 sinh γ̃τx

sinh 1
2 γ̃τL + 1

2

√
3−Aω
1−ω cosh 1

2 γ̃τL
, (29)

where τx = (κ + σs)x is the non-dimensional horizon-
tal coordinate, also called optical distance, and γ̃ =√

(1− ω)(3−Aω) is a scattering constant. The non-
dimensional heat flux onto the plates is considered for com-
parison purposes, given by

Ψ =
Qrad

σ(T 4
m − T 4

w)
, (30)

where Qrad is the surface normal heat flux (3). Because
of the symmetry of the problem, the origin of the axis is
placed in the mid-plane between the plates; thus the plates
are located at τx = ±τL/2.

Figure 3a shows the heat flux both for non-scattering
and isotropic scattering medium, while Figure 3b displays
the case of a linear anisotropic scattering medium. In both
cases, the numerical solution fits the analytical one. Since
these results are obtained using a wide combination of the
radiative parameters, we can conclude that the P1-model
is correctly implemented in the code.

A comparison between the exact solution and the P1 so-
lution highlights one of the major drawbacks of the spher-
ical approximation method: the tendency to overestimate
the thermal radiation flux. Another consideration is re-
lated to the optical thickness. In the last decade, it was
alleged that the P1-model is inaccurate in the optical thin
limit, i.e. τ → 0. Recent investigations show that this is
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(a) Test without linear isotropic scattering, A = 0.
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Figure 3: Isothermal grey solid medium between two par-
allel walls. Labels: dash line, analytical solution of P1-
equation [23]; red circle, numerical solution of P1-equation;
green line, exact solution of the RHT equation [23].
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(a) Temperature distribution between the two plates for different optical
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(b) Heat flux on the plates with respect to the optical thickness of the
medium.

Figure 4: Isothermal grey solid medium between two par-
allel walls. Comparison between the P1-model and the
exact solution [18].

not a general issue [23]. In the present simulation, we can
notice that P1 goes to the correct thin limit while it loses
accuracy in the thick limit.

4.2. Pure radiative heat transfer

In this section the model is validated in cases where
the temperature of the medium is ruled just by thermal
radiation, while convection and conduction are neglected.

4.2.1. Parallel plates

The parallel-plate geometry (Figure 2a) is again used
with other settings: the two plates are taken at different
temperature T1 < T2, the scattering is neglected and the
plate emissivity is set to ε = 1. Comparisons are done
against the analytical solution proposed by Howell, Siegel

0 0.1 0.2 0.3 0.4 0.5
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Figure 5: Non-dimensional heat flux on the bottom wall
of the square enclosure. Labels: red circles, data from
Rousse et al. [28]; black line, P1-model solution.

and Mengüç [18] for non-dimensional surface heat flux and
non-dimensional temperature, respectively

Ψ =
Qrad

σ(T 4
2 − T 4

1 )
and Φ =

T 4 − T 4
2

T 4
1 − T 4

2

. (31)

The former is computed at the plate surfaces, the latter is
plotted along a horizontal line y = const.

Figure 4a reports the non-dimensional temperature dis-
tribution for several values of optical thickness of the par-
ticipating medium. The results are in good agreement
with the reference solutions, even if we can notice a slight
discrepancy for low values of τL.

Figure 4b depicts the non-dimensional heat flux for a
large range of optical thickness values. The results fit the
reference solutions fairly well.

Overall, the P1-model predictions are quite accurate.
The prediction of the heat flux Ψ is more precise than in
the analogous case presented in §4.1. The lack of accuracy
in the previous case can be attributed to the presence of a
temperature step at the plate-medium interface. This un-
physical discontinuity may affect the prediction capability
of the model, and leads to less accurate results.

4.2.2. Grey medium in square enclosure

The case of a grey medium in a square enclosure is
sketched in Figure 2b. Two different radiative media
are studied: (A) an absorbing/emitting, non-scattering
medium and (B) a purely scattering medium. Analytical
solutions are not available, but different numerical studies
for these cases can be found in literature.

(A) Absorbing/emitting, non-scattering medium: the
medium has a temperature Tm > 0, while the enclosure
walls are cold T1,2,3,4 = 0. They have constant emissivity
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ε = 1. The non-dimensional heat flux on the wall,

Ψ =
Qrad

σT 4
m

, (32)

is plotted and compared with the numerical profile of
Rousse et al. [27, 28]. They adopted a DOM approach,
where a numerical solver based on a control volume finite
element method was used to resolve the complete RHT
equations. Also Crosbie and Schrenker [7] studied the
same case, solving the two-dimensional governing equa-
tions. They used the modified Bessel function to obtain
an integral expression of the radiative source term. The in-
tegral presented a point of singularity that was removed.
Subsequently, the equations were numerically integrated
with a Gaussian quadrature formula. The data obtained
in the latter work are in perfect agreement with those of
the former, hence they are not explicitly reported.

