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We study a space-based gravity gradiometer based on cold atom interferometry and its potential
for the Earth’s gravitational field mapping. The instrument architecture has been proposed in
[Carraz et al., Microgravity Science and Technology 26, 139 (2014)] and enables high-sensitivity
measurements of gravity gradients by using atom interferometers in a differential accelerometer
configuration. We present the design of the instrument including its subsystems and analyze the
mission scenario, for which we derive the expected instrument performances, the requirements on
the sensor and its key subsystems, and the expected impact on the recovery of the Earth gravity
field.
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I. INTRODUCTION

Satellite gravimetry missions, such as the GRACE (Gravity Recovery And Climate Experiment) [1] and the GOCE
(Gravity field and steady-state Ocean Circulation Explorer) [2, 3] missions, have revolutionized our knowledge of
the gravity field over the whole Earth surface and our understanding of mass redistribution and mass transport
processes on a global scale. In particular, the GOCE mission, launched in 2009 and active up to 2013, carried
a gravity gradiometer on-board a satellite for the first time. It allowed for a precise measurement of the static
gravity field with unprecedented accuracy and spatial resolution. The geoid was determined with an accuracy of
about 1 to 2 cm for a spatial resolution of 100 km on the Earth surface [4]. By providing the Earth gravity field
down to small spatial scales, our understanding of a number of processes related to solid-earth physics and ocean
circulation has been greatly improved [5] and the global unification of height systems [6] could be implemented. GOCE
also brought new and unexpected scientific results in seismology, space weather and changes in ice masses. In this
mission, differential accelerations measured on-board a single satellite with an ensemble of ultra-sensitive electrostatic
accelerometers allowed to determine all components of the gravity gradient tensor, with best sensitivities in the range
of 10-20 mE/Hz1/2 in the measurement bandwidth (i.e. 5-100 mHz), out of which models of the gravity field could
be reconstructed.

In this article, we show that the use of cold-atom-based gravity gradiometers, on-board a dedicated satellite at low
altitude (250-300 km), can meet the requirements to improve our present knowledge of the Earth gravity field. In
particular, the GOCE gravity gradients showed poor performance in the lower frequency band, where the noise power
spectral density (PSD) increases with the inverse of the frequency. Dealing with this low-frequency noise is a great
challenge for gravity field recovery, where special decorrelation filters were tailored and used for whitening the noise
[7]. This will not be a problem for a gravity gradiometer based on a cold atom interferometer (CAI), as it naturally
provides gravity gradients with white noise at all frequencies, except for very high frequencies (i.e. above 100 mHz)
which is not relevant for gravity field recovery from space. Moreover, this novel atom-based gradiometer is expected
to provide gravity gradients with an improved sensitivity level of the order of 5 mE/Hz1/2.

The article is structured as follows. We start in section II by describing the instrument and measurement principle,
which relies on a state-of-the-art manipulation sequence of the atomic source described in III. We then calculate in
section IV the phase shift of the interferometer for arbitrary gradients and rotation rates, in the simplified case of a
circular orbit around a spherical and homogeneous Earth. This allows to derive in section V specifications for the
control of the atomic source parameters and for the attitude control of the satellite. A Monte Carlo simulation of
the interferometer is then presented in section VI, which allows us for accounting in a comprehensive way for the
geometry of the interferometer and furthermore to evaluate the loss in sensitivity as well as the amplitude of several
systematic effects due for example to the finite size of the laser beams and the atomic cloud or the finite duration
of the interferometer pulses. The results of this simulation are used to refine key specifications for the laser system
setup and the atomic source, in order to keep parasitic differential phase shifts (both noise and systematic) below the
target uncertainty.

Section VII is dedicated to the instrument design and related engineering aspects. Details on the design of critical
elements and subsystems are given, in particular on the retroreflecting mirror, on the laser, vacuum and detection
systems. Engineering tables are elaborated. Finally, we evaluate in section VIII the impact of the sensor performance
for gravity field recovery. This is performed thanks to numerical simulations of the measured gravity in the presence
of realistic noise for the sensor and the control of the attitude of the satellite.

II. PRINCIPLE OF THE MEASUREMENT

The concept of the gradiometer is based on the geometry proposed in [8], which measures differential acceleration
with two spatially separated atom interferometers (AIs) [9]. The interferometers are realized using a sequence of three
light pulses based on stimulated Raman transitions. The momentum transfer provided by the Raman diffraction
process allows the splitting, redirection and recombination of the atomic wave packets along two paths, thus creating
an atomic analogy of a Mach-Zehnder interferometer. In such atom interferometers [10–13], the atomic populations in
the two output ports are modulated with the phase difference accumulated along the two paths. For an acceleration
a along the direction of the laser beams, this phase is given by Φ = kaT 2, where ~k is the momentum imparted by
the Raman transitions onto the atoms, and T is the free evolution time in between two consecutive Raman pulses.
Performing differential acceleration measurements with two such interferometers separated by a distance D allows
extracting the gravity gradient γ out of the differential phase shift ∆Φ = Φ2 −Φ1 = k(a2 − a1)T 2 = kγDT 2, with a1

and a2 the accelerations experienced by the atoms in the two interferometers [14]. Moreover, using the same Raman
lasers for the two interferometers enables a high rejection ratio to common mode sources of noise and systematic
effects [14, 15]. More details on the working principle of the interferometers will be given in section VI A.
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Assuming an interferometer phase noise at the mrad/shot level, the corresponding sensitivity to the gradient is
in the mE/shot range, for a pulse separation time T = 5 s and a distance D = 0.5 m. To take a full advantage of
this excellent single-shot sensitivity, a high measurement rate is desirable, which can be achieved by interrogating
several atomic clouds at the same time [16, 17]. This interleaved scheme requires to produce atomic sources with a
cycle time significantly shorter than the interferometer duration [18]. With a production time of about 1 s, the corre-
sponding sensitivity would lie in the low mE/Hz1/2, which compares favourably with the ultra sensitive electrostatic
gradiometers of the GOCE mission.

a

c
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  4.4 mm

FIG. 1. (a) Scheme of the gravity gradiometer, based on differential accelerometry with two separated atom interferometers.
(b) An initial BEC source of 106 atoms is magnetically evaporated, displaced and collimated in 1.1 s. (c) Horizontal transport
step to the interferometry chamber (12 cm in 100 ms). (d) The BEC is split in two by the combination of a double Raman
diffraction and a twin-lattice technique feeding both interferometers with ensembles at a horizontal velocity of 4 recoils.

III. SOURCE PREPARATION

The presented measurement principle is not limited to a specific atomic species. It requires, however, an atomic
source production at a high flux (106 atoms/s) to reach the targeted phase noise of 1 mrad per cycle of 1 s, yet
at a low expansion rate (0.1 mm/s) characteristic of near-condensed regimes. We analyzed possible candidates of
high-flux degenerate sources in terms of their technical readiness for the proposed space-borne gravity gradiometer.
Sources based on alkaline atoms (e.g. Li, Na, K, Rb, Cs) are widely used in cold-atom experiments and have shown
excellent performance. Due to their rather simple energy levels structure, there are several applicable laser cooling
schemes applicable and evaporative cooling to degeneracy is possible both in magnetic and optical potentials [19–
22]. In particular, Rubidium sources have been established as reliable sources for atom interferometry fundamental
physics experiments as well as geodetic applications [23–25]. High-flux evaporative cooling of Rb (> 105 atoms/s)
has been shown both with atom chips [26] or dipole traps [27] and atom interferometry can be performed with
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either Raman or Bragg transitions in single or double diffraction configurations [28–31]. Recently, alkaline-earth-
like atoms (e.g. Sr, Yb) have been successfully cooled to degeneracy [32, 33] and are considered to be promising
candidates for high-precision interferometry as well. Thanks to their special energy levels structure, they are immune
to residual quadratic Zeeman shifts, one of the dominant contributions to the uncertainty budget in alkaline-based atom
interferometers. Moreover, interferometry can be performed on the clock transition to suppress technical laser phase
noise thus increasing the performance of precision measurements e.g. weak equivalence principle test, gradiometry or
gravitational wave detection [34, 35]. The source flux of alkaline-earth-like atoms is, however, not yet at the same
level of performance as the Rb ones. Besides of the performance of the source, the maturity of the required technology
is crucial for a successful space mission [36]. The cooling and manipulation laser sources of Rb could be derived
from two complementary systems, which are available and field-proven: compact diode lasers at 780 nm together
with free-space optics [37] or fiber-based laser systems fed by frequency-doubled laser running at 1560 nm [38]. High-
flux sources of condensed Rb have been already demonstrated in transportable and space qualified systems [39]. In
addition, complexity, power consumption, size and mass considerations are in favor of a Rb-based choice compared to
setups based on Sr or Yb. With recent progress made by the QUANTUS, MAIUS and CAL consortia [39–41], the
atom chip solution has been assessed to be more advanced than the dipole trap one and will be the baseline for the
proposed setup.

In order to span the required baseline of 50 cm together with a cycle time close to 1 s, we propose the following
sequence for the transport and preparation of the atoms: we start by producing the BEC (Bose-Einstein Condensate)
atoms in close vicinity of the atom chip in a dedicated chamber (left frame a in figure 1). With an optimized atomic
chip design, building on the work of [26], about 106 ultracold atoms could be produced in less than 1 s (i.e. 800
ms) at a distance of few hundred microns. The created BEC is immediately magnetically displaced up to a distance
of about 5 mm away from the chip surface (frame b in figure 1) using the external magnetic coils and shortcut-to-
adiabaticity protocols as proposed in [42] and implemented in [43], allowing to reduce the duration of this transport
down to about 200 ms. The geometry of the displaced trap can be tailored, thanks for instance to several layers
of Z-shaped wires on the chip, to be almost spherically symmetric [44], with a final trapping frequency of about 15
Hz. These fast transports have the feature of inducing very low residual dipole oscillations in the final trap, which is
an essential ingredient for the next steps. If the quantum gas needs, in addition, to be in its ground state, optimal
control solutions are available and proved to be equally fast [45]. The atomic ensemble is released from this weak trap,
freely expanding for 100 ms before being collimated by a magnetic lens flashed for about 1.2 ms [46]. This drastically
reduces the expansion rate of the cloud, already at a Thomas-Fermi radius of 150 µm, down to a calculated effective
expansion energy of 100 pK. The subsequent time evolution of the size of the BEC complies with the interferometric
requirements on the atomic source. The control accuracy of the position and the velocity of the atomic clouds at
the end of this first chip manipulation are estimated to be of the order of a fraction of a µm and µm/s, respectively
[42, 43, 45].

