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About the prior-saturation phenomenon for
minimal time problems in the plane

Terence Bayen and Olivier Cots

Abstract— We consider minimal time problems governed by
control-affine-systems in the plane. We focus on the synthe-
sis problem in presence of a singular locus that involves a
saturation point for the singular control. We show that the
minimum time synthesis can exhibit a prior-saturation point
at the intersection of the singular locus and a switching curve.
We also provide a set of non-linear equations to compute the
prior-saturation point, and, at this point, we show a tangency
property involving the switching curve.

I. INTRODUCTION

In this paper, we consider minimal time problems gov-
erned by control-affine-systems in the plane

ẋ = f(x) + u(t)g(x), |u(t)| ≤ 1,

where f, g : R2 → R2 are smooth vector fields. Syntheses for
such problems have been investigated a lot in the literature
[4], [5], [13], [16], [17], [18]. We focus here on the notion
of singular arc which appears in the synthesis when the
switching function (the scalar product between the adjoint
vector and the controlled vector field g) vanishes over a
time interval I . In that case, the corresponding singular
control us (which allows the corresponding trajectory to
stay on the singular locus) can be expressed in feedback
form x 7→ us(x). However, it may happen that us becomes
non admissible, i.e., x 7→ |us(x)| takes values above the
maximal value for the control. Such a situation naturally
appears in several application models, see, e.g., [1], [2], [10],
[12]. In that case, we say that a saturation phenomenon
occurs. This implies the following (non-intuitive) property
that if a singular arc is optimal, then it should leave the
singular locus at a so-called prior-saturation point before
reaching the saturation point. This property has been studied
in the literature in various situations such as for control-affine
systems in dimension 2 and 4 (see, e.g., [14], [15], [2] and
references herein).

Our objective in this paper is to provide new qualitative
properties on the minimum time synthesis in presence of a
saturation point. More precisely, our objective is twofold:

• We first give a set of conditions on the system that en-
sure the occurence of the prior-saturation phenomenon,
and we show that (under certain assumptions) the sys-
tem leaves the singular arc at this point (before reaching
the saturation point) with the maximal value for the
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control. This last arc is usually called bridge following
the terminology as in [6], [7] (see also [3], [4]).

• Second, we introduce a shooting function that allows
an effective computation of the prior-saturation point.
In addition, we show that when the system exhibits
a switching curve emanating from the prior-saturation
point, then a tangency property occurs between this
curve and the bridge.

The tangency property has been pointed out in several
application models (see, e.g., [2], [6]). To the best of our
knowledge, this property has not been addressed previously
in a general setting in the literature.

The paper is structured as follows: in Section II, we recall
classical expressions and properties of singular controls for
control-affine-systems in the plane introducing the saturation
phenomenon. In Section III, we provide a set of condi-
tions on the system that ensure occurrence of the prior-
saturation phenomenon. In Section IV, we show a tangency
property between the switching curve emanating from a
prior-saturation point and the bridge, and we describe how
to compute the prior-saturation point thanks to a shooting
function constructed via the Hamiltonian lifts of f and g.

II. SATURATION PHENOMENON

The purpose of this section is to recall some facts about the
minimum time control problems in the plane that will allow
us to introduce the saturation phenomenon. Throughout the
paper, | · | stands for the Euclidean norm in R2 associated
with the standard inner product written a · b for a, b ∈ R2,
and a⊥ denotes the vector a⊥ := (−a2, a1). The interior of
a subset S ⊂ Rn is denoted by Int(S).

A. Pontryagin’s Principle

We start by applying the classical optimality conditions
provided by the Pontryagin Maximum Principle (PMP), see
[11]. Let f, g : R2 → R2 be two vector fields of class C2,
and consider the controlled dynamics:

ẋ = f(x) + u(t)g(x), (1)

with admissible controls in the set

U := {u : [0,+∞)→ [−1, 1] ; u meas.}.

Given an initial point x0 ∈ R2 and a non-empty closed subset
T ⊂ R2, we focus on the problem of driving (1) in minimal
time from x0 to the target set T :

inf
u∈U

Tu s.t. xu(Tu) ∈ T , (2)



where xu(·) denotes the unique solution of (1) associated
with the control u such that xu(0) = x0 and Tu ∈ [0,+∞] is
the first entry time of xu(·) into the target set T . We suppose
hereafter that optimal trajectories exist1 and we wish to apply
the PMP on (2). The Hamiltonian associated with (2) is the
function H : R2 × R2 × R× R defined as

H(x, p, p0, u) := p · f(x) + up · g(x) + p0.