Figure 5 shows the heat flux at the bottom wall of the
cavity, for three increasing values of optical thickness. The
results become more and more inaccurate as the optical
thickness of the medium increases. Specifically, the P1-
model fails to reproduce Ψ in the proximity of the vertical
walls, where the increase of heat flux is underestimated.

The lack of accuracy for large values of τL is expected,
since it is known that the P1-model is not suitable for
optical thick media [23]. An explanation for the behaviour
in the proximity of the vertical wall is provided hereafter:
the P1-equation provided with the Marshak’s boundary
condition is not accurate when the wall emission strongly
affects the thermal radiation, i.e. the effects of the
participating medium are limited. In the cavity corner
region (x/Lx < 0.1) the radiative effects of the vertical
and horizontal cold walls combine, leading to a decrease of
temperature and to a less accurate prediction than in the
central region (0.1 < x/Lx < 0.9). Moreover, the corner
region can be affected by collimate radiation (thermal
rays impinge the solid surfaces in a almost tangential
direction), that is difficult to reproduce by the spherical
approximation models [23].

(B) Purely scattering medium: the enclosure walls are
cold T1,2,3 = 0, except for the bottom one at T4 > 0.
Several cases are simulated, changing the wall emissivity ε
and the optical thickness τL. The non-dimensional surface
heat flux,

Ψ =
Qrad

σT 4
4

, (33)

is compared with the results reported by Rousse et al. [28]
and Modest [22], who uses a differential approximation to
solve the radiative equation.

Figure 6a depicts the effects of the optical thickness on
the heat flux, at the bottom hot wall. Several simulations
are performed, setting the wall emissivity to ε = 1 and in-
creasing the optical thickness τL. Surprisingly, the results
become more accurate for optical thick media. Similar
to the previous simulation (A), the P1-model fails in the
corner region.
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(a) Effects of the variation of wall emissivity ε.
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Figure 6: Non-dimensional heat flux on the bottom wall of
the square enclosure. Labels: red cross, data from Rousse
et al. [28]; green diamonds; data from Modest [22]; solid
and dash line, P1-model solution.
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In order to better understand the impact of the bound-
aries on the overall thermal radiation, the same simula-
tions are re-run using several decreasing values of the en-
closure wall emissivity. Empirically, the value ε = 0.6
allows a perfect reproduction for τL = 1 and improves the
prediction for the other cases. The profiles are reported
with a dash blue line in Figure 6a. This test corroborates
the fact that the Marshak’s condition for the P1-model
does not reproduce correctly the walls radiation contribu-
tion: it tends to amplify the wall influence in the global
radiation. Hence, this is the main source of error in those
cases when wall radiation mainly rules the total radia-
tion. Unfortunatly, the Marshak’s boundary condition
is the only one available for the P1-model at the moment
(ref. Modest [23]). In the last years, efforts have been
devoted to improve the formulation of Marshak’s condi-
tion for the P1-model. Among the others, we refer to the
work of Liu et al. [20], that has introduced a corrective
parameter to obtain better predictions.

Figure 6b shows the effect of varying the wall emissivity,
when the optical thickness is set to τL = 1. Overall,
the results are largely overestimated. When the wall
emissivity decreases and the effects of the boundaries
are less intense, the predictions are more accurate.
The relative error is also computed using the formula
erel = (Ψ − Ψref )/Ψref , where Ψref are the reference
data [28]. For all the cases the relative error is almost
constant along the x/Lx direction and spans in the range
0.3 < erel < 0.4.

In conclusion, we can note that the case of pure scat-
tering (B) exhibits results worse than the case of pure ab-
sorbing/emitting medium (A). A priori, this is not ex-
pected because the contribution of the scattering on the
governing equations (1) and (2) is analogous to the ab-
sorbing/emitting contribution. The only difference in the
use of the σs and κ, is that the absorption coefficient mul-
tiplies the entire right hand side of the incident radiation
equation. If κ = 0 the radiation equation would reduce
to a Laplace equation, and G would be completely deter-
mined by the boundary conditions. This is not happening
when σs = 0. Therefore, it is not the presence of scattering
that introduces an error, but the absence of the absorp-
tion/emission that amplify the influence of the boundaries
emission (ruled by Marshak’s condition) and eventually
entails a lack of accuracy.