To move the atomic ensembles into the interferometry region, a first Raman double diffraction initiates the cloud
momentum at 4 ~k as indicated in frame b of figure 1. This ensures a transport by a Bloch accelerated optical lattice
(blue beam in figure 1(c)) that moves the atoms to the interferometry chamber by imparting, in few ms, a velocity
corresponding to 200 recoils [47]. Thanks to the atomic cloud collimation step, it is possible to restrict ourselves to
the use of a small beam waist of 1-2 mm for the Bloch lattice and thus keep the power usage at the reasonable level
of roughly 200 mW. Once the atoms reach the interferometry chamber (12 cm in 100 ms), the same optical lattice
with opposite acceleration direction is used to decelerate the atoms to a final momentum of 4 ~k as they started. At
this point, the atom source has to be split into two halves to be moved upwards and downwards in order to feed the
two interferometers as indicated in figure 1(d). This is realized by combining the use of double-Raman-diffraction
beams [29] and twin-Bloch lattices [48]. A first pair of retro-reflected Raman pulses splits the BEC to generate a
pair of vertically moving momentum classes with ±4~k. By reflecting two Bloch lattices on the mirror, with 100 GHz
relative detuning, one is able to create two running lattices similarly to what was done in [48]. The advantage of this
highly symmetric scheme is that each of the initially Raman-split clouds will interact with the optical lattice moving
in the same direction thanks to Doppler selectivity. The same treatment as in frame c) is subsequently pursued, with
an acceleration up to 200 recoil velocities followed by a deceleration to a still momentum state. The transport distance
needs, however, to be double the one of the horizontal step to reach 24 cm in 200 ms time. In this manner, each of
the gradiometer’s Mach-Zehnder interferometers is fed by an incoming flux of atoms with 4 ~k initial velocity.

In total, the entire process of production, manipulation and transport of the BEC takes 1.4 s. However, a new
magneto-optical trap (MOT) production can start as soon as the previous produced BEC has been loaded into the
vertical lattices resulting in an effective cycle time of only 1.2 s. With that scheme it would be possible to run up to
8 interferometers simultaneously.
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IV. INTERFEROMETER PHASE SHIFT

We calculate in this section the phase shift of a (single) atom interferometer linked to the frame of a satellite,
orbiting at a fixed altitude with a constant orbiting frequency Ωorb. The measurement axis is taken in the orbital
plane, initially along z. We take into account the rotation rates of the satellite Ωx,y,z, which will allow to discuss the
cases of nadir pointing, for which Ωy = Ωorb and Ωx,z ' 0, and inertial pointing, for which Ωx,y,z ' 0. The calculation
of the atom trajectories is performed in the satellite frame, hence one needs to rotate the gravity gradient tensor. This
is performed by applying a product of three orthogonal rotations, starting with the rotation along y, whose amplitude
eventually largely dominates in Nadir pointing. As long as the two other rotations are small enough, this correctly
deals with the influence of the satellite rotation at the leading orders.

We also consider to implement compensation systems for the two following physical quantities:

- the rotation of the satellite, in order to obtain mirrors with a fixed orientation in the frame of the atoms. This
configuration can be obtained by tilting the two first and last retroreflecting mirrors by angles ±θ = ±ΩyT , where
Ωy is the rotation rate along y, the cross-track axis, as displayed in figure 2. As we will see below, this configuration
removes the sensitivity of the interferometer to centrifugal and Coriolis accelerations;

+ 0.25 m 

- 0.25 m 

z

xy

FIG. 2. Tilted mirror configuration.

- the phase shift induced by the gravity gradient, as recently proposed in [49]. This relies on an adequate change
by δk of the Raman wavevector at the second pulse. This method has recently been demonstrated in [50, 51].

The trajectories of the atomic wavepackets along the arms of the interferometer are determined analytically by
solving the Euler-Lagrange equations using a power series expansion as a function of time t, as in [52]. Subsequently,
the phase shift can be calculated out of the positions of the center of the atomic wavepackets at the different Raman
laser pulses using the following formula [53]

φ = 2k1 · rA − 4k2
rB + rC

2
+ 2k3

rD + rD2

2
. (1)

We consider here a π/2− π− π/2 double diffraction interferometer, such as displayed later on figure 3, with effective
wave numbers k1,2,3, corresponding to two photon transitions. (A, B, D) (resp. (A, C, D2)) are the positions of
the centers of the partial wavepackets at the time of the three pulses along the upper (resp. lower) arm of the
interferometer. This formula is valid for Hamiltonians at most quadratic in position and momentum [53, 54], which
is the case considered here; terms beyond this approximation can be treated as proposed in [55, 56].

Table I presents the dominant terms contributing to the phase of a single interferometer and to the separation
between the wavepackets at the output of the interferometer, listed with respect to their scaling on initial coordinates
and velocities of the atoms in the satellite frame (x, y, z, vx, vy, vz). Only the dominant terms, which scale as T 2 or T 3

depending on the terms, are listed here. For the sake of simplicity, we take here Ωx = Ωz = 0. We consider the case
where the rotation rates Ωorb, Ωy and Ωm, the equivalent rotation rate of the mirrors given by Ωm = θ/T , are different,
and the cases where the rotation and/or gravity gradient are compensated (Ωm = Ωy and/or δk = kTzzT

2/2).
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Here, T denotes the free evolution time between pulses, k = 4π/(780nm) the effective wave number for a two-photon
Raman transition, Tzz the gravity gradient. Typical values for the relevant parameters are Ωorb = 1.2 mrad/s (for an
altitude of about 250 km), T = 5 s, Tzz = −2.7 · 10−6 s−2 and k = 16.1 · 106 m−1.

The gravity gradient phase shift is given by Φ = 2kzTzzT
2, and thus leads to a differential phase of ∆Φ = 2kDTzzT

2

between two interferometer separated along z by the distance D. For D = 0.5 m, and the parameters above, this phase
shift is as large as 1087 rad. We assume that the individual phase measurements are performed with a sensitivity
limited by detection noise at the quantum projection limit, for which σΦ = 1/

√
N , N being the number of detected

atoms, assuming an ideal contrast. For 106 detected atoms at the output of each interferometer, we obtain an expected
sensitivity of σTzz =

√
2/2
√
NkDT 2 = 3.5 mE/shot.

TABLE I. Leading terms in the phase of a single interferometer

General case Compensated rotation Compensated gradient and
rotation, Nadir pointing

Any Ωorb,y,m Ωm = Ωy Ωm = Ωy = Ωorb

δk = 0 δk = 0 δk = kTzzT
2/2

x kx(Txx(5Ωy − 4Ωm − Ωorb) +
4(Ωy − Ωm)Ω2

y + Tzz(Ωorb −
Ωy))T 3

kx(Txx − Tzz)(Ωy − Ωorb)T 3 0

y 0 0 0

z 2kz(Tzz − Ω2
m + Ω2

y)T 2 2kzTzzT
2 0

vx 4kvx(−Ωm + Ωy)T 2 0 0

vz 2kvz(Tzz − Ω2
m + 4ΩmΩy −

3Ω2
y)T 3

2kvzTzzT
3 0

vy 0 0 0

Separation

∆x 4~kT 2(Ωm − Ωy)/mRb 0 0

∆y 0 0 0

∆z 2~kT 3(Tzz − (Ωm − 3Ωy)(Ωm −
Ωy))/mRb

2~kT 3Tzz/mRb 0

We first discuss the case where Ωm = 0, i.e. without rotation compensation. The gravity tensor measurement is
biased by a contribution in Ω2

y due to centrifugal accelerations. The interferometer phase features a Sagnac phase term

4 kvx Ωy T
2, and the separation between the two partial wavepackets at the output of the interferometer along x is

4 ~k T 2 Ωy/mRb. This leads to a reduction of the interferometer contrast due to dephasing when averaging the Sagnac
phase across the velocity distribution. Equivalently, the contrast is reduced when the separation is comparable
to the coherence length of the atomic wavepackets. For the resulting loss of contrast to be negligible, one needs
σv � 1/

(
4kΩyT

2
)
. This corresponds to temperatures T � T0, where T0 is given by

T0 =
mRb

16kBk2Ω2
yT

4
(2)

where kB is the Boltzmann’s constant. For Nadir pointing, in which Ωy = Ωorb = 1.2 mrad/s, a temperature lower
than T0 = 3 fK is required, which is well below what can be achieved with current technology. This limit would also
apply for measurements along the x-axis, which is also impacted by the large rotation rate along the y-axis, but not
for measurements along the y-axis. Thus, as such, gravity gradient measurements in Nadir configuration can only be
performed along one axis.

Also, in a similar manner, gravity gradients put an additional requirement on the atomic temperature, given by
T < T1, where T1 is given by

T1 =
mRb

4kbk2T 2
zzT

6
. (3)

For Tzz = −2.7 · 10−6 s−2, T1 ∼ 100 pK. Such a limit is compatible with the ultralow atomic temperatures reached
thanks to Delta Kick collimation techniques (of the order of a few tens of pK). This requirement can also be relaxed
if the gravity gradient phase shift is compensated for using an appropriate change of Raman laser frequency at the
second pulse.
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Measuring the three axes in Nadir configuration requires a compensation scheme for the large rotation along y,
which can be realized by tilting the Raman mirrors, as discussed above. This corresponds to the second case in
table I, where the Sagnac phase, as well as the centrifugal acceleration, are canceled if the angles set on the mirrors
are perfectly tuned (Ωm = Ωy). On the other hand, if the pointing of the satellite is inertial (and no rotation
compensation is applied), rotation rates up to Ω0 = 6µrad/s can be accepted, for the same temperature limit of 100
pK. This makes gravity measurements along three orthogonal directions possible in inertial pointing mode (with flat
mirrors). Equivalently, this translates into the same limit for the maximum rotation rate mismatch between Ωm and
Ωy in the case of imperfect rotation compensation in the Nadir pointing mode: δΩ = Ωm − Ωy � Ω0.

Finally, the last column in table I shows that for a properly tuned rotation rate for Nadir operation (Ωy = Ωorb), for
properly tilted mirrors (Ωm = Ωy), and for a properly set change in the Raman wavevector at the second Raman pulse
(δk = kTzzT

2/2), all higher order terms in the interferometer phase, as well as the separation of the two wavepackets
at the output of the interferometer, are canceled. The loss of contrast due to dephasing is thus suppressed.

V. ERROR BUDGETING

Having discussed the constraints set by the finite coherence length of the atomic wavepacket onto the contrast of the
interferometer, we now examine the requirements on the atomic source parameters, on the Raman laser setup and on
the control of rotations to keep the uncertainties in the determination of systematics in the differential measurement
below 1 mrad (which corresponds to an error of 3.5 mE).

A. Requirements

We start by briefly discussing the inertial case. There, the two measurement axes x and z, fixed in the satellite
frame and lying in the orbital plane, rotate with respect to the frame where the gravity tensor is diagonal. This
leads to a mixing between Tzz and Txx components, and a modulation of the gradiometer phase, which is given by:
Φ = 2kL(Tzzcos(χ) + Txxsin(χ))T 2, where L is the separation between the two interferometers and χ is the satellite
angle position in the orbital plane. Tzz and Txx can then be separated by combining the measurements along two
orthogonal directions. There, the uncertainty in the determination of the pointing direction δθ leads to an error
in the determination of the tensor component T of interest of the order of δθ × T , which amounts up to 3 mE for
δθ = 1 µrad. This is a very tight requirement for the mission, especially for a low altitude orbit. The potential of
such a configuration for gravity field recovery has already been studied in [57], together with the single cross-track
axis in Nadir configuration. We thus focus through the rest of the paper onto the case of a 3-axis determination in
Nadir configuration, with the help of compensated rotation.