If u is an optimal control and xu is the associated trajectory
steering x0 to the target set T in time Tu ≥ 0, the following
conditions are fulfilled:
• There exist p0 ≤ 0 and an absolutely continuous func-

tion p : [0, Tu] → R2 satisfying the adjoint equation:
almost everywhere over [0, Tu]:

ṗ(t) = −∇xH(xu(t), p(t), p0, u(t)). (3)

• The pair (p0, p(·)) is non-zero.
• The optimal control u satisfies the Hamiltonian condi-

tion almost everywhere over [0, Tu]:

u(t) ∈ argmaxω∈[−1,1]H(xu(t), p(t), p0, ω). (4)

• At the terminal time, the transversality condition2

p(Tu) ∈ −NT (xu(Tu)) is fulfilled.
Recall that an extremal (xu(·), p(·), p0, u(·)) satisfying (1)
and (3)-(4) is abnormal whenever p0 = 0 and normal
whenever p0 6= 0 (in the latter case, we take p0 = −1 and the
corresponding extremal is denoted by (xu(·), p(·), u(·)) and
we shall then write H(x, p, u) in place of H(x, p, p0, u)).
Since Tu is free and (1) is autonomous, the Hamiltonian H
is zero along any extremal: for a.e. t ∈ [0, Tu],

H = p(t) · f(xu(t)) + u(t)p(t) · g(xu(t)) + p0 = 0. (5)

The switching function φ is

φ(t) := p(t) · g(xu(t)), t ∈ [0, Tu], (6)

and it gives us the following control law: φ(t) > 0 ⇒ u(t) = +1,
φ(t) < 0 ⇒ u(t) = −1,
φ(t) = 0 ⇒ u(t) ∈ [−1,+1].

(7)

A switching time is an instant tc ∈ (0, Tu) such that the
control u is discontinuous at time tc. We say that the
corresponding extremal trajectory has a switching point at
time tc. Of particular interest is the case when there is a
time interval I := [t1, t2] such that the switching function
vanishes over I , i.e.,

φ(t) = p(t) · g(xu(t)) = 0, t ∈ I.

We then say that the extremal trajectory has a singular arc
over I . Note that we shall suppose such an extremal to be
normal, i.e., p0 6= 0. Indeed, recall from [5, Prop. 2 p.49] that

1If the target can be reached from x0 and if f, g have linear growth, then
(2) admits an optimal solution, thanks to Filippov’s Existence Theorem.

2Here, NT (x) stands for the (Mordukovitch) limiting normal cone to
T at point x ∈ T , which coincides with the normal cone in the sense of
convex analysis when T is convex, see [19].

under generic conditions, abnormal extremals are bang-bang.
By differentiating φ w.r.t. t, one has

φ̇(t) = p(t) · [f, g](xu(t)), t ∈ [0, Tu],

where [f, g](x) is the Lie bracket of f and g at point x. The
singular locus ∆SA (in the state space) is then the (possibly
empty) subset of R2 defined as:

∆SA := {x ∈ R2 ; det(g(x), [f, g](x)) = 0}. (8)

For future reference, we set

δSA(x) := det(g(x), [f, g](x)), x ∈ R2.

Note that if an extremal is singular over an interval [t1, t2],
then xu(t) ∈ ∆SA for any t ∈ [t1, t2] because p(·) must
be non-zero and orthogonal to span{g(xu(t)), [f, g](xu(t))}
for t ∈ [t1, t2]. The singular control us is then the value
of the control for which the trajectory stays on the singular
locus ∆SA. Differentiating φ̇ w.r.t. t gives:

φ̈(t) = p(t) · [f, [f, g]](xu(t)) + u(t)p(t) · [g, [f, g]](xu(t)),

for a.e. t ∈ [0, Tu]. Therefore, us becomes:

us(t) := −p(t) · [f, [f, g]](xu(t))

p(t) · [g, [f, g]](xu(t))
, t ∈ [0, Tu], (9)

provided that p(t) · [g, [f, g]](xu(t)) is non zero for t ∈
[t1, t2]. This expression of the singular control does not
guarantee that us is admissible, that is, us(t) ∈ [−1, 1]:

• When us(t) ∈ [−1, 1], the point xu(t) is said hyperbolic
if p(t) · [g, [f, g]](xu(t)) > 0, and elliptic if p(t) ·
[g, [f, g]](xu(t)) < 0 (see [3]).

• When |us(t)| > 1 for some instant t, we say that a sat-
uration phenomenon occurs and that the corresponding
points of the singular locus are parabolic (see [3]).

Our purpose in what follows is precisely to investigate
properties of the synthesis when saturation occurs.