4.3. Combined conduction and radiation

RHT is here activated together with heat conduction.
The case geometry studied is the square cavity depicted in
Figure 2b. The bottom wall has a constant temperature
T4 = Tw while the other walls have T1,2,3 = Tw/2. The
medium is non-scattering, the optical thickness is set to
τL = 1, and the walls are black (ε = 1). The effects of
conduction to radiation are ruled by the Stark number N ,
cf. equation (19).
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Figure 7: Non-dimensional temperature over a vertical
centreline, for conduction and radiation in a square en-
closure. Simulations for different Stark number N . La-
bels: red symbols, data from Rousse 2000 [28]; solid lines,
P1-model; dash line, convection without radiation.

Figure 7 shows the non-dimensional temperature T/Tw
for different values of N . The comparison is made with
the numerical data of Rousse et al. [28] and Razzaque et
al. [25, 26], who use the finite element method to solve the
RHT equation. Those two data sets practically collapse
one over the other, thus only the first one is included in
the comparison. A simulation of conduction without radi-
ation is also plotted: k is determined imposing N = 1 and
switching radiation off. This case is labelled as N = ∞,
with an abuse of notation.

There is a quite good agreement with the reference data,
although the temperature is slightly over-predicted in the
proximity of the bottom wall.

4.4. Combined conduction, convection and radiation

The case studied by Viskanta [34] is here reproduced: a
fully-developed laminar flow within a plain channel (Fig-
ure 2a). The Poiseuille flow enters the channel from the
bottom (y/H = 0) and flows out from the top (y/H = 1).
The flow field is given by

uy(x) = 6ū
[
(x/L)− (x/L)2

]
, (34)

where the mean velocity is set to ū = 1. Velocity variations
along the other directions are neglected. The two vertical
plates are isothermal with temperature T1 = T2 = Tw, the
bottom boundary is at temperature Tin = 0, while the zero
gradient condition is enforced at the top boundary. The
plates are black, thus ε = 1, and the zero gradient condi-
tion is set for incident radiation G at the bottom and top
boundaries. The participating medium is not scattering
and the optical thickness is set to τL = 1.

Three simulations are performed for different values of
the Stark number. The non-dimensional temperature pro-
file T/Tw is compared with the data of Viskanta [34] in
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Figure 8: Non-dimensional temperature over the horizon-
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in case of convection, conduction and radiation in plain
channel. Simulations for different Stark number N . La-
bels: red symbols, data from Viskanta [34]; lines, coupled-
HeatVapourRadiationFoam, P1-model; black stars, cou-
pledHeatVapourRadiationFoam without radiation.

Figure 8. This author evaluated the integral-differential
RHT equation with the Barbier’s method, which uses a
three terms Taylor expansion. The case was also studied
by Rousse et al. [28], but those results are very similar
to those of Viskanta [34], so they are not included in the
comparisons.

Temperature is plotted over a horizontal line y = y0, for
which

T (x, y0)
∣∣∣
x/L=0.5

= Tw/2. (35)

The location y = y0 is thus different for each simulation.
Particularly, when N decreases and the effects of radiation
overcome conduction, y0 is located farther from the inlet.
After preliminary tests, a channel entry-length of H/L = 7
is found to be enough to develop the thermal profile in all
cases.

The results are in good agreement with the reference
values. When N = 1, radiation essentially does not affect
the temperature. For lower values of the Stark number,
temperature is not altered in the proximity of the walls
but it increases in the central region. Near the wall, the
temperature is still dominated by conduction because of
the higher temperature gradient arising on the fluid-solid
interface.

5. Surface radiative heat transfer

This section introduces and studies a benchmark case for
surface heat transfer between fluid and solid media in the
presence of conduction, convection and thermal radiation.
To the best of our knowledge, a similar benchmark case
has not been reported in the literature yet.
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Figure 9: Geometry of the benchmark case for SRHT.

5.1. Geometry and general settings

Figure 9 sketches the case geometry: it consists of two
rectangular domains, with isothermal walls at the sides.
The left-side region contains a fluid medium that is ra-
diative participating. The right-side region is made of a
solid material that is thermally conductive and radiative
opaque. Heat transfer by conduction, forced convection
and thermal radiation occurs in the fluid medium, while
only heat conduction occurs in the solid medium. Surface
heat transfer by contact (CHT) and radiation (SRHT) take
place at the interface. This interaction leads to a strong
thermal coupling between the two media.

The left isothermal wall is hot, while the right one is
cold: ∆T = (Th − Tc) > 0K. The difference of temper-
ature is not the same for all the cases studied. It will
be specified for each of the following simulations, excepted
when it can be derived from the non-dimensional numbers.
The solid material is a good conductor, having a higher
thermal conductivity with respect to the fluid medium.
The thermal conductivities ratio (28) is set to

Rk =
1

4
, (36)

while the heat capacity is (ρCp)s/f = 103 for both media.
The solid boundaries of the fluid region are black (ε = 1)
and the medium is non-scattering (ω = 0, A = 0), while
the absorption/emission coefficient κ varies in the different
cases.