Table II lists the dominant terms in the development of the output interferometer phase in the case where the
compensation of the rotation is not perfect (Ωm 6= Ωy). We find for a mismatch of δΩm = 10−6 rad/s, (which
corresponds to an error in the tilt of the mirrors of δθ = δΩT = 5µrad) a phase error on the differential acceleration
of -944 mrad, due to residual centrifugal accelerations. To keep the error below 1 mrad, an uncertainty in the
knowledge of the rotation rate along y of 1 nrad/s is thus required, or equivalently an uncertainty in the tilt (of the
two mirrors) of 5 nrad.

Table III gives the requirements on the source parameters (velocities and positions) to keep the phase error below
1 mrad, in the case of non perfect compensation of the rotation, and for non perfect Nadir pointing. We assume here
a knowledge of the rotation rate along y at the level given above. The corresponding requirements are found to be
largely manageable. One should nevertheless keep in mind that these requirements scale with the amplitudes of the
mismatches δΩm and Ωy − Ωorb.

B. Measurements along the two other axes

The interferometer configuration required to measure Txx is identical to the one studied before, as for any measure-
ment axis in the orbital plane, the rotation rate along y needs to be compensated. The conclusions and requirements
derived in the previous sections thus apply, provided the role of x and z are exchanged. As for the cross-track axis,
fixed and parallel mirrors can be used, which simplifies the laser setup design and relaxes the constraints on the
control of the beam alignment. This was the configuration considered in [57].



8

TABLE II. Dominant terms in the residue of the phase of a single interferometer, for compensated gravity gradient and non
perfect rotation compensation, corresponding sensitivity for differential measurements, and phase dispersion

Terms Differential Phase

Phase (in rad) dispersion

(in rad)

Ωm = Ωy + δΩm δΩm = 10−6 rad/s

δk = kTzzT
2/2 Ωy − Ωorb = 10−6 rad/s

δx = 10−6 m σx = 0.1 mm

∆z = L = 0.5 m σz = 0.1 mm

δvx = 10−6 m/s σv = 98 µm/s

δvz = 10−6 m/s σv = 98 µm/s

x −kx((Txx−Tzz)(Ωorb−Ωy)+4δΩm(Txx+
Ω2

y))T 3
−8.3× 10−9 −8.3× 10−7

z −4kzδΩmΩyT
2 -0.944 −1.9× 10−4

vx −4kvxδΩmT
2 −1.6× 10−3 -0.157

vz 4kvzδΩmΩyT
3 9.4× 10−6 9.2× 10−4

Separation Separation

(in m)

∆x 4~kδΩmT
2/mRb 1.2× 10−6

∆z 4~kΩyδΩmT
3/mRb 6.8× 10−9

TABLE III. Requirements on the relative initial positions and velocities for the phase error to remain below 1 mrad, in the
case of non perfect rotation compensation δΩm = 10−6 rad/s and non perfect Nadir pointing Ωy − Ωorb = 10−6 rad/s

x δx < 0.12 m

z δz < 0.5 mm

vx δvx < 0.6 µm/s

vz δvz < 106 µm/s

C. Combining the three signals

While the requirements on the control and knowledge of Ωx,z can be met with current technologies, using for instance
fiber optic gyroscopes of the Astrix class, the ones of the rotation rate Ωy, and of the mismatch of the mirror with
respect to the ideal tilt, are very stringent, and cannot presently be met, even with the best space qualified gyroscopes.
Instead we propose to use the mathematical properties of the gravity tensor, and its null trace, to estimate Ωy, or at
least its fluctuations.

The phase signals of the three interferometers are given by (we consider here only the leading terms, the gravity
tensor terms, the gravity gradient compensating terms due to the wavevector change at the second pulse and the
centrifugal terms):

δΦx = 2kz(Txx − T eff
xx − Ω2

m,x + Ω2
y + Ω2

z)T
2

δΦy = 2kz(Tyy − T eff
yy + Ω2

x + Ω2
z)T

2

δΦz = 2kz(Tzz − T eff
zz − Ω2

m,z + Ω2
y + Ω2

x)T 2

with T eff
ii = 2δkii/kT

2 and δkii the change in k applied in the direction i.
Assuming the T eff

ii are tuned so as to null the output phases, we have

T eff
xx = Txx − Ω2

m,x + Ω2
y + Ω2

z

T eff
yy = Tyy + Ω2

x + Ω2
z

T eff
zz = Tzz − Ω2

m,z + Ω2
y + Ω2

x
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Summing the three equation and exploiting the null trace relation Txx + Tyy + Tzz = 0, we find∑
T eff
ii = −Ω2

m,x − Ω2
m,z + 2(Ω2

x + Ω2
y + Ω2

z) (4)

For Ωx and Ωz well below 10−6 rad/s (or sufficiently well determined with gyroscopes), and assuming that the
mirror tilts are left unchanged, fluctuations of Ωy can be determined with an uncertainty limited by the combined
sensitivities of the three gradiometers.

Writing Ωy = Ωy0 + δΩy, where Ωy0 is a reference value close to Ωorb, we obtain∑
T eff
ii ' −Ω2

m,x − Ω2
m,z + 2Ω2

y0 + 4Ωy0δΩy (5)

The uncertainty in the evaluation of δΩy is finally given by

∆(δΩy) =

√
3σT

4 Ωorb
(6)

where σT is the sensitivity of each gradiometer.
For σT = 3.5 mE and Ωorb = 1.17 mrad/s, we find ∆(δΩy) = 0.9 nrad/s.
This determination can in turn be used to correct the measurement along x and z from centrifugal accelerations.

Neglecting as before terms related to Ωx and Ωz, this yields the following equations:

Txx = T eff
xx + Ω2

m,x −
1

2

∑
T eff
ii + Ω2

m,x + Ω2
m,z

Tyy = T eff
yy

Tzz = T eff
zz + Ω2

m,z −
1

2

∑
T eff
ii + Ω2

m,x + Ω2
m,z

and finally

Txx =
1

2
(T eff
xx − T eff

yy − T eff
zz + Ω2

m,x − Ω2
m,z)

Tyy = T eff
yy

Tzz =
1

2
(T eff
zz − T eff

xx − T eff
yy + Ω2

m,z − Ω2
m,)

Exploiting the null trace to correct for the centrifugal acceleration actually also decreases the uncertainty in the
gradiometric measurement along x and z by a factor 2/

√
3 = 1.15.

VI. MONTE CARLO MODEL OF THE INTERFEROMETER

This section describes the simulations of a gravity gradiometer based on a pair of double diffraction atom inter-
ferometers, focusing here on the effects related to the physics of the interferometer, independently from the inertial
forces applied to the atoms. A Monte Carlo model of the interferometers was developed in order to precisely evaluate
the impact of the experimental parameters, such as related to the lasers or the atomic sources, onto the differential
phase between the two interferometers. The interferometers are fed out of a single ultra-cold atomic source which is
split using a combination of a Raman and Bragg laser beams into two clouds separated by 50 cm, as represented in
figure 1. The two clouds are thus taken to be identical in their initial velocity, temperature, spatial distribution.

A. Double-diffraction interferometers

The interferometer geometry is based on the double diffraction technique demonstrated in [29]. The Raman beams,

of wavevectors ~k1 and ~k2, are brought together onto the atoms before being retroreflected on mirror(s), leading to

the existence of two pairs of counterpropagating Raman beams, with opposite effective wavevectors ±~~keff , where
~keff = ~k1 − ~k2. Both pairs are resonant when the motion of the atoms is perpendicular to the laser beams, as no
Doppler shift lifts the degeneracy between the resonance condition between them.

Similarly to diffraction by stationary optical waves, the coupling with the two Raman lasers pairs lead to populating
several orders of diffraction. In our model, we consider the first 5 coupled atomic states |j〉 (j = −2 · · · 2). These



10

states correspond to diffraction orders 0, ±1 and ±2: they are linked to the interaction of the atoms with 2 or 4

photons following the two directions ±~~keff . They also differ by their internal states (0 and ±2 correspond to |F = 1〉,
± 1 to |F = 2〉) as the Raman pairs couple different electronic states. Then, the evolution of the atomic quantum
state during the pulse is calculated by solving the Schrödinger equation, generalizing the method of [58], based on
adiabatic elimination of the excited state.

Pa
Parasitic
signal

Parasitic
signal

FIG. 3. Double diffraction interferometer scheme using three Raman pulses. Note that we do not display the | ± 2〉 states as
they are pushed away together with the |0〉 wave-packets.

The double diffraction interferometer is realized using a three Raman pulses sequence π
2 − π − π

2 , as shown in
figure 3, separated from each other by a free evolution time T . The three pulses are realized with the same laser
power but with different duration corresponding respectively to τ − 2τ − τ . The duration τ is defined with respect
to the effective Rabi pulsation Ωeff , using the relation: τ = π/

(√
2 Ωeff

)
, so that the first Raman pulse enables to

split the wave-function of the atoms in coherent superposition between the two coupled states |0〉 −→ | ± 1〉. During
the first free evolution time T , the two arms of the interferometer separate. The second Raman pulse acts on each
interferometer arms in order to deflect them (in our case | ± 1〉 into | ∓ 1〉). The first and second Raman pulses can
also populate other coupled states (such as |±2〉), leading to parasitic paths which could interfere. We suppress these
unwanted paths which are in the |F = 2〉 state by pushing them away of the interferometer area using resonant laser
beams, after each Raman pulse, as shown in figure 3. The non-deflected wave-packets after the middle pulse do not
disturb the measurement process if we detect only the “interference signal” (see figure 3), which is possible in our
configuration due to the large distance between the different wave-packet trajectories.

After the second π-Raman pulse, the two wave-packets | ∓ 1〉 get closer and overlap after a second free evolution
time T . Finally, the last π

2 Raman pulse recombines these atomic wave packets, realizing thus a Mach-Zehnder type
interferometer.

The interferometer phase, which corresponds to the difference between the phase shifts accumulated by the two
interferometer arms, is finally extracted from the measurement of the transition probability P = N1/(N1 +N2), where
N1 and N2 are respectively the number of atoms detected in the hyperfine states |F = 2〉 (corresponding to the atoms
in state |0〉) and |F = 1〉 (corresponding to the sum of the atoms in states | ± 1〉).

With this geometry, the interferometer phase is given by:

∆Φ = [φ↓(~rA)− φ↓(~rC) + φ↑(~rC)− φ↑(~rD)]

− [φ↑(~rA)− φ↑(~rB) + φ↓(~rB)− φ↓(~rD)] (7)

where ~rA, ~rB , ~rC and ~rD are the center of mass positions of the atomic wave-packets at the different locations A,B,C
and D represented in the figure 3, and φ↑ (resp. φ↓) the phase difference between the k↑ (resp. k↓) pair of Raman
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lasers. Equation 7 generalizes equation 1 and allows to account for differences between the wavevectors of the
counterpropagating Raman lasers pairs.

B. Description of the Monte-Carlo simulation

Using this model for the interferometer, we have developed Monte-Carlo simulations of the space-borne gravity
gradiometer depicted in figure 1. We average the contribution to the output signals of a large ensemble of atoms,
randomly drawing their initial positions and velocities in Gaussian distributions, and calculating the evolution of their
wave-function as well as their classical trajectory along the two interferometer paths. The initial mean longitudinal
velocity of the atoms is 4vrec, and the rms initial atomic position is taken to be 100 µm. The initial mean vertical
velocity, ideally null, can be taken different from zero when we estimate the effect of an initial velocity drift along the
direction of the lasers onto the interferometer. By simulating two interferometers at different initial positions, and
computing the difference between the output phase shift, we simulate a cold atom interferometer gravity gradiometer.