B. Singular control and saturation phenomenon

In this part, we derive classical expressions of the singular
control in terms of feedback that will allow us to introduce
saturation points (in terms of the data defining the system).
The collinearity set associated with (1) is the (possibly
empty) subset of R2 defined as

∆0 := {x ∈ R2 ; det(f(x), g(x)) = 0}. (10)

Consider now the functions δ0, ψ : R2 → R defined
respectively by δ0(x) := det(f(x), g(x)) and

ψ(x) := −det(g(x), [f, [f, g]](x))

det(g(x), [g, [f, g]](x))
. (11)

Lemma 2.1: Suppose that ∆SA 6= ∅, that x 7→
det(g(x), [g, [f, g]](x)) is non-zero over ∆SA, and consider
a singular arc defined over an interval [t1, t2]. Then, one has:

us(t) = ψ(x(t)), t ∈ [t1, t2]. (12)

where x(·) is the corresponding singular trajectory such that
x(t) ∈ ∆SA for t ∈ [t1, t2].



Proof: Along I , the adjoint vector can be expressed
as p(t) = − g

⊥(x(t))
δ0(x(t))

, t ∈ [t1, t2]. Since for t ∈ [t1, t2],
{f(x(t)), g(x(t))} is a basis of R2, we deduce (decomposing
[f, [f, g]](x(t)) and [g, [f, g]](x(t)) on this basis):

p(t) · [f, [f, g]](x(t)) = det(g(x(t)), [f, [f, g]](x(t)))Λ(x(t)),

p(t) · [g, [f, g]](x(t)) = det(g(x(t)), [g, [f, g]](x(t)))Λ(x(t)),

where Λ(x) := g⊥(x)·f(x)
δ0(x)2

, x /∈ ∆0. Moreover, g⊥(x(t)) ·
f(x(t)) = −δ0(x(t)) and thus, this scalar product is non-
zero because p0 6= 0. This ends the proof.

Remark 2.1: Steady-state singular points are defined as
the points x? ∈ ∆SA ∩ ∆0 such that g(x?) 6= 0, see [5]
(if ∆SA ∩ ∆0 6= ∅). Such points are equilibria of (1) with
u = ψ(x). A singular arc defined over a time interval [t1, t2]
does not contain such a point because f(x(t)) and g(x(t))
must be linearly independent over [t1, t2]. But, it can contain
points x? ∈ ∆0 ∩∆SA such that g(x?) = 0.

To introduce the notion of saturation point, it is convenient
to consider a parametrization of ∆SA as follows. When
∆SA ∩ ∆0 is non-empty, ∆SA\∆0 may consist of several
parts (or components), and we write this set as

∆SA\∆0 =
⋃
j∈K

γj ,

where K is an index set.

Lemma 2.2: Suppose that ∆SA is non-empty and that
x 7→ det(g(x), [g, [f, g]](x)) is non-zero over ∆SA. Then,
each component γ of ∆SA\∆0 can be parametrized by a
one-to-one parametrization ζ : J → γ, τ 7→ ζ(τ) of class
C1, where J is an interval of R.

Proof: For x ∈ ∆SA\∆0, one has span{f(x), g(x)} =
R2. Hence, there exist α(x), β(x) ∈ R such that

[f, g](x) = α(x)f(x) + β(x)g(x). (13)

By taking the determinant, we find that for x ∈ ∆SA\∆0,

α(x) = −det(g(x), [f, g](x))

δ0(x)
, β(x) =

det(f(x), [f, g](x))

δ0(x)
.

Consider now a component γ of ∆SA\∆0 and x ∈ γ. By
computing [f, [f, g]](x) thanks to (13), we get

det(g(x), [g, [f, g]](x)) = −δ0(x)∇α(x) · g(x), x ∈ γ.

Since x 7→ det(g(x), [g, [f, g]](x)) is non-zero over ∆SA,
the preceding equality implies that the scalar product∇α(x)·
g(x) is non-zero. On the other hand, γ is defined by the
implicit equation δSA(x) = 0. Observe that for x /∈ ∆0,
δSA(x) = −α(x)δ0(x). By taking the derivative, we find
that for x /∈ ∆0, one has ∇δSA(x) = −δ0(x)∇α(x) −
α(x)∇δ0(x). Therefore, for x ∈ γ, we obtain ∇δSA(x) =
−δ0(x)∇α(x). We can conclude that for any point x ∈ γ,
the derivative ∂1α(x) or ∂2α(x) is non-zero. We are then
in a position to apply the implicit function theorem to δSA
locally at each point x ∈ γ, which then implies the desired
property.

Under the assumptions of Lemma 2.2, given a component
γ of ∆SA, there is a parametrization ζ such that

γ := {ζ(τ) ; τ ∈ J},

where ζ : J → R2 is C1-mapping (injective) and J is an
interval.

