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Abstract. Iterative reconstruction methods are used in X-ray Computed Tomography in order to improve the quality
of reconstruction compared to filtered backprojection methods. However, these methods are computationally expensive
due to repeated projection and backprojection operations. Among the possible pairs of projector and backprojector, the
Separable Footprint (SF) pair has the advantage to be matched in order to ensure the convergence of the reconstruction
algorithm. Nevertheless, this pair implies more computations compared to unmatched pairs commonly used in order to
reduce the computation time. In order to speed up this pair, the projector and the backprojector can be parallelized on
GPU. Following one of our previous work, in this paper, we propose a new implementation which takes benefits from the
factorized calculations of the SF pair in order to increase the number of data handled by each thread. We also describe the
adaptation of this implementation for multi-streaming computations. The method is tested on large volumes of size 10243
and 20483 voxels.
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1 Introduction

Iterative reconstruction methods can greatly improve the quality of reconstruction in cone-beam Com-
puted Tomography (CBCT), particularly for low-dose acquisition.! Unfortunately, these methods suf-
fer from a very long computation time which is conditioned by the speed of projection and backprojec-
tion operators. Theoretically, the backprojector is the adjoint operator of the projector. Nevertheless,
unmatched operators are very often used in order to alleviate the computational burden, especially for
3D reconstruction. This corresponds to an approximation which can hinder the convergence of the
reconstruction algorithm.? In order to ensure the convergence, computationally-efficient pairs have
been proposed.'* Among these pairs, the Separable Footprint (SF) pair' approximates the footprint of
a voxel onto the detector as a separable function with respect to the transaxial and the axial directions.
Thanks to this approximation, the computations can be factorized so SF projection and backprojection
can be computed in a reasonable time. Nevertheless, this matched pair requires more computations
than unmatched pairs, even parallelized on Graphical Processing Unit (GPU).*°

This paper describes how, based on our previous work,® the SF projection and backprojection oper-
ators are accelerated using multi-streaming and multi-GPU computation. We propose a new design of
the projector and backprojector kernels, in which each thread computes the projections and backpro-
jections of multiple cells and voxels respectively, in order to take benefit from the factorizations of the
computations induced by the SF approximation. We also present a way to hide data transfers which
are known to be the main bottleneck for GPU computing. Next, we validate our new implementation
on small volumes, then present results of acceleration on large volumes.



2 Acceleration of the SF pair
2.1 Acceleration of the SF Projector

The SF projection is given by®
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where Fions(Ue, @5 Te, Ye) and Fy(ve, ¢; e, ye ) are transaxial and axial footprints of the voxel, while
lo, (ue,ve) and Ly, (¢; ., ye) are the amplitude functions given by A2 method.® To avoid the conflict
between the threads, the GPU implementation of the SF projector is ray-driven.’

The original kernel® has a lot of intermediate computations which are redundant from one kernel
to another, due to the factorizations in formula (1). In order to reduce these redundant computations,
the kernel is modified so that it can process several cells per thread in the v-direction : this direction is
chosen in order to factorize the computation of the transaxial footprint which requires more time than
the axial footprint, since the shape of the transaxial footprint is trapezoidal and the shape of the axial
footprint is rectangular in the SF pair.! For this purpose, two arrays are created in shared memory
in order to avoid to increase the number of registers in the kernel. One array stores axial footprint
corresponding to each cell, while the other array stores the product of transaxial and axial footprints.
Then the projection is updated.

2.2 Acceleration of the SF Backprojector

For a voxel (z, Y., z.), the matched SF backprojection is given by!
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The original kernel® computes the backprojection of a voxel (z, ¥, z.). The kernel is modified so
that one thread can process a column of voxels in the z-direction. At one projection angle ¢, we store
in shared memory all the transaxial footprints of each cell and pick-up for each voxel the transaxial
footprints required for the computation.

Then, for each voxel, the sum of the axial and transaxial products is stored in shared memory. The
dimension of this array is equal the number of z, processed by each thread. Algorithm 1 summaries
the pseudo-code of our implementation of the SF backprojector.

All the values of the arrays in our modified kernel are stored in the global memory which is a very
slow memory. To optimize the access data, the arrays are stored in the shared memory and to guarentee
a unique access, the dimension of the arrays are multiplied by the size of the block.



Algorithm 1 Proposed SF backprojector
Initialize Bpoek|ze @ 2eo + K — 1] =0
for each ¢ do
Compute vyin(ze,) and vya0(2e, + K — 1)
Initialize F},yp,s [Vmin(Zeg) © Umin(2eg + K —1)] =0
for u. = Ui 1O Uy, dO
Compute Fjqns
for v, = Vin(2e) 10 Vpaz (2 + K — 1) do
Firans [Ue]+ = Firans ZGC (uea ve)g(ueu Ve, ¢)
end for
end for
for z. = 2., t0 2., + K — 1do
Compute U, (2e) and vy,q,(2.) and initialize By, = 0
for v, = Vin(2) 10 Vypar(2) do
Compute and store in shared memory F, [v,]
B¢+ = Foz [Ue] X Firans [Ue]
end for
Compute and store in shared memory Byqex[2e]+ = Iy, X By
end for
for z. = 2., t0 2., + K — 1do
B(fL‘e, Ye, ze) = Bback[ze]
end for
end for

2.3 Acceleration with multi-streaming and multi-GPU

For large volumes, it is not possible to copy all the data on the GPU. Parts of the data are sent to the
GPU one after the other and the results are collected by the CPU. Streams are used to make parallelism
tasks in order to mask data transfer, so the GPUs send results and receive data during the computation
of one block operator. Multi-GPU computations work following the same principle in order to further
accelerate the operators.