To simulate the propagation of the atoms through the interferometer, we consider that the momentum kicks occur
at the middle of the Raman pulses and we neglect the variations of their position during the pulses. The duration
of the first Raman pulse is τ = π√

2Ωeff
, where Ωeff is the Rabi angular frequency at the center of the Raman lasers,

whose intensity profiles are Gaussian with identical waists w0. Therefore, the effective Rabi angular frequency Ωeff(~r)
seen by the atoms, as well as the phase shifts φ↑↓(~r), depend on their position in the Raman beams ~r at the time of
the pulses.

C. Results of the simulation

The following section discusses the results from the simulation and derives the requirements.

1. Parallel retroreflecting mirrors

We start by calculating the contrast and fraction of detected atoms as a function of the Rabi frequency and the
temperature, for parallel Raman mirrors (which corresponds to the case where the measurement axis is cross-track,
i.e. along y). The results are displayed in figure 4 for temperatures ranging from 0.1 pK to 10 nK, and Rabi pulsation
from 5 rad/s to 10 Mrad/s. Here, the Raman laser beams are taken as Gaussian beams with a 5 mm waist size.
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FIG. 4. Contrast (a) and number of detected atoms (b) as a function of the Rabi pulsation Ωeff for different atom temperatures.

In figure 4(a) we present the interferometer contrast with respect to Ωeff for different temperatures. A plateau of
contrast > 0.8 is observed for a range of Rabi pulsation between 102 and 105 rad/s and a temperature range between
10 and 100 pK. The corresponding fractions of detected atoms are displayed in figure 4(b), where a similar plateau
is found, though smaller, corresponding to a range of Ωeff between 5.103 and 2.105 rad/s and a temperature range
between 10 and 100 pK. These results confirm the expectations that at large effective Rabi pulsations (> 105 rad/s),
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the coupling to higher momentum states (|±2〉 ...) leads to a loss of contrast. Also, when the temperature increases, the
fraction of detected atoms decreases quickly due to the velocity selectivity of the Raman transitions. This motivates
to work with the lowest possible temperatures.

Based on these calculations, we select for the rest of the simulations the following parameters: Ωeff = 40 × 103

rad/s and a temperature of 100 pK, for which the contrast C is ≈ 80% and the fraction of detected atoms ≈ 80%.
Temperatures below 100 pK range have already been obtained using the delta-kick collimation technique [59]. As
for the Rabi pulsation, it corresponds to Raman pulses duration τ of the order of 55 µs similar to what is used in
standard ground-based Raman interferometers [29].

The simulation also allows evaluating the effect of the finite size of the Raman beams onto the phase of the
interferometers, due to the effects of curvature and Gouy phase. Figure 5 shows the calculated phase shifts as a
function of the Raman laser waists in the 1-10 mm range, assuming identical waists for the three beams, located at
y = 0, in between the two interferometers at y = ±25 cm. The temperature is T = 100 pK and the effective Rabi
pulsation 40 krad/s. The retroreflecting mirrors are placed at y = +0.4 m.

FIG. 5. Effect of the Raman lasers waist on the phase shifts at the output of the interferometer at 0.25 m y-position (open
circles) (resp. at -0.25 m y-position (open squares)), and on the differential phase shift between the two interferometers (full
triangles). All the Raman laser beams have the same size, at the same y-position.

Figure 5 shows the calculated phase shifts for each individual interferometers, displayed as open squares and circles,
and their difference, displayed as full triangles. We find phase shifts that decrease quickly with increasing waist sizes,
which are not suppressed in the differential measurement. The resulting systematic effect on the gradiometer phase
is lower than 1 mrad for waists larger than 4 mm, and was found to be dominated by the impact of the residual
curvature of the wavefront rather than the Gouy phase. This motivates the choice made above of a waist of 5 mm.

The relative positions of the Raman laser waists were then varied in order to evaluate the effect of their positions
on the differential phase shift of the gravity gradiometer, and define an error margin for the adjustment of the waist
position of the Raman laser beams. The positions of the waists of the three incoming Raman beams were randomly
drawn in the range ±10 m (resp. ±50 m) with respect to the y = 0 position at the middle of the two interferometers.
The corresponding gradiometer phase shifts were found to vary respectively within ±0.5 mrad (resp. within 6 mrad)
around the average value of 0.5 mrad. In order to keep the differential phase shift < 1 mrad, the relative y-positions
of the Raman laser waists should thus be in the range of ±10 m. The Rayleigh length of a Gaussian beam of 5 mm
waist being 100 m, this corresponds to a maximum radius of curvature of 1 km at 10 m from the waist, which is well
within the measurement capabilities of state of the art wavefront sensors.

The model was also used to evaluate the impact of other effects, such as light shifts, residual mean Doppler shifts.
In particular, we calculated for single interferometers a residual sensitivity to the mean initial velocity along y. The
sensitivity amounts to 0.05 mrad per µm/s of mean velocity drift for our parameters (Rabi frequency Ωeff = 40 krad/s),
and increases when decreasing the Rabi frequency. A control of the relative initial vertical velocity between the two
atomic clouds at the input of each interferometer better than 20 µm/s is thus required to keep the phase error below
1 mrad.
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2. Tilted retroreflecting mirrors

In the tilted mirror configuration, finite size effects are expected to have a stronger impact, as the positions of the
atomic clouds are (symmetrically) offset with respect to the centre of the Raman beams by about 1.5 mm at the first
and third Raman pulses. Figure 6 presents the calculated contrast (left) and fraction of detected atoms (center) as a
function of the beam waist. As expected, smaller contrasts and fraction of detected atoms are found with respect to
the parallel configuration (63 % of contrast instead of 80 % for a waist of 5 mm). The effect of the curvature onto the
gradiometer phase is displayed on figure 6-right), where a waist larger than 8 mm is required to keep the phase error
below 1 mrad. We finally chose a waist of 1 cm and evaluated the impact of the Rabi frequency and temperature
onto the contrast and fraction of detected atoms. We found similar behaviours as before, with plateaus in the trends
with respect to the Rabi frequency, with significantly higher contrast (92 %) and fraction of detected atoms (95 %)
for a temperature of 100 pK.

FIG. 6. Effect of the Raman lasers waist on the contrast (left), fraction of detected atoms (center), and on the differential
phase shift between the two interferometers (right), for tilted Raman mirrors. All the Raman laser beams have the same size,
at the same z-position.

VII. DESIGN OF THE INSTRUMENT

A. Vacuum system

Figure 7 shows the design of the vacuum system for Tzz and Txx. The main dimensions of the vacuum chamber
are adapted to the displacement of the atomic clouds. The architecture of the BEC chamber, where the ultra-cold
atomic source is produced, is inspired by the solution designed for STE-QUEST ATI [60] but without the dipole trap.
In the 2D-MOT chamber, a beam of pre-cooled atoms is created by a two dimensional MOT. This pre-cooled beam
of atoms is formed out of the background gas pressure created by a reservoir. In the BEC chamber this atom beam is
captured by a three dimensional MOT and the atoms are then transferred in a purely magnetic trap. The magnetic
fields for the traps are created by a combination of a three-layer atom chip and comparably small magnetic coils. In
the magnetic trap, the atomic cloud is compressed and then cooled via RF-evaporation. The chip is parallel to the
plane of the atomic clouds displacements. The transport beams launch the atoms into the CAI chamber.

Four mirrors are fixed inside the vacuum system: one for the two vertical Bloch lattices and three tilted reference
mirrors for the interferometer to compensate for the rotation of the satellite which can create bias terms in the output
phases and a loss of contrast. The relative angle between two consecutive reference mirrors is ∼ 7 mrad corresponding
to the mean rotation rate of the satellite. The two mirrors for the π/2 pulses are fixed on piezoelectric tip-tilt
mounts to allow the fine control of the relative angle between the three reference mirrors [61]. A dynamic range of
±30 µrad and an accuracy of 10 nrad is needed, which is slightly beyond the state-of-the-art of this technology and
requires custom development. The impact of these actuators on the power budget is not negligible and their power
consumption needs to be optimized. For the Tyy CAI, a single reference mirror is used for the splitting and the three
interferometer pulses instead of three independent reference mirrors and no tip-tilt mount is needed.

During the interferometer the atom clouds pass through the CAI to finally reach their respective detection chambers.
Figure 7 zooms in the detection zone. The idea is to wait for the atom cloud to exit the interferometer chamber to
avoid parasitic light due to fluorescence. A shutter is placed at the entrance to completely block the scattered photons
to reach the CAI chamber. A double diffraction π pulse is applied to bring the diffracted states back at the center.
Spatial fringes on the atomic population are observed with a CDD camera.
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FIG. 7. Design of the vacuum system for Tzz and Txx. An atom beam is produced in the 2D MOT chamber and used to
load a mirror 3D MOT on a chip in the BEC chamber, where the ultra-cold atom source is achieved. The atom cloud is then
launched thanks to a Raman pulse and horizontal Bloch lattices towards the CAI chamber where the differential interferometer
is produced. The atom cloud is slowed down thanks to horizontal Bloch lattices, then split and transported at the entrance of
the interferometer area by applying vertical Bloch lattices. The detection is achieved in a separated small chamber in order to
avoid parasitic light in the CAI interferometric chamber. A π Raman pulse is applied 1 s after the last beamsplitter pulse, to
have the 3 output ports overlapped 1 s later for counting by fluorescence detection on a CCD camera.