5.2. Overview of simulations

The above-described system allows an investigation of
the mutual influence of the three heat transfer mecha-
nisms in the presence of a fluid-solid surface heat trans-
fer. The thermodynamics of such a system is completely
determined by the non-dimensional numbers described in
§3.

The interaction between the following phenomena is
studied:

• conduction and thermal radiation, changing the Stark
number N and optical thickness τL, in §5.3;
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• conduction and forced convection, varying the
convection-conduction number Cn, in §5.4;

• conduction, forced convection and thermal radiation,
for different combinations of N and the Boltzmann
number Bo, in §5.5;

• conduction, natural convection and thermal radiation,
for different values of N , in §5.6.

In all the cases, the participating medium is not scat-
tering; thus σs = 0 and A = 0.

5.3. Conduction and thermal radiation

In this case the temperature is transported only by con-
duction and thermal radiation. Convection is not consid-
ered, hence the fluid medium is at rest, leading to a one-
dimensional simulation. The width of each of the fluid
and solid regions is L = 1m, discretised by 80 compu-
tational points (each one). Thermal radiation propagates
into the fluid medium and impinges the fluid-solid inter-
face (x/L = 1), where the SRHT takes place. The ra-
diative heat, supplied to (or subtracted from) the inter-
face, changes the temperature distribution within the solid
medium. Simultaneously, in fluid medium, the radiation
field is altered by the interface temperature.

The governing parameters are the Stark number N
and the optical thickness τL. Figure 10 shows the non-
dimensional temperature distributions:

Φ =
T 4 − T 4

c

∆T 4
, (37)

over a line through the fluid and solid media. Simulations
have been performed for all combinations of the values
N = 1, 0.1, 0.01 and τL = 0.1, 1, 10. The case without
thermal radiation is also simulated; it is again labelled
N =∞.

Figure 10b is first analysed and used for comparison with
the others. When radiation is neglected (N =∞), conduc-
tion rules the system and the surface temperature is one
fifth of the difference of temperature between isothermal
walls. This is in accordance with the thermal conductivi-
ties of the media (cf. equation (36)). The introduction of
thermal radiation increases the overall temperature of the
system. When N = 1, the interface is slightly heated up
by the radiative effects, but the temperature distribution
in the fluid medium remains linear. When N = 0.1, ra-
diation significantly heats up the interface and makes the
fluid temperature non-linear. Close to the solid bound-
aries, conduction still dominates and a quasi-linear ther-
mal profile arises. In the fluid central zone, radiation from
the boundaries and within the medium overcomes conduc-
tion and increases the temperature. The non-linear tem-
perature distribution is expected, since thermal radiation
is a phenomenon that goes like T 4. When radiation dom-
inates (N = 0.01) the fluid medium is at almost the same
temperature than the hot wall, and it slightly decreases
when the interface is approached.
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(a) Optical thick medium, τ = 10.
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Figure 10: Thermal radiation and conduction in the SRHT
benchmark case. Non-dimensional temperature profile for
different values of Stark number N and optical thickness
τL.
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δ τ = 10 τ = 1 τ = 0.1

N = 0.01 0.0004 0.04 4

N = 0.1 0.004 0.4 40

N = 1 0.04 4 400

Table 2: Conductive boundary layer thickness δ near the
isothermal hot wall for the nine cases show in Figure 10.

Figure 10a depicts the thermal profiles for an optical
thick medium. In the case of low and moderate radiation
(N = 1, 0.1), the increase of the optical thickness leads to
augmentation of the overall system temperature, and par-
ticularly the interface temperature. Surprisingly, for high
radiation level (N = 0.01) the interface temperature de-
creases. This effect can be due to the fact that an optical
thick medium acts as a barrier for radiation. The RHT
process then becomes localised and behaves as a conduc-
tion process. As a matter of fact, the profile in the fluid
medium is almost linear. Since the thermal conduction
is weak and the energy radiated is absorbed by the fluid
medium, the interface temperature decreases with respect
to the case τ = 1.

Figure 10c shows the temperature profiles in the case
of an optical thin medium. The fluid medium is less par-
ticipative, thus the thermal radiation reaches directly the
solid interface without being altered by the medium. The
general effect is the reduction of the system temperature
for all the cases studied. The case N = 1 collapses to the
case N =∞.