Definition 2.1: A point x∗ := ζ(τ∗) with τ∗ ∈ Int(J) is
called saturation point if ψ(x∗) = 1, ψ(ζ(τ)) ∈ (−1, 1) for
any τ ∈ J such that τ < τ∗, and ψ(ζ(τ)) > 1 for any τ ∈ J
such that τ > τ∗.

As well, we can define saturation points x? such that
ψ(x?) = −1, that is, when the lower bound of the admis-
sible control set is saturated. Our next aim is to study the
optimality of singular arcs in presence of a saturation point.

III. EXISTENCE OF A PRIOR-SATURATION POINT

In this section, we show that a prior-saturation phe-
nomenon can occur whenever the system exhibits a saturation
point. We start by introducing our main assumptions.

Assumption 3.1: System (1) satisfies the following:
(i) One has ∆0 = ∅ and δ0(x) < 0 for all x ∈ R2.
(ii) The set ∆SA is non-empty, simply connected, and has

exactly one saturation point x∗ with ψ(x∗) = 1.
(iii) Along the singular locus, the strict Legendre-Clebsch

optimality condition is satisfied, that is, any singular
extremal (xu(·), p(·), u(·)) defined over [t1, t2] satisfies:

∂

∂u

d2Hu

dt2
(xu(t), p(t), u(t)) > 0, ∀t ∈ [t1, t2]. (14)

(iv) If Γ− is the forward semi-orbit of (1) with u = −1 with
the initial condition x∗ at time 0, then

T ∩ Γ− = ∅. (15)

(v) The target T is reachable from every point x0 ∈ R2.

Remark 3.1: (i) The hypothesis ∆0 = ∅ is not restrictive
since we could restrict our analysis to a component γ of
∆SA in place of ∆SA.
(ii) By the previous computations, we can observe that (14)
is equivalent to

det(g(x), [g, [f, g]](x)) > 0, ∀x ∈ ∆SA.

Recall that, under the strict Legendre-Clebsch condition,
the singular arc is a turnpike, i.e., it is time-minimizing in
every neighborhood of a hyperbolic point of ∆SA, [3]. This
property can be retrieved by the clock form argument [8].

Under Assumption 3.1, the singular locus ∆SA is written
∆SA := ζ(J) where J ⊂ R is an interval and ζ : J → ∆SA

is a C1-mapping. In addition, ∆SA partitions the state space
into two simply connected subsets ∆±SA:

∆+
SA := {x ∈ R2 ; det(g(x), [f, g](x)) > 0},

∆−SA := {x ∈ R2 ; det(g(x), [f, g](x)) < 0}.

Given a normal extremal (xu(·), p(·), u(·)), the function

t 7→ γu(t) := β(xu(t))− α(xu(t))u(t), t ∈ [0, Tu],



is well-defined since ∆0 = ∅.

Lemma 3.1: Along a normal extremal (xu(·), p(·), u(·)),
the switching function φ satisfies the ODE

φ̇(t) = γu(t)φ(t) + α(xu(t)) a.e. t ∈ [0, Tu]. (16)
Proof: The proof follows using the expression of φ̇ and

the fact that the Hamiltonian H is constant equal to zero.

The next proposition shows that an extremal containing a
singular arc until the point x? is not optimal.

Proposition 3.1: Suppose that Assumption 3.1 holds true,
and consider an optimal trajectory steering x0 to the
target T in time Tu. Then, the corresponding extremal
(xu(·), p(·), u(·)) does not contain a singular arc defined over
a time interval [t1, t2] such that xu(t2) = x∗.

Proof: Suppose by contradiction that there is a time
interval [t1, t2] such that the trajectory is singular over [t1, t2]
and such that xu(t2) = x∗. We claim that, at time t2, the
vector f(xu(t2))+g(xu(t2)) is tangent to ∆SA. Indeed, it is
enough to check that the vector f(x∗) + g(x∗) is orthogonal
to ∇δSA(x∗) = −δ0(x∗)∇α(x∗). As we have seen in the
proof of Lemma 2.2, one has for x ∈ ∆SA:

det(g(x), [g, [f, g]](x)) = −δ0(x)∇α(x) · g(x),
det(g(x), [f, [f, g]](x)) = −δ0(x)∇α(x) · f(x).

(17)

These equalities imply that

− δ0(x∗)∇α(x∗) · (f(x∗) + g(x∗))

= det(g(x∗), [g, [f, g]](x∗)) + det(g(x∗), [f, [f, g]](x∗)).

Since ψ(x∗) = 1, the right member of the above equality is
zero which shows the claim. Note also that for x ∈ ∆SA,
(17) also implies the equalities

∇δSA(x) · (f(x) + g(x))

= det(g(x), [g, [f, g]](x))(1− ψ(x)),

∇δSA(x) · (f(x)− g(x))

= det(g(x), [g, [f, g]](x))(−1− ψ(x)).