B. Detection signal

Spatially resolved detection prevents the contrast loss determined by the inhomogeneous dephasing due to initial
velocity and position distribution and allows the extraction of information on velocity dependent phase shifts [62, 63].
We consider at first a point-like atomic source, to evaluate the effects of the satellite angular rotation Ωy,y,z when Ωm =
0 on the final fringe pattern thanks to the ballistic expansion of the atomic ensemble during the long interrogation
time. The remaining phase terms are those related to the initial velocities of the atoms (vx, vy, vz), and including
Sagnac terms and the effect of the vertical component of the gravity-gradient Tzz:

φ(vx, vy, vz) = 4k (vxΩy + vyΩx)T 2 + 2kvz
(
Tzz − 3Ω2

y

)
T 3 (8)

The x–y cross-section of the final density distribution is shown in figure 8 for different values of Ωy and when
Ωx = Ωz = 1 × 10−6, and Tzz = −2.7 × 10−6 s−2. The signals are calculated with a bias phase to have the top of a
fringe at (x, y, z) = (0, 0, 0); in the case of a small residual radial velocity, and an interferometer signal spanning over
only a fraction of a fringe period, a suitable phase shift can be applied to the interference pattern in order to center
the signal at half fringe to increase the phase sensitivity. The increasing angular rotation along the y axis determines
an increasing spatial frequency for the fringes along the x axis. The effect of Tzz is to spread the phase by ≈ 600
mrad along the z direction. When z is chosen as observation direction, the interference pattern encodes the angular
velocities along the x and y direction as:

φ(x, y) = 2kT (Ωyx+ Ωxy) (9)

Where the two angular velocities can be obtained with a 2D fit on the atomic fringes. The fringe spacing is inversely

proportional to the projection of the angular velocity on the x–y plane, i.e. Ωx−y =
(
Ω2
x + Ω2

y

)1/2
, and it is equal

to π/ (kTΩx−y). In order to resolve the interferometer fringes, the CCD camera has to have enough resolution; the
requirement becomes more demanding as the satellite angular rotation increases. For example, when Ωx−y = Ωorb

the fringe spacing is equal to 33 µm, and imaging 4 mm over 1024 pixels will lead to 3 pixels for each fringe.
The initial spatial distribution of the atomic cloud determines the blurring effect on the interferometer fringes;

the resulting signal is obtained by calculating the convolution between the probability distribution obtained for the
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FIG. 8. Interferometer fringes obtained for a point-source atomic cloud in the x–y plane for different values of Ωy, from left to
the right: 1× 10−6 rad/s, 1× 10−5 rad/s, 1× 10−4 rad/s, and 1.17× 10−3 rad/s= Ωorb.
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FIG. 9. (left) fringes on the x–y plane at z = 0 when the initial atomic distribution is taken into account to calculate the
final density distribution; a by eye hardly discernible reduction of 5% for the fringe amplitude is obtained with respect to the
signal resulting from a point-like source, as shown in the third image of figure 8; (center) fringes on the x–y plane when the
atomic density distribution is integrated along the measurement direction z for the CCD imaging. (right) The blurring effect
on the fringe visibility is shown on the two density distribution profiles taken at y = 0, when the signal is integrated (red) or
not (black) along the z direction. The combined effect is a fringe amplitude reduction of 20%. The images are obtained for
Ωx = 1× 10−6 rad/s, Ωy = 1× 10−4 rad/s, and a final size of the cloud along z of 1.1 mm.

point-like source case with the initial spatial distribution of the atomic ensemble. In figure 9 is shown how the fringes
signal worsens when the initial cloud is considered as an isotropic normal distribution along the 3 directions, with
a standard deviation equal to 150 µm. The fringe contrast is further decreased because of the density distribution
integration along the observation direction required for the imaging. For Ωy � 10 mrad/s the phase spread along the
vertical direction is mainly due to Γzz (see Eq. 8) and is ≈ 600 mrad over the final size of the atomic cloud. Other
effects, not taken in to account here, contribute to further reduce the phase sensitivity, like the quantum projection
noise (QPN) due to the finite number of atoms detected by each pixel of the CCD, and the technical noise determined
by the detection technique [64]; these effects must be evaluated to define the requirements for the instrument adopted
for the detection.

Note that the above results also apply to the case where the Raman mirrors are tilted to compensate for rotation,
provided one replaces Ωy with Ωy − Ωm.

C. Design of the laser source/frequency power distribution

The architecture of the laser system including the frequency/power distribution is depicted on figure 10. It is based
on telecom technology combined with second harmonic generation (SHG) [65]. The main specifications of the laser
are detailed in table IV.

A reference laser supplies an absolute optical frequency corresponding to the atom transition of Rubidium (85Rb
crossover transition |F = 3〉 → |F ′ = 3(4)〉). Then all the laser frequencies are servo locked compared to this reference
thanks to a beatnote and a lock-in electronics box. The laser system is composed of four other blocks corresponding to
the functions of Table IV: one block for the cooling and the detection, two subsystems for the Raman transitions (one
for the π pulse of the interferometer, one for the other pulses), and the last part corresponding to the implementation
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Specifications Units 2D MOT 3D MOT Raman Bloch lattice Push Detection Raman ∆kz

Wavelength nm 780.24 780.24 780.24 780.24 780.24 780.24 780.24

Power mW 200/20 100/10 45 200 5 5 30/30

Frequency MHz - 20 [-20;-120] -3400 +100000 ∼ 0 ∼ 0 [+19100;+24100]

Linewidth MHz 0.5 0.5 < 0.01 < 6 1 0.1 < 0.01

Frequency accuracy kHz < 100 < 100 < 100 Not critical < 100 < 100 < 25

Second frequency NA F=1→ F’=2 F=1→ F’=2 6834+ωR [0.075; -3.087] No 6568 6834-3 ωR

Polarization dB 20 20 30 20 20 30 30

Power stability NA < 1% < 1% < 0.1% < 1% < 0.1% < 1% < 0.1%

Disruptive lines NA Tolerated Tolerated No No No No No

TABLE IV. Main specifications of the laser source for Tzz. Each specification is determined for one type of function. For
instance the “Raman” column is for both the atom motion and the π/2 interferometer pulses since the specifications are
identical. The required power is for a single Raman beam. Since they are used simultaneously, this value need to be multiplied
by the number of beams in the total power budget. The two values for the laser power correspond respectively to one optical
frequency. Disruptive lines can be produced if we use a phase modulator to create the second optical frequency. ωR is the recoil
frequency. The difference about the laser parameters for Txx and Tyy are the frequency detuning range ([-17150;-14650] MHz)
and the laser power (22/22 mW) of the interferometer π pulse.

of the Bloch lattice. The wave vector modification of the π pulse interferometer δk implies an additional laser system.
Indeed, the laser system to generate π and π/2 pulses of the atom interferometer cannot be the same because the
frequency difference is too large and they are used simultaneously. The reference frequency for the π Raman pulse is
produced using a phase modulator (PM 2) with a tunable Microwave Frequency Reference (MWFR). The reference
frequency for the Bloch lattice laser is the fifth harmonics at +50 GHz of a frequency comb generated using a phase
modulator (PM 1) with a DRO operating at 10 GHz.

The laser source for the cooling part is a standard DFB diode. A phase modulator (PM 3) with a DRO at 6.8
GHz creates the repumping frequency used for laser cooling in the 2D MOT. This beam is then amplified by an
erbium-doped fiber amplifier (EDFA). Frequency doubling from 1560 nm to 780 nm is accomplished via SHG in a
periodically-poled lithium niobate waveguide (PPLN-WG), where the confinement of the optical mode leads to high
intensity and thus high efficiency. A similar architecture is implemented for the 3D MOT, the detection and the push
beam except for the laser diode (External Cavity Diode Laser). A fibered splitter is used to separate the beams for
the three functions.

The configuration of the Raman laser source is based on the generation of the two frequencies by distinct external
cavity diodes (ECDL). The two lasers are phase locked thanks to a beat note on a photoconductor at the output of the
laser system to avoid phase noise along the optical paths. We duplicate the Raman laser system for the interferometer
π pulse which has a specific detuning and power compared to the π/2 pulses due to the shift of the wave vector δk.
The required frequency difference between the π pulse and the π/2 pulses to compensate for Tzz is +25 GHz. Since
the gravity gradient is not constant during the full orbit and the full mission, this frequency shift has to be tunable
over a range of ±2.5 GHz. Moreover, the idea is to actively compensate for the phase shift due to the variation of
the gravity gradient, and extracting the measurement from the needed frequency shift. This requires a control of the
frequency shift with a relative accuracy of 10−6 to be compliant with the specification of 5 mE per shot for the gravity
gradient measurement.

The laser source for the Bloch lattice subsystem is a DFB diode. To create the two frequencies, the beam is split
into two paths and a different RF frequency is supplied on each fibered acousto-optic modulators (AOMs). The two
beams are then recombined on the free space combination bench.

ZERODUR R©free-space platforms hold AOMs and mechanical shutters to switch on and off the output light.
An assembly of polarizing cubes and waveplates splits and recombines the beams. Two laser sources with optical
frequencies separated by the clock transition of Rubidium 6.8GHz are combined for the Raman pulses. The polarization
are crossed and the two output of the polarizing cubes are exploited in order to avoid power losses. A beat-note is
done on a photoconductor and the second laser source is phase locked on the first one.

D. Reference mirror design

The mirrors discussed in this section retroreflect the beamsplitting light fields. They serve as a reference for the
effective wave fronts of the light fields used to coherently manipulate the atoms. Ideally, these effective wave fronts
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FIG. 10. Architecture of the laser source. Telecom components (green area for laser cooling, violet areas for the Raman pulses,
orange area for Bloch oscillation) are used to develop a compact fiber-based laser system. Free-space optical benches (light
pink areas) were implemented with 780 nm optical components to control the frequency of the reference laser (blue area)
via saturated absorption spectroscopy and to control the power of the laser output via AOMs. DFB: Distributed Feedback
Diode Laser. ECDL: External Cavity Diode Laser. PM: phase modulator. EDFA: erbium-doped fiber amplifier. PPLN-WG:
periodically-poled lithium-niobate waveguide. MWFR: microwave frequency reference. DRO: dielectric resonator oscillator.
AOM: acousto-optic modulator. FC: fiber coupler. PD: photodiode. PLL: Phase Lock Loop. The needed optical power (violet)
are used for the power budget. The frequencies and the power for the π pulse laser part on this figure are for Tzz.

are flat and smooth over all atom-light interaction zones to avoid spurious phase contributions. This condition implies
a parallel alignment of the surfaces in the cross-track direction, and well aligned tilts in the other two directions
which compensate for rotations [62, 66, 67] and lead to effective parallel wave fronts seen by the atoms. The retro
reflection setup suppresses inhomogeneity of the incoming light field, but imperfections in the ideally flat mirror
surface directly affect the effective wave front. Wave front distortions are a major contribution to the uncertainty in
precision atom interferometers [10–12, 66]; this noise can be reduced using colder atoms [11, 68], and further minimized
with condensed [26] or even collimated atoms [46, 59, 69]. These considerations motivate the detailed discussion for
the gradiometer. We assess the requirements on the mirror in three steps: (i) tilts, (ii) defocus and Gouy phase,
(iii) higher order distortions, and propose a technical implementation. The following assessments treat a Gaussian
distribution with an initial standard deviation of the position of 400µm, and of the velocity of 100µm/s for an atomic
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FIG. 11. Impact on the phase of a relative tilt of the wave fronts. The figure shows the case for a relative tilt ∆2,3 of the
wave fronts in direction of the forward drift velocity in the second and third interaction zone. While a significant impact on
the single atom interferometer (black) is visible, the effect is strongly suppressed in the differential phase (red). The blue curve
exaggerates the phase by a factor of 104 for clarity. The perpendicular direction shows the same behaviour.

ensemble of 106 atoms.
For assessing the impact of relative tilts of the effective wave fronts, we follow the description of Ref. [70]. To first

order, and for small angles α, a tilt implies a change in the distance of the atoms to the retro reflection mirror of
d · sinα. Here, d denotes the distance between the pivot point and the projection of the position of the atoms onto
the mirror surface in direction of the beam splitting light field. Although the choice of d has a strong impact onto
the phase of a single atom interferometer, it is suppressed in the differential signal. This suppression depends on the
overlap of the trajectories parallel to the mirror surfaces [71] which itself depends on the precision of the launching
mechanism, that transfers the atoms into the interferometer region, and ultimately on the shot-noise limited position
and velocity uncertainty of the atomic ensembles. For our gradiometer, we have to control phase noise, and can neglect
an unknown, but stable phase shift. Figure 11 shows an example of a phase shift induced by the relative tilt between
two effective wave fronts and its suppression in the differential signal when assuming a shot noise limited differential
starting position and velocity (cross-track direction). From the slope of the curves we derive the requirement to
keep relative tilts below 25µrad [0.5µrad] if the relative position jitter between two subsequent cycles is below 2µm
[100µm], which is at or above the shot-noise limit (< 2µm). This corresponds to a peak to valley of the mirror
surface of 250 nm [5 nm] over a region with a diameter of 1 cm. The same requirements are valid for the other two
axes (along track and nadir) when interpreting the relative mirror tilts as the deviation from the ideal alignment for
compensating the rotations.