The boundary layer on which conduction overcome ther-
mal radiation can be estimated by means of the fluxes ra-
tio number Hf defined by equation (25). In analogy with
the definition of optical distance form the optical thickness
(see §4.1), we define the fluxes ratio distance as

Hf (x) =
(κ+ σs)σ∆T 4

k∆T
x. (38)

The energy transport is dominated by conduction when
Hf (x) . 1 and by radiation when Hf (x) & 1. The thick-
ness of the conductive boundary layer xbl/L = δ near the
walls can be estimated imposing Hf (δ) = 1. Table 2 re-
ports the values of δ near the isothermal hot wall, for the
nine simulations show in Figure 10. In the optical thick
case (Figure 10a) the medium is highly participative, thus
radiative heat flux is strong and the conductive layer is
almost zero for all values of N . In the radiative layer the
thermal profiles are non-linear. Conversely, in the opti-
cal thin case (Figure 10c) the medium has a very weak
interaction with thermal radiation; hence, the heat trans-
fer occurs mainly by conduction and δ is larger than the
total fluid region width. Consequently, the fluid tempera-
ture profiles are practically linear. In the intermediate case
(Figure 10b), the conductive layer encompasses the entire
fluid region just in the case of low radiation (N = 1), while
is quite narrow in the case of high radiation (N = 0.01).
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Figure 11: Thermal radiation and conduction in the SRHT
benchmark case. Non-dimensional temperature profile
along a line y = cost for the case of self-absorbing medium.
Simulation of two values of walls emissivity ε, for increas-
ing level of thermal radiation.

The case N = 0.1 exhibits a conductive layer compara-
ble with the radiative one: the temperature has an almost
linear behaviour within the region δ . 0.4, and become
non-linear in the region δ & 0.4 (before approaching the
interface) where it shows a typical concave curve profile. A
transition region is located in a neighbourhood of the point
δ = 0.4, where the thermal profile change the concavity.

Figure 11 reports the non-dimensional temperature pro-
files for one extra case: the wall emissivity is here changed
to ε = 0.5, while τ = 1 is fixed. The decrease of the
wall emissivity does not change the general behaviour of
the RHT with respect to the case ε = 1: the profiles are
similar to the ones with ε = 1, but the overall system tem-
perature is lower and the interface temperature decreases
as a consequence of the lower level of energy emitted by
the hot wall.

5.4. Conduction and forced convection

This case does not involve thermal radiation. It is briefly
analysed for comparison purposes with the case in §5.5,
which includes also radiation.

The width of each regions is L = 1m, while the height
is chosen to be H = 30m. After some preliminary simula-
tions, this height is found to be sufficient for developing the
thermal profile in all the cases simulated. The two regions
are discretised using 20 × 600 cells, both equidistant in
the y-direction and stretched in the x-direction. The fluid
region grid is stretched to have a higher resolution in the
thermal boundary layer. The solid region grid is stretched
the same way, in order to assure the same size of the in-
terface boundary cells in the fluid and solid regions. A
double-side stretching function, based on hyperbolic tan-
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gent, is used:

x(ξ) =
1

2

(
1 +

tanh(δs(ξ − 1/2))

tanh(δs/2)

)
, (39)

where ξ are the coordinates of an equispaced partition,
and the stretching factor is δs = 3.5.

The forced Poiseuille channel flow enters from the bot-
tom side (y/H = 0) and exits through the top side
(y/H = 1). The equations of motion are not solved, but
the velocity profile (34) is imposed. The value of the flow
field characteristic velocity U = ū changes for each simu-
lation.

The temperature boundary conditions at the bottom
and top sides are: for solid medium, adiabatic condition
on both boundaries; for fluid medium, fixed temperature
Tin = 0 at bottom, adiabatic condition at the top bound-
ary. The adiabatic condition is imposed at the solid bot-
tom side because our purpose is to study the effects of
streamwise convection against wall-normal conduction. If
a fixed temperature Tin = 0 condition, coherent with the
fluid medium one, was imposed, then the conduction along
the y-direction in the solid medium would affect the tem-
perature distribution. Heat convection and conduction are
here orthogonal to each other: convection cools down the
fluid along the y-direction (streamwise), while conduction
transports heat between the two external isothermal walls
along the x-direction (wall-normal).

The fluid thermal conductivity is set to kf =
10W/(mK) in order to have a sufficiently high character-
istic diffusion time, see equation (26), and to quickly reach
the statistical steady-state solution. This system is gov-
erned by the convection-conduction number Cn. Three
simulations have been done for Cn = 1, 10, 100 respec-
tively. The temperature profile is plotted along a horizon-
tal line y/H = Y0, where Y0 satisfies:

Tf (x, Y0)
∣∣∣
x/L=0.5

=
(Th − Tc)

2
,

i.e. the height at which the temperature in the centre of
the fluid region is the average between the temperature of
the isothermal hot and cold walls.