3 Results

The new kernels are first tested on a volume of 256° voxels, with a detector of 2562 cells and 256
projections, using a NVIDIA TITAN V graphic card. Sizes of the blocks for the projector and the
backprojector are set to 16 x 16 x 1. The original volume is shown in figure 1, and the obtained
SF projections and backprojection are shown in figures 2 and 3. Table 1 shows the impact on each
operator’s runtime of the number of cells/voxels handled by each thread. We observe a three fold
acceleration for the SF backprojector and a two fold acceleration for the SF projector. The coupling
degree? of our GPU SF pair is equal to 1.0001 which is very close to 1, which means our SF pair
is very well matched,? furthermore the coupling degree of our SF pair is not impacted the number
of voxels/cells handled by each thread. Table 2 presents the runtime of the new backprojector and
projector using multi-GPU and multi-streams on large volume of 10243 and 20483 voxels. We use



Fig 1 Original volume

Fig 2 Obtained SF projection

Fig 3 Obtained SF backprojection

Number of Cells Time Backprojector (ms) | Number of voxels Time projector (ms)
1 367 1 999
2 221 2 605
4 159 4 416
8 109 8 438
16 147 16 419

Table 1 Runtime of the projection and backprojection operator depending on the number of cells or voxels.

TITAN X Maxwell GPU, each thread of our backprojector treats 8 voxels and the projector treats 16
cells, the size of the projector block is 128 x 1 x 1 which is fully optimized and the backprojector
block is 16 x 16 x 1.

In order to go further in the analysis, we compare the efficiency of our implementation of the
matched SF pair with an unmatched pair. The unmatched pair has a Joseph’s projector’ (J) and a voxel-
driven (VD) backprojector® and is called the J/VD pair in the following. Table 3 compares the SF pair
and the J/VD pair on a phantom of size 10242 voxels, using 1024 projections of size 1536 x 1152 pixels.
The used GPU is a NVIDIA Titan V. In table 3, we consider the number of Tera-samples in the volume
and in the projections respectively read by the projector and the backprojector. For the projector, this
number is given by the number of rays multiplied by the number of samples read for each ray, while,
for the backprojector, it corresponds to the number of voxels multiplied by the number of projections
multiplied by the number of samples on the detector read for each voxel. We see that the SF pair
requires to read more samples than the J/VD pair due its higher accuracy. This explains its higher
computation time. Table 3 also shows the number of floating-point operations (FLOP) performed by
each pair. We see that this number is much higher for the SF pair than for the J/VD pair. This is due
to the fact that the unmatched J/VD pair takes benefit from the fact that its required interpolations are
performed by the hardware of the GPU thanks to the use of the texture memory, while there is no
obvious way to take benefit from this mechanism for the SF pair.

4 Conclusion

Multi-cell, multi-voxel and multi-GPU computations accelerate the runtime of SF forward and back-
ward projectors. The major factor of acceleration is the number of GPUs followed by the number of



Operator 1 Stream,1 GPU 4 Stream 1 GPU 1 Streams 8 GPUs 4 Streams 8 GPUs
P SF 10247 voxels 255686 ms 255256 ms 39084 ms 38126 ms
BP SF 1024 voxels 95787 ms 93490 ms 18336 ms 17929 ms
P SF 2048 voxels 4260676 ms 4254497 ms 599496 ms 584414 ms
BP SF 20483 voxels 1530856 ms 1522824 ms 244798 ms 233101 ms

Table 2 Runtime of the projection (P) and backprojection (BP) operator depending on the number of streams and GPUs

Operator Tera-samples Tera-FLOP FLOP/sample Time (s) Tera-samples/s
pJ’ 3.96 3.47 0.88 5.14 0.77
P SF 6.22 102.74 16.5 61.9 0.10
BP VD? 4.40 1.72 0.39 1.37 3.23
BP SF 9.74 145.2 14.9 33.8 0.29

Table 3 Efficiency of the matched SF pair versus unmatched J/VD pair, on a volume of 10243 voxels with 1024 projections
of size 1536 x 1152 pixels

voxels and cells handled by each thread. For small volumes, one GPU can be used. The number of
streams provide marginal acceleration gains since the performances of the SF pair are bounded by the
computations. Furthermore, by measuring the number of samples read by each operator, as the number
of floating-point operations, we have emphasized that the SF pair requires more computations than an
unmatched pair, leading to a higher computation time but also to a higher accuracy.
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