In a simplified model [11], an acceleration signal is contaminated by δ a = σ2
v/R for an expansion rate σv of the

atomic ensemble, assuming a Gaussian distribution, and a radius R of a static effective wave front curvature. In our
more detailed model the wave front curvature changes as the beam propagates, and the effective wave front is generated
by subtracting the retro reflected beam from the incoming one [72]. We propagate the beam parameters via ABCD
matrices [73], determining the wave front curvature and Gouy phase depending on the longitudinal position inside the
light field. The wave front of the incoming beam depends on the numerical aperture of the fiber, a free propagation,
the focal length of the lens for collimating the beam, and another free propagation to the atoms. The wave front of
the retro reflected beam depends on the numerical aperture of the fiber, a free propagation, the focal length of the
lens for collimating the beam, a free propagation to the mirror (past the atoms), the focal length of the lens describing
the mirror, and a free propagation back to the atoms. We take the different positions of the atoms on the upper and
lower trajectories of the interferometer into account, and calculate the phase for both interferometers forming the
gradiometer. Our model also enables the evaluation of cases where the atoms are off center with respect to the beam.
In addition, it introduces a weighting according to the Gaussian intensity profile, since transition probabilities at the
edge of the beam degrade because of reduced Rabi frequencies, and atoms at these positions contribute less to the
average phase.

We initially randomize the values for longitudinal positions of the optics in the beam (standard deviation of 5 µm
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FIG. 12. Impact on the phase for different focal lengths of the mirror. The figure shows the case for an approximate waist
of 10 mm, third interaction zone for recombination, in the tilted-mirror configuration. As can be seen, the differential phase
is robust against variations of the focal length within the given parameters, and significantly suppressed compared to a single
atom interferometer (single ATI top / bottom). To better illustrate the phase behavior, the blue signal has been multiplied by
100 and reported in purple. The other two zones have a qualitatively similar behaviour.

to 20 µm), the focal length of the collimation lens (standard deviation of few 10 µm), the velocities and positions of
the atomic ensembles (shot noise limited standard deviation of 0.1 µm/s, and 0.4 µm, respectively), and the curvature
of the lens modelling the mirror (standard deviation of 300 m) to slightly deviate from the ideal value. For the
mirror, we assume a mean curvature radius of R=5600 m. This corresponds to a peak to valley of λ/20 for λ=780
nm and diameter of the mirror of 6 cm and leads to a reflected wave front with a curvature radius of R=2800 m.
We individually scan the focal lengths of the collimation lens and the mirror for each interaction zone and keep other
parameters fixed to evaluate the impact on the phase of the interferometer for approximate beam waists of 2.5 mm,
5 mm, and 10 mm. An example curve is shown in figure 12. In addition, we take the standard deviation of the phase
for 1000 shots with randomized values for the optics positions in longitudinal direction (standard deviation of few
µm), the positions of the beam splitting axes in transverse direction (standard deviation 100 µm), and the velocities
and positions of the atomic ensembles (shot noise limited).

For the cross-track direction, with an approximate waist of 2.5 mm [5 mm, 10 mm], we estimate a phase noise per
shot in the gradiometer signal of about 1 mrad [0.2 mrad, 0.05 mrad] and a phase bias of about 4 mrad [4 mrad,
1 mrad] or less for a deviation of the focal length of the collimation lens from the optimum of ≤ 5µm [40 µm, 40
µm] or less and a deviation of the focal length of the mirror of ≤600 m. For waists above 2.5 mm, the Gouy phase
dominates the phase excursion in a single atom interferometer. Although it still dominates the residual phase shift in
the differential signal for the gradiometer in our simulation, it is sufficiently suppressed.

For simulating the other two axes, we add displacements to the positions of the atoms with respect to the beam
center as required by the tilted-mirror configuration. Again using an approximate waist of 2.5 mm [5 mm, 10 mm],
we estimate a phase noise per shot in the gradiometer signal of about 3 mrad [1 mrad, 3 mrad] and a phase bias of
about 10 mrad [5 mrad, 1 mrad] or less for a deviation of the focal length of the collimation lens from the optimum
of ≤ 5µm [40 µm, 40 µm] or less and a deviation of the focal length of the mirror of ≤600 m. Here, the quality of
the input collimation dominates the residual shift for waists of 2.5 mm and 5 mm, and for 10 mm the dependence on
the Gouy phase is qualitatively similar to the previous case. To push the noise of the configuration with a waist of 10
mm below 1 mrad, the standard deviation of the positions of the beam splitting axes in transverse direction has to
be limited to 25 µm.

Consequently, this validates our choice of a mirror with a curvature radius of about R=5600 m, and sets the
requirement for minimum beam waist of 5 mm.

To simulate higher order distortions, we follow the approach of Refs. [12, 71, 74] by parameterizing the atomic
trajectories and calculating the local phase shifts imprinted by the atom-light interactions which are affected by
imperfect mirror surfaces, represented by reference objects. Here, we do not propagate the wave fronts, and simply
assume the effective wave fronts to be a copy of the surface inhomogeneities. The three reference objects have a peak-
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to-valley figure of about λ/20 [λ/75] and a root mean square of ∼ λ/100 [λ/150] over the whole surface [central region,
diameter 1 cm]. Due to reflection, these values are doubled in the simulation. We take the standard deviation of 10
averages with 400 shots each for randomized positions [velocities] of an atom with a standard deviation of 400 µm [100
µm/s]. This procedure is repeated for four different center positions of the reference objects and two different sequences
of the reference objects to rule out readings from particularly good or bad spots. The simulation returns an estimate
for the differential phase noise of 10 mrad per shot, consistent between the individual intializations. This is a factor
of 10 above the requirements. Since the results indicate uncorrelated noise between the two single interferometers
contributing to the gradiometer signal, we expect these results to hold for the tilted mirror configuration.

The simulations imply the requirements of having a local peak-to-valley figure of ≤ λ/1000, and a local root mean
square of ≤ λ/1000 (∼1 nm). For designing appropriate optics, the simulation can be adapted by replacing the
reference objects with two blanks and an object whose surface is defined by a single Zernike polynomial [75], and
determining the required pre-factors.

Summarizing these assessments, the requirements are a peak-to-valley figure of λ/20 for a mirror with a diameter
of 6 cm, a peak-to-valley figure of λ/1000 (∼1 nm) in the central region with a diameter of 1 cm, a root mean square
of λ/1000 (∼1 nm) in the central region with a diameter of 1 cm, and a maximum relative tilt of the effective wave
fronts in the beam splitting zones below 0.5 µm. When assuming a fused silica substrate for the mirrors, temperature
gradients have to be limited below 63 K/m to avoid distortions which violate the requirements above.

Mirrors in gravitational wave detectors as VIRGO [76, 77] and LIGO [78, 79] are based on fused silica substrates
coated by ion beam sputtering with SiO2 and Ta2O5 or TiO2. Here, the surface quality of the substrate dominates
the inhomogeneity after coating. Test substrates with a diameter of 48 mm and a thickness of 12 mm were polished
to a peak-to-valley figure below 1 nm and a root mean square of 0.2 nm [80–82]. In LIGO, a test sample of a coated
substrate reached a roughness below 0.5 nm root mean square, and the requirement on controlling the curvature of
the mirror at the level of ±2 m implies a control of about 1 nm in the peak-to-valley figure.

Since these values are compatible with our requirements, we propose to use the same mirror technology for the
gradiometer. For the cross-track axis we propose a single mirror covering all three atom-light interaction zones for
passive stability with a size of 6× 6× 31 cm3, leading to a mass of 2.5 kg, and for the other two axes three separate
mirrors with a diameter of 6 cm and a thickness of 1.5 cm. The mirrors should be mounted inside the vacuum system
to avoid additional distortions by viewports. In the axes with tilted mirror configuration, the outer ones require
motorized mirror mounts for initial alignment and adjustment to the actual rotation rate.

E. Magnetic field

1. Requirements

For the interferometer region a static bias field of e.g. B=100 nT aligned with the Raman lasers is applied to
provide a quantization axis for the atoms. External magnetic fields need to be attenuated below this level by passive
shielding and temporal and spatial fluctuations of the magnetic fields need to be suppressed since they cause phase
shifts due to the second order Zeeman effect and bias in the measurement of the gravity gradient.

With a gradient in the magnetic field ∇B and the quadratic Zeeman shift in energy δE = hKB2 with K=575
Hz/G, the atoms accelerate by δa = −2hK

m B∇B. Given the same constant spatial gradient in both interferometers,

the differential acceleration between the two interferometers then is ∆(δa) = −2hK
m (∇B)2∆z. This results in a bias

on the gravity tensor

∆Tzz =
∆(δa)

∆z
=
−2hK

m
(∇B)2. (10)

In order to reduce the bias on the gradiometer phase below 1 mrad, the magnetic field gradient needs to be reduced
below 60 nT/m.

Similarly, a difference of the time averaged field 〈B 〉 between the first and second half of the pulse sequence leads
to a bias in the phase measurement of ∆φ = 4πKB∆〈B 〉T . Thus with B=100 nT a field fluctuation by ∆〈B 〉=14
nT causes a phase shift of 1 mrad. This is then subject to common mode suppression in a differential measurement
depending on the spatial and temporal correlations of the fields at the two interferometers.

All of the above requirements need to be met, as the satellite moves in Earth’s magnetic field of Bearth ≈ 40 µT,
causing a change of the field component projected on the interferometer axis of up to 60 nT/s. Thus, an efficient
mumetal magnetic shield is required to provide a suitable magnetic field environment [83].



21

2. Magnetic shield design

To provide shielding of the interferometer against external magnetic fields, we consider a passive multilayer mumetal
shield. The effectiveness of the magnetic shield can be described by the shielding factor

S =
Boutside
Binside

, (11)

defined by the ratio of the total residual magnetic field inside the shield to the total initial magnetic field outside.
The magnetic field requirements derived above thus translate into a required shielding factor of S > 1000.

To verify that our design complies with this requirement, we performed simulations based on finite-element modeling
(FEM), similar to [84]. The modeled mumetal shield was placed inside a static magnetic field Bearth=40 µT and the
residual field at the interferometer region was calculated to determine the shielding factor and the resulting magnetic
field gradient along the interferometer area. Starting from a cylindrical design the best trade-off between shielding
effectiveness and dimension and mass was found with elliptical shields. The 3-layer magnetic shield design, shown
in figure 13, consists of one overall outer layer and two inner layers for the 2D-MOT/BEC chamber and the CAI
chamber respectively. The gaps between the layers were set to 20 mm and each layer has a thickness of 1 mm.

FIG. 13. Magnetic shield design, consisting of one 1 mm outer layer and two 1 mm inner layers for each vacuum chamber. The
blue dotted area depicts the location of the atoms inside the shield.