The three simulations give practically the same temper-
ature profile. In Figures 12a,b,c we show the profile for
case Cn = 100 as a black dash line, labelled N =∞. The
interface temperature is slightly lower than in the non-
convective case (cf. Figure 10, black dash line), because
of the cooling effect of the fluid flow. However, convection
does not strongly influence the fluid thermal profile which
is almost linear. The thermal profiles remain unaltered in
the three cases since the value of Y0 increases almost lin-
early with Cn. Just for the case Cn = 1, a slight decrease
of fluid medium temperature is detected. This is due to
the influence of the fluid bottom temperature: when Cn
is small, then Y0 is close to the bottom and the thermal
profile is affected by the heat conduction in the streamwise
direction.

The influence of the bottom thermal boundary layer can
be estimated by means of the conduction-convection num-
ber. The ratio between the convective and conductive heat
transfer in the y-direction, at location Y0, can be expressed
as:

Cn(Y0) =
UρCp

k
Y0 = Cn(L)

Y0

L
, (40)

following equation (24). In the simulation where Cn(L) =
1, we have Y0 ≤ L; hence the conduction along the span-
wise direction affects the temperature profile located at Y0.
In other simulations (Cn = 10, 100) we have Y0 � L, thus
conduction in the streamwise direction does not affect the
thermal profile.

5.5. Conduction, forced convection and thermal radiation

The same domain dimensions, computational grid and
boundary conditions as reported in §5.4 are adopted. Now
also radiation is also simulated in the fluid medium, and a
temperature difference of ∆T = 100K is imposed between
the isothermal walls. The system is governed by the three
non-dimensional numbers N , Bo, Cn from which the val-
ues of κ, k, ū can be derived.

Following the analysis of the conductive-convective case
(cf. §5.4), the convection-conduction number is set to
Cn = 100 for all simulations. This value guarantees that
the influence of the bottom thermal layer does not affect
the temperature profile in most of the cases.

Figure 12 reports the non-dimensional temperature, see
equation (37), profiles at the height Y0, chosen as stated
in §5.4. Combinations of the values N = 1, 0.1, 0.01 and
Bo = 10, 1, 0.1 have been used.

Figure 12a shows the case of high convective heat trans-
fer compared to the radiative one (Bo = 10). The interface
temperature, as well as the global system temperature, is
higher than for lower Bo cases. Since the high-speed flow
cools down the fluid medium more effectively in the cen-
tre of the channel, Y0 increases and the energy radiated is
more effective in heating the fluid medium near the solid
boundaries. The profile for N = 0.1 practically collapses
with the one for N = 1 in fluid medium far from the inter-
face, but it increases near the interface and remains higher
in the solid medium. The temperature for N = 0.01 has
a typical parabolic profile: the minimum is reached in the
channel centre zone, and it is due to the convection of cold
fluid medium.

Figure 12b depicts the case of balance between convec-
tive and radiative heat transfer (Bo = 1). Surprisingly,
the interface temperature for N = 0.1 is lower than for
N = 1, even if in the former case the level of radiation
is higher than in the latter. This is due to the fact that
fluid conduction tends to decrease the interface tempera-
ture and thermal radiation generates a temperature sink in
the near-interface zone. On the contrary, in the near-wall
zone radiation contributes to increase the fluid tempera-
ture. The result is a non-monotonic thermal profile in the
fluid medium. The channel is divided into two parts:
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(a) Heat transfer by radiation stronger than force convection, Bo = 10.
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(b) Balance between radiation and force convection, Bo = 1.
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(c) Heat transfer by force convection stronger than radiation, Bo = 0.1.

Figure 12: Thermal radiation, conduction and forced con-
vection with SRHT. Non-dimensional temperature along
a horizontal line y = Y0 for Cn = 100, changing the Boltz-
mann number Bo and Stark number N .

the near-wall zone (0 ≤ x/L ≤ 0.5) is influenced by
emission from the isothermal hot wall. The thermal
profile is concave and higher than in the N =∞ case;

the near-interface zone (0.5 ≤ x/L ≤ 1) is subject to
absorption of radiation by the solid interface. The
thermal profile is convex and the temperature is lower
than in the case of no radiation.

Graphically, the two zones are separated by an inflection
point of the temperature function T (x/L). The asymme-
try of the profile is ascribed to the non-linearity of the ra-
diative process (cf. Figure 10b). The profile for N = 0.01
exhibits the parabolic shape already described in the pre-
vious case. However, near the isothermal wall it presents
first a reduction, then an increase of temperature.

Figure 12c reports the simulations with low level of
convective heat transfer compared to the radiative one
(Bo = 0.1). Since the convection is weak, Y0 is very close
to the bottom boundary. The effects of the isothermal
fluid bottom condition on the solid temperature can be
detected in the N = 0.01 plot: the temperature profile
in the solid media is not linear but slightly convex. Also
N = 0.1 presents a very low temperature near the inter-
face, probably due to the thermal conduction from the
bottom.

