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The aim of this paper is to study the theoretical and numerical stability of the Bresse system in one-dimensional bounded domain with viscoelastic Kelvin-Voigt damping. We first showed the well posedness of the system . Then the stability is obtained by applying The multiplier techniques . Later a numerical scheme is proposed and analyzed. Finally a priori error estimate is established.

Introduction

Some of the properties of viscoelastic materials are their ability to creep, recover, undergo stress relaxation and absorb energy. Owing to huge applications of smart materials in modern technology, there has been an abundance of literature on the study of elastic systems with viscoelastic damping. When a smart material is patched in an elastic structure, the Young's modulus, the mass density and the damping coefficients are changed accordingly. Practically, one type of viscoelastic damping is usually used. This is the Kelvin-Voigt damping. This kind of damping, on the one hand, make the distributed control practically realizable, and on the other hand, bring some new mathematical challenges that attract increasing research interests. In this work, the theoretical and numerical stability of a viscoelastic Bresse system is investigated. The Bresse system is also known as the circular arch problem and is given by the following equations:

(1.1)

ρ 1 φ tt = Q x + IN + F 1 , ρ 2 ψ tt = M x -Q + F 2 , ρ 1 w tt = N x -IQ + F 3 ,
where

N = κ 0 (w x -lφ), Q = κ(φ x + lw + ψ), M = bψ x .
We use N, Q and M to denote the axial force, the shear force and the bending moment. ω, φ and ψ denote the longitudinal, vertical and shear angle displacements, respectively. Furthermore,

ρ 1 = ρA, ρ 2 = ρI, k 0 = EA, k = k ′ GA, b = EI and l = R -1
, where ρ denotes the density, E is the elastic modulus, G is the shear modulus, k ′ is the shear factor, A is the cross-sectional area, I is the second moment of area of the cross-section and R is the radius of curvature of the beam. Here, we assume that all the above coefficients are positive constants. Finally, F i denote external forces. Therefore, without external forces, the motion equations are given by ρ 1 φ tt -κ(φ x + ψ + lω) x -κ 0 l(ω x -lφ) = 0 in (0, L) × (0, ∞), (1.2) ρ 2 ψ tt -bψ xx + κ(φ x + ψ + lω) = 0 in (0, L) × (0, ∞), (1.3) ρ 1 ω tt -κ 0 (ω x -lφ) x + κl(φ x + ψ + lω) = 0 in (0, L) × (0, ∞), ( 

   F 1 = γ 1 (φ x + lw + ψ) xt + γ 0 l(w x -lφ) t , F 2 = γ 2 ψ xxt + γ 1 (φ x + lw + ψ) t , F 3 = γ 0 (ω x -lφ) xt -γ 1 l(φ x + ψ + lω) t ,
where γ 1 , γ 2 and γ 2 are the damping coefficients. Hence, by substituting F i in (1.1) we get our desired viscoelastic Bresse type system (1.6)

                       ρ 1 φ tt -k(φ x + lω + ψ) x -γ 1 (φ x + lw + ψ) xt -k 0 l(ω x -lφ)
-γ 0 l(w x -lφ) t = 0 in (0, L) × (0, ∞),

ρ 2 ψ tt -bψ xx -γ 2 ψ xxt + k(φ x + ψ + lω) +γ 1 (φ x + lω + ψ) t = 0 in (0, L) × (0, ∞), ρ 1 ω tt -k 0 (ω x -lφ) x -γ 0 (ω x -lφ) xt + kl(φ x + ψ + lω) +γ 1 l(φ x + ψ + lω) t = 0 in (0, L) × (0, ∞).
with t > 0 and 0 < x < L, where L represents the distance between the ends of the center line of the beam, see figure.

One type of boundary conditions is considered: Dirichlet-Dirichlet-Dirichlet

(1.7) φ(t, x) = ψ(t, x) = ω(t, x) = 0, x = 0, L.

The initial conditions for this system are given by:

(1.8) ω(0, .) = ω 0 , ω t (0, .) = ω 1 , φ(0, .) = φ 0 , φ t (0, .) = φ 1 , ψ(0, .) = ψ 0 , ψ t (0, .) = ψ 1 on (0, L).