The FEM simulation results in a shielding factor of Sx,y,z ≈ (49 700, 9 900, 4 800) for the interferometer area which
complies with the requirement. The actually achievable shielding factor will of course depend on the fabrication and
details of the design such as location of necessary feedthroughs which are not yet included here. Thus, we take these
results only to confirm that a three-layer shield should be capable to meet the requirement in principle. For the mag-
netic gradient we observe a maximum value of ∆Bx,y,z = (0.74, 2.7, 4.6) nT/m, also fulfilling the requirement. These
values are determined from the maximum observed differences of the total residual fields over the two interferometer
regions and thus represent an upper limit to the gradient.

F. Payload architecture

Here we consider a satellite in nadir-pointing configuration with a payload of three differently orientated instruments
to measure the gravity gradient in each spatial direction: Txx, Tyy and Tzz. Each of the three instruments is divided
into three functional units: the physics package, the laser system and an electronics unit as depicted in the functional
diagram of figure 14. In table V, we give a breakdown of the mass and power budget for the single Tzz instrument into
these three units. The mass and power for the Txx and Tyy sensors slightly differs due to the additionally required
tip-tilt mirror. This budget is derived from the design presented in section VII and based on state of the art technology
of cold atom experiments in microgravity [26, 46].
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FIG. 14. Functional diagram of a single axis gradiometer instrument in CAI.

System Mass (kg) Power (W) Size (mm)

Physics Package 160.4 128.4 (1052 x 444 x 805)

Laser System 51.1 104.2 (300 x 300 x 400)

Electronic System 52.4 607.9 (300 x 300 x 1000)

Total 264.0 840.9 (1052 x 750 x 805)

TABLE V. Mass and power budget for a Tzz instrument including the tip-tilt mirror design. A component margin of 20% on
mass and power is included here.

From the basic vacuum chamber design in figure 7, we estimate the size of the physics package for a single axis
instrument to be (1052× 444× 805) mm3 including the elliptical magnetic shield design, discussed in section VII E 2.
An arrangement of all three instruments including lasers and electronics then results in an approximate estimate of
the payload size of (1054× 1054× 1600) mm3. This allows for an elongated satellite shape similar to that of GOCE
with a front surface slightly larger than 1 m2, which is important to minimize the residual atmospheric drag of the
satellite. The power and mass of a full 3-axis instrument including a 20% margin is estimated at 785 kg and 2940 W.
However we expect that ongoing technology development should allow for a significant reduction of these values.

VIII. PERFORMANCE ANALYSIS AND OPTIMUM MEASUREMENT BANDWIDTH

In this section, we quantify precisely how the CAI gravity gradiometer can improve our knowledge on the Earth’s
gravity field. As such, we designed a closed-loop numerical simulator and applied it to evaluate the performance of
the CAI gradiometer. We focused our analysis on the nadir pointing mode with the compensation of rotation.

A. Closed-loop simulator

In order to represent the chain of the measurement process realistically, we carried out this study through a closed-
loop simulation in the time domain. This approach is flexible and provides the possibility to precisely quantify the
errors in terms of gravity field solutions.
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A general overview of the closed-loop simulation workflow is given in figure 15. On the one hand, the simulator
takes a gravitational model and the noise-free time series of the satellite orbit, angular velocity and attitude, and,
on the other hand, the spectral or statistic characteristics of the sensors’ noise, to synthesize realistically degraded
observables, namely the estimated orbit, angular velocity, attitude and gradients. These synthesized observables are
finally used to derive a gravity field model. The comparison of the estimated gravity field model with the original one
enables then to precisely characterize the error in the frequency and spatial domain.
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which a gravitational model will be finally derived. The comparison of the estimated gravitational model

with the original one enables then to precisely characterize the error in the frequency and spatial domain.

Figure 3.1: Workflow diagram of the simulation principle, focused on the processing of the gravitational

gradients.

By only considering additive noises in the error analysis, we implicitly assume that the calibration of

the different sensors is sufficiently precise to neglect their scale factor, quadratic factor drift and bias and in

the case of the gradiometer, the common-mode rejection ratio and errors due to geometric misalignments.

3.2.2 Synthesis of noise-free quantities

Orbit

As the magnitude of the gravitational gradients decreases rapidly with the altitude, it is crucial to have an

altitude as low as possible given some other technical constraints. For the sake of rigorous comparisons to

GOCE performance, we have chosen 71 days of GOCE orbit starting from the 2nd of March 2013. During this

period the orbit had an average altitude of 239 km and a repeat cycle of 65 days. It must be pointed out that

this altitude is lower than the standard altitude of GOCE, typically of 255 km. The time series of the orbit

coordinates have been interpolated at 1 Hz from the GOCE L1 dynamical orbit data sampled at 0.1 Hz.

Gravitational gradient tensor in the LNOF

For the computation of the static GGT expressed in the LNOF we used the model EIGEN-6c4 [33] up to de-

gree/order 360. The GGT is first computed on a regular grid in latitude, longitude and altitude with a slightly

modified versions of the routines made by Eshagh at al. [34]. The gradients are then linearly interpolated

along the orbit. We have checked that the interpolation error is well below 0.1 mE and thus negligible com-

pared to the gradiometer noise.

Satellite angular velocity

Nadir mode The generation of the angular velocity time series was split into two steps: first, by definition

of the nadir mode, the instantaneous angular velocity!LORF of the LORF has been computed from the orbit

position and velocity and then assigned to the component!y defined in section 3.2.1 so that the rotation of

the GRF at the orbital frequency is indeed done along the y-axis. Second, as the attitude control cannot be
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FIG. 15. Workflow diagram of the simulation principle, focused on the processing of the gravity gradients.

B. Gravity field recovery

The Earth’s global gravity field is usually expressed in terms of a Spherical Harmonics (SH) series [85] as

V (r, θ, λ) =
GM

R

N∑
n=0

(
R

r
)n+1

n∑
m=0

[
C̄nm cosmλ+ S̄nm sinmλ

]
P̄nm(cos θ), (12)

where GM is the gravitational constant of the Earth, R is the radius of Earth, (r, θ, λ) are spherical coordinates of
a point on the Earth surface (r radius, θ co-latitude, λ longitude), n,m denote SH degree and order, N denotes the
maximum degree of the model expansion (in theory, the maximum degree is ∞), P̄nm(cos θ) are fully normalized
associated Legendre functions, and C̄nm, S̄nm are the normalized SH coefficients, which are the unknowns of the
gravity field solution.

The gravity gradients Vij are point-wise measurements of the second-order partial derivatives of the gravity potential.
They are usually delivered in the instrumental reference frame, e.g., the Gradiometer Reference Frame (GRF), while
the Earth’s gravity field model is expressed in the Earth-fixed Reference Frame (ERF). We thus have to transform
the gravity gradients and the gravity field model to the same reference frame by

Vij = R
∂2V

∂xi∂xj
RT , (13)

where R represents the rotation matrix between different reference frames. This equation represents the observational
equation for the gravity gradients in the frame of gravity field recovery.

Due to the large amount of observations and the large number of unknowns, it forms a large-scale and over-
determined linear equation system for the determination of the gravity field model. The classic Least-Squares (LS)
adjustment is applied to solve this linear equation system, which poses a great numerical challenge because of the high
computational requirements in terms of both time and memory. The computation of this part is mainly accomplished
on the clusters of Leibniz Universität IT Services (LUIS)[86].

C. Data

Three kinds of observations are required for gravity field recovery, including satellite’s orbit, attitude and gravity
gradients. Orbit data is mainly used to geolocate other observations, while attitude data is necessary for the setup
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of the rotation matrix between different reference frames. The gravity gradients are the primary observations for the
retrieval of the SH coefficients.

1. Synthesis of noise-free data

Since the gravity field signal attenuates quickly with altitude, it is important to have the satellite’s orbit as low as
possible. For the sake of rigorous comparisons to GOCE, we have chosen 71 days of the GOCE orbit, from 2nd March
to 10th May, 2013. During this period, the orbit had an average altitude of 239 km. Note that this altitude is lower
than the standard one of GOCE, typically of 259 km. The time series of the orbit coordinates have been interpolated
at 1 Hz from the GOCE L2 dynamic orbit data sampled at 0.1 Hz using spline functions. Based on the orbit data, the
noise-free gravity gradients are computed using the gravity field model “Eigen-6c4” [87] up to SH degree and order
of 360.

The generation of the angular velocity Ω is indispensable for the determination of attitude and rotations. This can
be done by two steps: first, the instantaneous angular velocity ωLORF of the Local Orbital Reference Frame (LORF)
with respect to the Inertial Reference Frame (IRF) has to be computed from the orbital position and velocity, and
then assigned to the component ωy so that the main rotation of the instrument frame, i.e., GRF, at the orbital
frequency is indeed about the y-axis; second, a residual zero-mean angular velocity δΩ = (δωx, δωy, δωz)

T is added
so that we finally have

Ω =

 δωx
ωLORF + δωy

δωz

 . (14)

2. Synthesis of noisy data

We assumed a zero-mean, normally distributed error with a standard deviation of 2.6 cm added to the orbit initial
coordinates. This precision was typically achieved with GOCE [88].

We assumed that three star-trackers and a gyroscope are on board of the satellite for the determination of the
angular velocity. Both kinds of sensors give estimates of the three components of the angular velocity, which are
then optimally combined in the frequency domain using a Wiener filter like in the processing of the angular velocity
of GOCE, see [89]. This method requires to have a model of the PSD of the noise of both sensors. Thereafter, the
noise models of both sensors were assumed, with their spectral characteristics shown in figure 16. For more details
on this aspect, we refer to reference [57]. The errors of the gravity gradients are the sum of the gradiometer noise
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the nadir mode, and not modulated at twice the orbital frequency like the two other measured gradients.

We will see in section 3.3.2 that such a modulation of the gradients degrades dramatically the recovered

gravitational model. Therefore the initial quaternions are chosen so that the y-axis is perpendicular to the

orbital frame at the initialization time.

3.2.3 Synthesis of noisy observables

Noisy angular velocity and attitude

For the simulation we assume that the satellite payload includes some star-trackers and a gyrometer for the

determination of the angular velocity. The gyrometer considered here is the state-of-the-art space fiber-

optic gyrometer ASTRIX® 200 manufactured by Airbus Defence & Space. The output of both kinds of sensor

are optimally combined in the frequency domain using a Wiener filter like in the processing of the angular

velocity of GOCE (see Stummer et al. [36]). This method requires to have a good model of the power spectral

density (PSD) of the noise of both sensors. Thereafter, we assumed to have an exact knowledge of them. For

the gyrometer, we considered a white noise of 6.8£10°6 rad/s/
p

H z, as guaranteed by the constructor. For

the star-trackers, we assumed that the noise PSD follows the model derived by Stummer et al. [36] for the

y-component of the angular velocity. Both spectra are plotted in Figure 3.2 along with the example of the

spectrum of a combined solution. In this chapter we will call amplitude spectral density (ASD) the square-

root of the the PSD. The ASD is usually used by engineers to characterize the sensor noise. Below 4£10°5 Hz

Figure 3.2: Amplitude spectral density of the noise degrading the estimation of one component of the an-

gular velocity of the GRF with respect to the inertial frame.

the angular velocity information is essentially given by the star-trackers while above it is only the gyrometer.