Consider now the unique solution x− of (1) with u = −1
starting from x∗ at time t2. This trajectory enters into the set
∆−SA for t > t2, t close to t2, because one has ∇δSA(x∗) ·
(f(x∗) − g(x∗)) < 0. Going back to the optimal trajectory,
there are now two possibilities for xu(·): for t > t2, t close
to t2, either xu(·) enters into ∆+

SA or into ∆−SA (because the
singular control becomes non admissible).

Suppose first that xu(·) enters into ∆+
SA. Then, there is

ε > 0 such that one has α(xu(t)) > 0 for t ∈ (t2, t2 + ε]. It
follows from (16) that one has u = +1 on this interval. But
the velocity set being convex, we obtain a contradiction with
the non-admissibility of the singular control at x∗ (because
x− enters into ∆−SA). It follows that the optimal trajectory
necessarily enters into the set ∆−SA. But then, since α < 0
in ∆−SA, (16) implies that u = −1 in some time interval
(t2, t2 + ε].

From Assumption 3.1, the forward semi-orbit with u = −1
starting from x∗ does not reach the target set. Hence, xu(·)

must have a switching point to u = +1 in ∆−SA or it must
reach ∆SA with the control u = −1. We see from (16) that
the first case is not possible because at a switching time
tc such that xu(tc) ∈ ∆−SA, we would have φ̇(tc) ≥ 0 in
contradiction with α(xu(tc)) < 0.

Suppose now that xu(·) reaches ∆SA at some point x :=
ζ(τ) with τ < τ∗. Then, we obtain ∇δSA(x) · (f(x) −
g(x)) < 0 since ψ(x) > −1. But, this contradicts the fact
that xu(·) reaches ∆SA with u = −1 at point x (indeed,
because at this point, the singular control is admissible, one
must have∇δSA(x)·(f(x)−g(x)) ≥ 0). In the same way, the
trajectory cannot reach a point x ∈ ∆SA such that x = ζ(τ)
with τ > τ∗.

We can conclude that for any time t ≥ t2, one has
u(t) = −1, but then, the optimal trajectory cannot reach
the target set which is a contradiction (Assumption 3.1 (iv)).
This concludes the proof.

As an example, if x0 belongs to the singular locus and is
such that x0 := ζ(τ0) with τ0 < τ∗, and if in addition, the
optimal trajectory starting from x0 contains a singular arc,
then the trajectory should leave the singular locus before
reaching x∗. Let us insist on the fact that this property of
leaving the singular locus before reaching x∗ relies on the
fact that the optimal trajectory should contain a singular arc.
In the fed-batch model presented in [2], this property can be
easily verified.

We now introduce the following definition (in line with
[10], [14], [15]). Hereafter, the notation S[τ ′

0,τ0]
denotes a

singular arc passing through the points ζ(τ ′0) and ζ(τ0) with
τ ′0 ≤ τ0 < τ∗.

Definition 3.1: Let τ0 < τ∗. A point xe := ζ(τe) ∈ ∆SA

with τ0 < τe < τ∗ is called a prior-saturation point if the
singular arc S[τ0,τ ] ceases to be optimal for τ ≥ τe.

This definition makes sense only for initial conditions
ζ(τ0) with τ0 < τ∗ because for τ0 ≥ τ∗, optimal controls are
not singular (since the singular control is non-admissible).
We highlight the dependency of xe w.r.t. the initial condition
ζ(τ0) ∈ ∆SA as follows.

Proposition 3.2: Suppose that Assumption 3.1 holds true
and that there are τ1 < τ2 < τ∗ such that any optimal
trajectory starting from ζ(τ0) with τ0 ∈ [τ1, τ2) contains
a singular arc S[τ0,τ2]. Then, for any initial condition τ0 ∈
[τ1, τ2), one has xe = ζ(τe) with

τe := sup{τ ∈ J and S[τ1,τ ] is optimal}. (18)

Moreover, for any τ0 ∈ (τe, τ
∗] an optimal trajectory starting

at ζ(τ0) leaves the singular locus at ζ(τ0).
Proof: Let E := {τ ∈ J ; S[τ1,τ ] is optimal} and

F := {τ ∈ J ; S[τ0,τ ] is optimal} where τ0 ∈ [τ1, τ2) is
fixed. Take a point τ ∈ F . Then, from our assumption, S[τ1,τ ]
is also optimal (by concatenation) which shows that τ ∈ E.
On the other hand, if τ ∈ E, then S[τ0,τ ] is optimal (as a
sub-arc). It follows that E = F and, in addition, since xe is
defined as the point such that S[τ1,τ ] ceases to be optimal,
we obtain (18).