For all the Bo values, the low-radiation thermal profiles
(N = 1) are similar to the one of no radiation (N = ∞),
as expected. However, the weak effect of radiation can
be detected: the temperature profiles have a slight non-
monotonic behaviour, similar to the one described for the
case Bo = 1, N = 0.1. Comparing the profiles charac-
terised by N = 0.01, we can notice that the temperature
minimum moves towards the isothermal wall as Bo in-
creases. This effect is related to the increase of the inter-
face temperature.

5.6. Conduction, natural convection and thermal radiation

The interaction of natural convection with radiation and
conduction is studied for a cavity in contact with a con-
ductive wall. The geometry is depicted in Figure 9: the
domain is composed by a fluid and a solid square region,
with one side in common. The dimensions of the two re-
gions are L × H = 1m × 1m. Both regions are discre-
tised by equidistant grid of 80 × 80 points. After some
tests, this grid it is found to be fine enough to capture
the thermal boundary layer. The domain is bounded by
two isothermal walls (hot at the left, cold at the right),
and two horizontal insulator walls (top and bottom). The
temperature difference between the isothermal walls is set
to ∆T = 1000K. In the fluid region a natural convection
arises and the buoyancy force drives the fluid medium.
The no-slip condition is applied at the walls.

Three cases are simulated for different degrees of ra-
diation N = 1, 0.1, 0.01 and Cn = 100, Bo = 1. The
characteristic buoyant velocity

U =
√

(gβT ∆TL), (41)
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(a) High radiation, N = 0.01.

(b) Intermediate radiation, N = 0.1.

(c) Low radiation, N = 1.

Figure 13: Temperature contour plots in fluid and solid
medium for three level of radiation, Bo = 1, Cn = 100.
Contour line values: 50 values over an equispaced partition
of temperature range.

is used for computing the non-dimensional numbers. The
gravity acceleration is g = 9.81m/s2 and the value of ther-
mal expansion coefficient βT is changed in the three sim-
ulations. The fluid dynamic viscosity ν is chosen in a way
that

Re =
UL

ν
=

√
gβT ∆TL3

ν2
= 100, (42)

where Re is the Reynolds number, i.e. the ratio between
the inertial forces and the viscous forces. Such a constrain
guarantees a laminar flow in all simulations. The resulting
flow is a clockwise circular motion, not perfectly symmet-
ric because of the non-homogeneous temperature profile
arising at the interface, see Figure 14.

Figure 13 visualises the temperature distributions for
the three values of the Stark number. Figure 13a shows

the case of high degree of thermal radiation. The sys-
tem is dominated by radiation, that heats up the fluid
medium until it reaches almost the same temperature as
the isothermal wall. The contour lines are practically ver-
tical since the flow field, generated by the low fluid thermal
gradient, is so weak that it cannot significantly alter the
thermal distribution. Figure 13b depicts the case of bal-
ance between radiation and conduction. A more uniform
temperature distribution arises in both the fluid and solid
regions. The natural convection changes the thermal dis-
tribution in the fluid medium but also in the solid medium,
near the interface. Figure 13c presents the cases of low ra-
diation and high conduction. In this case, radiation cannot
stabilise the interface temperature and the convective flow
leads to hot top and cold bottom zones, respectively, in
the fluid medium. Also the solid medium temperature is
significantly influenced by the fluid convection.

The non-dimensional temperature and velocity profiles
for the aforementioned cases are reported in Figure 14,
along vertical and horizontal lines passing through the
fluid region centre. Figure 14a shows the non-dimensional
temperature profiles, see equation (37), across the fluid
and solid media. It can be pointed out that this is not di-
rectly comparable with Figure 10b of the previous section,
since the optical thickness τL of the two sets of simula-
tions is not the same. However, the thermal profiles share
the same qualitative behaviour, except for the case of low
radiation N = 1. In accordance with Figure 13b, the nat-
ural convective flow increases the temperature near the
interface and decreases it near the isothermal wall. The
profile for the same case, where natural convection is not
activated, is also reported (labelled N = 1, U = 0) for
comparison. The interface temperature is significantly in-
creased by the fluid flow. In the other cases, the profiles
obtained with and without convection are practically the
same, thus they are not reported. Figure 14b presents
the non-dimensional vertical fluid velocity along a hor-
izontal line (y/H = 0.5); and Figure 14c reports the
non-dimensional horizontal velocity along a vertical line
(x/L = 0.5). When thermal radiation increases the tem-
perature, the gradient in fluid medium decreases, leading
to a weaker buoyancy force and, eventually, a lower veloc-
ity field. The system is not perfectly symmetric because of
the non-uniform temperature at the interface. The veloc-
ity asymmetry is more evident for the case N = 0.1, and
less for the case N = 1, while it is almost negligible for
N = 0.001 (as expected after the analyses of the interface
temperature in contour plots).