The estimated attitude quaternions are deduced from the noisy angular velocity by integrating equation 3.7.

Noisy Gravitational gradients in the GRF

As shown by equations (3.1), the gravitational gradients are not direct outputs of the gradiometer: they are

deduced from the measured acceleration gradients from which the centrifugal terms are then subtracted.

The final error on the gravitational gradients is therefore the sum of the gradiometer noise and the error due
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FIG. 16. Amplitude spectral density of the noise degrading the estimation of one component of the angular velocity of the
instrument frame, i.e., GRF, with respect to the inertial frame.

and the error due to the correction of the centrifugal terms. An additive noise with a white behaviour is assumed for
the gradiometer. The amplitude of the PSD is assumed as 5 mE/Hz1/2. The centrifugal terms are the square of the
angular velocities whose noise has been discussed above.
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(a)Vxx (b)Vyy

(c)Vzz (d)Combined

FIG. 17. Formal errors of the component-wise gravity field solutions, in logarithmic scale.

D. Results

Global gravity field models were finally recovered from the synthesized noisy observations. They were resolved up
to SH degree and order of 240, including 58 077 unknowns. As pointed out previously, we could have the diagonal
gradient components, i.e., Vxx, Vyy, Vzz, obtained for the nadir pointing mode with compensation on rotations. We
thus derived three component-wise gravity field solutions as well as a combined solution from all three components. To
evaluate the performance of these models, both the true errors (the differences between the recovered SH coefficients
and the input background model, i.e., Eigen-6c4) and the formal errors (the accompanied standard deviations of the
parameters, obtained in the LS adjustment) are analyzed.

The formal errors of the component-wise and combined solutions are displayed in figure 17. It is shown that these
gradient components are sensitive to different parts of the gravity field. For instance, Vxx is more sensitive to lower
order zonal and near-zonal coefficients, i.e., around order zero, but less sensitive to higher order coefficients. In this
regard, Vyy exactly complements Vxx with the inverse sensitivity. It contributes mainly to non-zonal coefficients, i.e.,
the sectorial coefficients. The reason for the inverse and complementary contribution is related to the orientation
of the corresponding gradiometer pairs. Compared to Vxx and Vyy, Vzz is sensitive to all orders of the coefficients,
according to Laplace’s equation, Vzz = −(Vxx + Vyy). The contribution of Vzz is identical to the combination of
Vxx and Vyy. This could be demonstrated indirectly by comparing the Vzz component solution with the combined
solution, where both show quite similar patterns. Here, we would also like to mention that the zonal and near-zonal
coefficients for all solutions are determined in a degraded performance. This is attributed to the GOCE orbit, which
leaves polar gaps where no observations are available [90].

The contribution analysis indicates that the one-axis nadir pointing mode shows natural deficits for determining
the Earth’s gravity field. Only a part of the gravity field signal can be precisely retrieved from the Vyy component.
However, when the compensation of the rotation was applied in this mode, the other two components Vxx and Vzz
can be obtained with a comparable high accuracy. This three-axis mode can thus integrally capture the gravity field
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FIG. 18. Degree medians of the true errors for the recovered models in three-axis nadir pointing mode, expressed in terms of
geoid height. For comparison, the Vyy solution in the one-axis mode was plotted as well.

signal.
The degree medians of the true errors for all recovered models are shown in figure 18. The degree medians that are

more robust with respect to the degraded coefficients are used to represent the error amplitudes for each degree. And
for a better understanding, the errors are expressed in terms of geoid height. The solutions from Vyy in the one-axis
and the three-axis mode show the same performance, as the same signal-to-noise ratio (SNR) of the observations
has been assumed. Similarly, the error curve of the Vxx component is at a comparable level as Vyy. However, the
solution from Vzz is about twice better than those of Vxx and Vyy. This is mainly due to the double power of signal,
see more discussion in [57]. To sum up the contribution of all components, the combined solution shows the best
performance. It is much better than the component-wise solutions of Vxx and Vyy but only marginally better than
the Vzz component solution. The combination of all components by optimal weighting indicates that the combined
solution is dominated by the Vzz solution.

E. Discussion

We analyze now to what extent the CAI gradiometer concept can outperform GOCE when assuming a nominal
gradiometer noise of 5 mE/Hz1/2. To this end, we extrapolate the error of these models from 71 days to 8 months
assuming the error is purely stochastic and reduces as

√
t where t is the time of integration. To gain an idea of the

GOCE solution error, we compute a gravity field model based on the three diagonal gravity gradients of the whole
GOCE mission period (November 2009 – October 2013, about 47 months). Since the comparison concerns only the
contribution of the gradiometer, we have not taken into account the GOCE high-low satellite-to-satellite tracking
data that is mainly responsible for the recovery of the low-degree gravity field coefficients.

The 8-month solution for the three-axis nadir pointing mode is better than the GOCE solution for the whole mission
period, as shown in figure 19. We can thus conclude that an 8-month mission at an altitude of 239 km and using
a 3-axis CAI gradiometer in the nadir pointing mode with a nominal white noise of 5 mE/Hz1/2 would outperform
the full GOCE mission and eventually yields a more precise gravity field model. Nonetheless, in this comparison, it
should be kept in mind that the GOCE satellite was most of its lifetime at a altitude higher than 239 km, about 3
months at 239 km and 5 months lower than 239 km. This fact shows that it is technically possible to fly a satellite
at an altitude as low as 239 km for a duration of 8 months.

For a fair comparison, we have also plotted the GOCE solution for the 8 months where the satellite was at an
altitude equal or lower than 239 km. Again, the 8-month CAI gradiometer in the three-axis nadir mode at a constant
altitude yields a better solution despite the fact that the 8-month GOCE solution is partly based on gravity gradients
measured at a lower altitude.
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FIG. 19. Degree medians of the true errors for gravity field solutions that are extrapolated to 8 months for the CAI gradiometer
as well as the errors for the GOCE SGG (Satellite Gravity Gradient) solutions. Two GOCE SGG solutions are included here.
One is based on the gravity gradients of the whole mission period, while the other one corresponds to the period where the
satellite was in lower orbits.

IX. CONCLUSION

We have carried out a detailed design of a 3D gradiometer based on atom interferometry for space geodesy. We
have performed a detailed analysis and modelling of the atomic signals and of the constraints on relevant parameters
(i.e. atomic source, interferometer geometry and attitude control of the satellite). The implementation of cancellation
methods for the large rotation rate at the orbital frequency when operating Nadir, and for the gravity gradient,
allows for reducing dephasing and systematic effects and for extracting the signal with maximal sensitivity. With an
expected sensitivity of 5 mE/Hz1/2 (PSD), we show a two-fold improvement on the gravity field recovery for degrees
above 50, and significantly better for lower orders, when comparing an 8-month solution at an altitude of 239 km
with the model obtained from GOCE data over its whole mission duration.

The determination of the optimal gain requires a realistic mission scenario, which remains to be investigated. As
inputs, such mission-oriented study would use the constraints which we have determined for the attitude control and
the overall size, weight and power (SWaP) budget of the total instrument. This budget has been established considering
existing and available technology, and certainly needs to be reduced to end up with a more reasonable load. Possible
modifications to the design, such as sharing subsystems between the instruments, would certainly help, but it is clear
that a number of specific technological and engineering efforts are also required, in particular directed towards the
optimization of the power consumption. This challenging task motivates on-going and future research and development
activities. This concerns not only the technological efforts mentioned above, to improve for instance the generation
of BEC sources on atom chips or the compactness and power consumption of fiber-based laser systems, but also the
validation of the instrument concept. Indeed, if the key scientific methods, such as bloch-lattice transport, double
Raman diffraction or interleaved measurements, have for most of them been demonstrated individually, demonstration
activities combining several, and in the end all, of them in a single setup in a representative environment, need to be
pushed. This calls for carrying prototyping activities, such as developing an elegant breadboard model of the sensor
and characterizing it in a relevant environment. A thorough assessment of the performances of such a prototype will
establish gradiometers based on cold atom interferometry as appealing sensors for future gravity missions aiming at
improving our knowledge of the Earth’s gravity field.
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[12] A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, and A. Landragin. Characterization and limits of a cold-atom sagnac
interferometer. Phys. Rev. A, 80:063604, 2009.

[13] M. Kasevich and S. Chu. Atomic interferometry using stimulated raman transitions. Phys. Rev. Lett., 67(2):181–184, 1991.
[14] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich. Sensitive absolute-gravity gradiometry

using atom interferometry. Phys. Rev. A, 65(3):033608, 2002.
[15] A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, and

G. M. Tino. Atom interferometry gravity-gradiometer for the determination of the newtonian gravitational constant g.
Eur. Phys. J. D, 40(2):271–279, sep 2006.

[16] G. W. Biedermann, K. Takase, X. Wu, L. Deslauriers, S. Roy, and M. A. Kasevich. Zero-dead-time operation of interleaved
atomic clocks. Phys. Rev. Lett., 111(17), oct 2013.

[17] I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin. Continuous cold-atom inertial
sensor with1 nrad/secRotation stability. Phys. Rev. Lett., 116(18), may 2016.

[18] D Savoie, M Altorio, B Fang, LA Sidorenkov, R Geiger, and A Landragin. Interleaved atom interferometry for high-
sensitivity inertial measurements. Science advances, 4(12):eaau7948, 2018.

[19] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein
Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995.

[20] M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle. Output Coupler for Bose-
Einstein Condensed Atoms. Phys. Rev. Lett., 78:582, 1997.

[21] J.-F. Clément, J.-P. Brantut, M. Robert de Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer. All-optical
runaway evaporation to Bose-Einstein condensation. Phys. Rev. A, 79:061406(R), 2009.

[22] D S Naik, G Kuyumjyan, D Pandey, P Bouyer, and A Bertoldi. Bose–Einstein condensate array in a malleable optical
trap formed in a traveling wave cavity. Quantum Sci. Technol., 3(4):045009, aug 2018.

[23] Lin Zhou, Shitong Long, Biao Tang, Xi Chen, Fen Gao, Wencui Peng, Weitao Duan, Jiaqi Zhong, Zongyuan Xiong, Jin
Wang, et al. Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer.
Physical review letters, 115(1):013004, 2015.

[24] G Rosi, F Sorrentino, L Cacciapuoti, M Prevedelli, and GM Tino. Precision measurement of the Newtonian gravitational
constant using cold atoms. Nature, 510(7506):518, 2014.

[25] M Hauth, C Freier, V Schkolnik, A Senger, M Schmidt, and A Peters. First gravity measurements using the mobile atom
interferometer gain. Applied Physics B, 113(1):49–55, 2013.

[26] Jan Rudolph, Waldemar Herr, Christoph Grzeschik, Tammo Sternke, Alexander Grote, Manuel Popp, Dennis Becker,
Hauke Müntinga, Holger Ahlers, Achim Peters, Claus Lämmerzahl, Klaus Sengstock, Naceur Gaaloul, Wolfgang Ertmer,
and Ernst M Rasel. A high-flux BEC source for mobile atom interferometers. New Journal of Physics, 17(6):065001, jun
2015.

[27] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss. All-optical Bose-Einstein condensation using a compressible
crossed dipole trap. Phys. Rev. A, 71:011602, Jan 2005.



30
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