Finally, for every τ0 ∈ (τe, τ
∗), a singular arc S[τ0,τ ′

0]

with τ0 < τ ′0 < τ∗ cannot be optimal, since otherwise, this
would contradict the definition of τe. It follows that for every
τ0 ∈ (τe, τ

∗], no singular arc occurs and thus xe = ζ(τ0).

This property implies in particular that for some initial
conditions in ∆SA (e.g., for x0 := ζ(τ1)), then the optimal
path has a singular arc until xe and a switching point at the
prior-saturation point.

Remark 3.2: In addition to Assumption 3.1 (in particular
(15)), if T is not reachable with the constant control u = −1
from those points of ∆SA located between xe and x∗, then
the maximal value for the control u = +1 is locally optimal
from xe. In other words, the bridge (the last arc leaving
∆SA) corresponds to u = +1. This can be proved by using
similar arguments as for proving Proposition 3.2. Since the
singular arc is a turnpike, this additionnal hypothesis also
implies the existence of a switching curve emanating from
xe. Our next aim is precisely to investigate more into details
geometric properties of optimal paths at the point xe.

IV. TANGENCY PROPERTY AND PRIOR-SATURATION

A. Introduction to the tangency property

1) Prior-saturation lift: To introduce this concept, let us
start with an example. Let us consider a target T := {xf},
xf ∈ R2, with an optimal trajectory of the form γ−γsγ+,
where γ−, γ+ and γs are arcs, respectively, with control
u = −1, u = +1 and u = us, where us is the singular
control. The PMP gives first order optimality conditions
satisfied by this extremal trajectory, that we can write as
a system of nonlinear equations, the so-called shooting
equations. To introduce this set of equations, we introduce
some notation: we define Hf (z) := p · f(x) and Hg(z) :=
p · g(x), z := (x, p), the Hamiltonian lifts of f and g. Any
other Hamiltonian lift is defined like this. Define also the
Hamiltonians H± := Hf ± Hg and Hs := Hf + usHg ,
where us is viewed as a function of z:

us(z) := −p · [f, [f, g]](x)

p · [g, [f, g]](x)
= −

H[f,[f,g]](z)

H[g,[f,g]](z)
.

For any Hamiltonian H we define the Hamiltonian system
#—

H := (∂pH,−∂xH), and finally, we introduce the expo-
nential mapping, such that the solution at time t of any
differential equation ż(s) = ϕ(z(s)), with initial condition
z(0) = z0, is written etϕ(z0) or exp(tϕ)(z0).

The shooting equations are then defined by the equation
S(y) = 0, y := (p0, t1, t2, tf , z1, z2) ∈ Rn+3+(2n)×2, n = 2,
with

S(y) :=



Hg(z1)
H[f,g](z1)

H+(exp((tf − t2)
#   —

H+)(z2)) + p0

πx(exp((tf − t2)
#   —

H+)(z2))− xf
z1 − exp(t1

#    —

H−)(x0, p0)

z2 − exp((t2 − t1)
#  —

Hs)(z1)

 ,

where πx(x, p) = x, and x0 ∈ R2, p0 ≤ 0 are given. The
two first equations mean that the trajectory is entering the

singular locus at z1. Hence, the second arc is a singular arc.
The third equation takes into account the free terminal time.
The fourth equation implies that the last bang arc reaches
the target T := {xf} at the final time tf , and the last
two equations are the so-called matching conditions (which
are not required but improve numerical stability). Now, let
y∗ := (p0, t1, t2, tf , z1, z2) be a solution to S(y) = 0. Then,
assuming t2 > 0, the point πx(z2) is a prior-saturation point
and we call z2 a prior-saturation lift.

2) The prior-saturation lift is locally unique: Let us
consider a smooth and local one-parameter family of initial
conditions x0(α), α ∈ (−ε, ε), ε > 0. Let us assume that for
any α, the optimal trajectory is of the form γ−γsγ+, and we
denote by y(α) the corresponding solution of Sα(y), where
Sα is defined as in section IV-A.1, but with initial condition
x0(α) in place of x0. In addition, suppose that the lengths t1,
t2−t1 and tf −t2 are positive, that is, each arc is defined on
an interval with non-empty interior. Under this setting, for
any α, we have z2(0) = z2(α), that is, the prior-saturation
lift is locally unique. Hence, we can define ze := z2(0) the
prior-saturation lift. In relation with the property 3.2, we have
πx(ze) = xe, where xe is the prior-saturation point. See the
following illustration in the state space:

γ− γ−

γs

γ+

x0(0)

x0(α)

xe
∆SA

3) Computation of the prior-saturation lift: Actually, in
the previous example, we can compute the prior-saturation
lift with a smaller set of equations. The prior-saturation lift
is the switching between the singular and positive bang arcs.
What happens before is useless and we also do not need the
matching equations. With these considerations we can set