6. Conclusions

A numerical solver for heat transfer problems is de-
veloped, considering CHT between solid and fluid me-
dia as well as the contemporary presence of conduction,
convection and radiation. Thermal radiation is modelled
through the first-order, spherical approximation method
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(a) Non-dimensional temperature for different N . Case of low radiation
(N = 1) and no convection (U = 0) is reported (red dash line).
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vertical line x/L = 0.5 in fluid medium.

Figure 14: Thermal radiation, conduction and natural con-
vection with SRHT. Non-dimensional temperature and ve-
locity profiles in fluid medium. Different values of Stark
number N and Bo = 1, Cn = 100.

(P1-model). A Neumann-Neumann conjugate heat trans-
fer technique is used to simulate the heat transfer between
the two media, and a numerical coupling strategy for the
heat transfer modes is described. The model is used in ide-
alised cases, for a parametric study of thermal radiation
associated with conduction, convection and the fluid-solid
surface heat transfer. In successive studies, the thermo-
dynamic model herein presented can be integrated in a
generic three-dimensional transient thermo-fluid dynam-
ics solver.

In the first part, the P1 radiative model without surface
radiative heat transfer is validated. Several benchmark
cases reported in the literature are successfully reproduced
and the prediction capability of the model is investigated.

The numerical implementation is, then, verified using
a simplified case. A comparison between the P1 solution
with the exact solution, points out the general tendency
of the model to overestimate the radiative effects, as ex-
pected. However, in this case the overestimation is prob-
ably exaggerated by the unrealistic difference of tempera-
ture at the boundaries.

Radiation effects are then studied when combined with
other heat transfer modes: pure radiation, radiation-
conduction, radiation-conduction-convection. Two
archetypal geometries are investigated: two infinitely
long parallel plates and a square cavity. An excellent
agreement with the reference solutions is achieved for a
two parallel plates case. In square cavity case, the results
are less accurate for optical thick medium and near the
square corners, where collimated irradiation occurs. These
are two well known limits of the P1-model (Ref. [23]).
Moreover, the model fails in reproducing a pure scattering
medium because in this particular case the governing
equation reduces to a Laplace equation. Thus, radiation
is completely determined by the Marshak’s boundary
condition, that is recognised to be not accurate [20] and
tends to overestimate the emitted radiation. Conversely,
when a participating medium is present, the effects of
boundary emission are reduced and, overall, better results
are achieved. Overall, the P1-model gives satisfactory
results, despite the simplicity of the mathematical model.
It appears to be more trustworthy when associated with
other heat transfer mechanisms and less idealised case
settings.

Summing up, the main prediction limits of the P1-model
are:

1. tendency to overestimate the RHT effects;

2. loss of accuracy in case of collimated radiation;

3. incorrect results for low participating media, because
of Marshak’s boundary condition influence;

4. imprecise for optical thick medium (τ � 1).

Although the aforementioned limitations, the P1-
approximation requires a lower computational cost if com-
pared to more accurate methods, like DOM. This is essen-
tial in transient simulations, where temperature-radiation
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and fluid-solid thermal coupling loops have to be per-
formed in order to ensure the instantaneous thermal equi-
librium.

In the second part, the influence of surface radiative heat
transfer is studied in new benchmark case: a fluid medium
in contact with a solid one, both bounded by isothermal
walls. Different simulations are performed in order to in-
vestigate the interaction of surface radiative heat transfer
with: (i) radiation-conduction, (ii) radiation-conduction-
force convection, (iii) radiation-conduction-natural con-
vection. The non-dimensional numbers characterising the
mutual influence of the heat transfer modes are derived
and adopted for a parametric investigation. Overall, the
results are in accordance with the physics of thermal ra-
diation. The simulation of conjugate heat transfer points
out that thermal interaction between fluid and solid me-
dia strongly affects the thermodynamics of the systems.
Thermal radiation intensifies such interaction, increasing
the interface temperature and developing non-linear tem-
perature profile in the fluid medium. In case (i), the heat
fluxes ratio number Hf is introduced and used to iden-
tify the conductive boundary layer near the solid walls,
and the effects of different wall emissivity is also studied.
In case (ii), the heat transfer is investigated in a laminar
channel flow with cold inflow. Radiation is particularly
effective in transporting energy through the channel and
increasing the interface temperature, even if the fluid has
a lower temperature. The convective-conductive number
is used to analysed the influence of the cold inflow along
the streamwise direction. In case (iii), the presence of ra-
diation decreases the buoyancy force by reducing the ther-
mal gradient, while the conjugate heat transfer makes the
system asymmetric. From a numerical side, the coupling
strategy appears to be stable in all the cases simulated.
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