F (tb, zb) :=


Hg(exp(−tb

#   —

H+)(zb))

H[f,g](exp(−tb
#   —

H+)(zb))
H+(zb) + p0

πx(zb)− xf

 ,

where F : R5 → R5, and where we use the notation tb, zb
(b stands for bridge) in relation with the concept of bridge
defined in Ref. [6]. Note that the exponential mapping is here
computed by backward integration, and with the notation of
the two previous parts: we have zb = exp((tf − t2)

#   —

H+)(z2)
and tb = tf − t2. Hence, the prior-saturation lift is simply
given by ze = exp(−tb

#   —

H+)(zb).
From a general point of view, we can assume that the

prior-saturation lift is given by solving a set of nonlinear
equations of the following form:

F (tb, zb, λ) :=

(
H[f,g](exp(−tb

#   —

H+)(zb))
G(tb, zb, λ)

)
, (19)



where λ ∈ Rk, k ∈ N, represents some parameters, F :
R5+k → R5+k, and G is defined by

G(tb, zb, λ) :=

Hg(exp(−tb
#   —

H+)(zb))
H+(zb) + p0

Ψ(zb, λ)

 , (20)

with Ψ(zb, λ) ∈ R2+k. It is important to notice that Ψ does
not depend on tb. In the previous example, we would have
Ψ(zb) = πx(zb) − xf , that is, k = 0. For a more complex
structure of the form γ−γsγ+γ−, the parameter λ would be
the last switching time between the γ+ and γ− arcs. In this
case, Ψ would contain the additional switching condition
Hg = 0 at this time.

4) The tangency property: Let us come back to the simple
example where the solution is of the form γ−γsγ+. Let us
consider a smooth and local one-parameter family of initial
conditions x0(α), α ∈ (−ε, ε), ε > 0. Let us also assume
that for α = 0, the optimal solution is of the form γ−γsγ+,
but with γs reduced to a single point, that is, t2(0)−t1(0) =
0, with y(0) := (p0(0), t1(0), t2(0), tf (0), z1(0), z2(0)) the
solution of the associated shooting equations. Assume also
that for α > 0, we are in the case of Sections IV-
A.1 -IV-A.2, that is, t2(α) − t1(α) > 0, with y(α) :=
(p0(α), t1(α), t2(α), tf (α), z1(α), z2(α)) the solution of the
associated shooting equations. The prior-saturation lift is
given by ze = z2(α) for α ∈ [0, ε). Let Γ+ denotes the
forward semi-orbit of ż =

#   —

H+(z) starting from ze.
The idea is now to consider the case where there is a

bifurcation in the structure of optimal trajectories when α =
0. We thus assume that for α ∈ (−ε, 0), the solutions are of
the form γ−γ+ and we denote by z1(α) the switching point
(in the cotangent space) between the two arcs. In this setting,
there is a birth of a switching locus (still in the cotangent
space) defined by Σ− := {z1(α); α ∈ (−ε, 0)}.

The aim of the next section is to prove that the semi-
orbit Γ+ is tangent to the switching curve Σ− at the prior-
saturation lift ze. This is the tangency property. See the
following illustration where Σs : Hg = H[f,g] = 0 is the
singular locus and where we define z0(α) := (x0(α), p0(α)):

Γ+

z0(0)

z1(α)

z0(α), α < 0

ze

Σs

Σ−

B. Results

We start by a general definition of a prior saturation lift.
Definition 4.1: Let (t∗b , z

∗
b , λ
∗) ∈ R5+k be a solution

to the equation F = 0 (recall (19)) and define ze :=
exp(−t∗b

#   —

H+)(z∗b ) ∈ Σs. The point ze is called a prior-
saturation lift if πx(ze) is a prior-saturation point.

Next, we introduce the following assumptions.

Assumption 4.1: The point ze satisfies us(ze) < 1.

Assumption 4.2: The function G from eq. (20) satisfies:[
∂G

∂zb
(t∗b , z

∗
b , λ
∗)

∂G

∂λ
(t∗b , z

∗
b , λ
∗)

]
invertible.

Proposition 4.1: Suppose Assumptions 4.1 and 4.2 hold
true, then F ′(t∗b , z

∗
b , λ
∗) is invertible.

Proof: The Jacobian of F at (t∗b , z
∗
b , λ
∗) is given by:

F ′(t∗b , z
∗
b , λ
∗) =

−a ∗ ∗

−b ∂G

∂zb
(t∗b , z

∗
b , λ
∗)

∂G

∂λ
(t∗b , z

∗
b , λ
∗)

 ,
where b = (H[f,g](ze), 0, 0) = 0 since F (t∗b , z

∗
b , λ
∗) = 0 and

a = H[f,[f,g]](ze) +H[g,[f,g]](ze) 6= 0 since us(ze) < 1.
Note that the point ze is locally unique by the inverse

function theorem. From Assumption 3.1 and by Proposition
3.2, there exists a prior-saturation point xe that is locally
unique, and from Assumption 4.2, xe has a locally unique
lift in the cotangent space, given by the solutions to F = 0.

Lemma 4.1: Suppose that Assumption 4.2 holds true.
Then, there is a curve, solution to G = 0, given by the graph
of an implicit function tb 7→ σ(tb) := (zb(tb), λ(tb)) ∈ R4+k

satisfying σ(t∗b) = (z∗b , λ
∗), defined over an interval of the

form (t∗b − ε, t∗b + ε), ε > 0, and such that3 σ′(t∗b) = 0R4+k .

Proof: The existence of σ is a simple application of
the implicit function theorem. Its derivative is given by:

σ′(tb) = −
[
∂G

∂zb
[tb]

∂G

∂λ
[tb]

]−1
· ∂G
∂tb

[tb].

where [tb] stands for (tb, σ(tb)). Since

∂G

∂tb
[t∗b ] = (H[f,g](ze), 0R3+k) = 0R4+k ,

the result follows.
Definition 4.2: We define the switching curve

Σ := {ϕ(tb); tb ∈ (t∗b − ε, t∗b + ε)}

with ϕ(tb) := exp(−tb
#   —

H+)(zb(tb)), and Γ+ as the forward
semi-orbit of ż =

#   —

H+(z) starting from ze.
The curve Σ is called a switching curve since Hg(ϕ(tb)) =

0. However, the switching curve is not necessarily optimal,
that is, the optimal synthesis, with respect to the initial
condition, may not contain Σ. Let us stratify Σ according
to Σ = Σ− ∪ Σ0 ∪ Σ+, with

Σ− := {ϕ(tb); tb ∈ (t∗b − ε, 0)},
Σ0 := {ϕ(t∗b)} = {ze},
Σ+ := {ϕ(tb); tb ∈ (0, t∗b + ε)}.

A typical situation is the following: Σ−∪Σ0 is contained in
the optimal synthesis while Σ+ is not optimal for local and/or
global optimality reasons. Our main result is the following.

Theorem 4.1: Suppose that Assumptions 3.1 and 4.2 hold
true. Then, there exist a prior-saturation lift ze and a switch-
ing curve Σ which is tangent to the semi-orbit Γ+ at ze.

3We assume that all the functions are smooth enough.



Proof: From Assumption 3.1, there exists a prior-
saturation point. Since the system F from eq. (19) is assumed
to be obtained from the PMP, the prior-saturation lift ze :=
exp(−t∗b

#   —

H+)(z∗b ) is well defined. From Assumption 4.2, ze
is locally unique (since us(ze) < 1) and we can define Σ
and Γ+ according to Definition 4.2. To prove the tangency
property, we have to show that ϕ′(t∗b) is colinear to

#   —

H+(ze).
For any tb ∈ (t∗b − ε, t∗b + ε), we have

ϕ′(tb) = − #   —

H+(ϕ(tb)) + Φ(tb, zb(tb)) · z′b(tb),

where Φ(t, z0) is defined as the solution at time t of the
Cauchy problem Ẋ(s) = A(s, z0)X(s), X(0) = I , with

A(s, z0) := − #   —

H+
′(exp(−s #   —

H+)(z0)).

By lemma 4.1, z′b(t
∗
b) = 0 whence the result.

Let ξ(z) := (Hg(z), H[f,g](z)), then Σs = ξ−1({0R2}).
Proposition 4.2: Suppose that ξ is a submersion at ze and

that Assumptions 4.1 and 4.2 hold true. Then the switching
curve Σ is transverse to the singular locus Σs at ze.

Proof: Since ξ is a submersion at ze, then Σs is locally a
regular submanifold of codimension two near ze. Its tangent
space at ze is given by the kernel of ξ′(ze). But

ξ′(ze) · ϕ′(t∗b) = −ξ′(ze) ·
#   —

H+(ze)

= −(H[f,g](ze), H[f,[f,g]](ze) +H[g,[f,g]](ze))

6= (0, 0),

since ze is prior-saturation lift.

V. CONCLUSION

In presence of a saturation phenomenon of the singular
control, the tangency property is a useful information for the
computation of an optimal synthesis and optimal paths near
the prior-saturation point. It also appears in other settings
such as in Lagrange control problems governed by one-
dimensional systems, see, e.g., [9]. Future works could then
investigate the prior-saturation phenomenon and the tangency
property in other frameworks or in dimension n ≥ 3.
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