The energy of solutions of the system (1.6) is defined by

(1.9)    E(t) = 1 2 ∫ L 0 ( ρ 1 |φ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 + b|ψ x | 2 +k|φ x + ψ + lω| 2 + k 0 |ω x -lφ| 2 ) dx.
So, the dissipation relation is given by

(1.10) d dt E(t) = - ∫ L 0 ( γ 2 |ψ xt | 2 + γ 1 |φ x + ψ + lω| 2 + γ 0 |ω xt -lφ t | 2 ) dx.
Many authors treated the stability of beams under the influence of controls and feedbacks with viscoelastic terms. In [START_REF] Chen | Spectrum and stability of elastic systems with global or local Kelvin-Voigt damping[END_REF] S. Chen and al. studied the mathematical properties of a variational second order evolution equation. As an application, they considered the Euler-Bernoulli and Rayleigh beams with the global or local Kelvin-Voigt damping. They establish the strong asymptotic stability and exponential stability. Later, K. Liu and Z. Liu [START_REF] Liu | Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping[END_REF] studied the energy decay rate for an one-dimensional linear wave equation with the Kelvin-Voigt damping presented on a subinterval which models an elastic string with one segment made of viscoelastic material and the other of elastic material. It was proved that the energy of that system does not decay exponentially when each segment is homogeneous, i.e., coefficient functions are piecewise constant and have discontinuity at the interface. In [START_REF] Tatar | Stabilization of a viscoelastic Timoshenko beam[END_REF] Tatar prove an exponential decay of solutions of viscoelastic Timoshenko beam for a large class of kernels with weak conditions. We refer also to A. Guesmia and S. A. Massaoudi [12] which established an exponential and polynomial decay results for the Timoshenko system with a viscoelastic damping. The same authors showed in [START_REF] Guesmia | General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping[END_REF] a general stability estimate using the multiplier method and some properties of convex functions. Also, we refer the reader for some other results on the Bresse system [START_REF] Alabau | Stability to Weak Dissipative Bresse System[END_REF][START_REF] Afilal | New Stability Results for a Linear Thermoelastic Bresse System with Second Sound[END_REF][START_REF] Guesmia | Bresse system with infinite memories[END_REF][START_REF] Guesmia | Uniform and weak stability of Bresse system with two infinite memories[END_REF][START_REF] Keddi | Exponential and Polynomial Decay in a Thermoelastic-Bresse System with Second Sound[END_REF][START_REF] Massaoudi | Neu general decay results in a finite-memory Bresse system[END_REF][START_REF] Li | Energy Decay Rate of Bresse System with Nonlinear Localized Damping[END_REF][START_REF] Fatori; R | The Optimal Decay Rate for a Weak Dissipative Bresse System[END_REF][START_REF] Wehbe | Stabilization of the uniform Timoshenko beam by one locally distributed feedback[END_REF][START_REF] Wehbe | Exponential and Polynomial Stability of an Elastic Bresse System with two Locally Distributed Feedbacks[END_REF].

On the other hand, we mention some numerical studies for some beam models.

Copetti and Fernaández [START_REF] Copetti | A dynamic contact problem involving a Timoshenko beam model[END_REF] considered a dynamic contact problem between a viscoelastic beam and a deformable obstacle. They introduced a fully discrete approximations, based on the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. Moreover, thye proved a priori error estimates, obtaining the linear convergence of the algorithm under an additional regularity condition. In [START_REF] Bernardi | Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model[END_REF] Bernardi and Copetti considered a nonlinear model for a thermoviscoelastic Timoshenko beam that can enter in contact with obstacles and they performed the a priori analysis of the discrete problem by proposing a discretization by combining an Euler and Crank-Nicolson type schemes in time and finite elements in space. In [START_REF] Ahn | A viscoelastic Timoshenko beam with dynamic frictionless impact[END_REF] Ahn and Stewart considered of a viscoelastic (Kelvin-Voigt type) Timoshenko beam. The existence of solutions is proved using the conservation of energy, which is performed both theoretically and numerically.

The remaining work of this paper is organized as follows. In section 2. the systems (1.6), (1.7), (1.8) and (1.6), (??), (1.8) are formulated in an appropriate Hilbert state spaces setting and the well posedness of the systems is proved. In section 3, the exponential decay rate of each of the system is showed. In section 4, a numerical scheme based on the finite element method is introduced to approximate the solution. In addition, the decay of the discrete energy is obtained.

Well-posedness

In this section, we shall study the existence and uniqueness of the solution of the viscoelastic Bresse system (1.6) corresponding to the boundary conditions (1.7) and the initial conditions (1.8) by means the semigroup theory. To attend the different types of boundary conditions, we consider the following product Hilbert spaces:

H = H 1 0 (0, L) × L 2 (0, L) × H 1 0 (0, L) × L 2 (0, L) × H 1 0 (0, L) × L 2 (0, L).
The space H is equipped with the inner product which induces the energy norm (2.11)

∥U ∥ 2 H = ∥(φ, Φ, ψ, Ψ, ω, W )∥ 2 Hj = ρ 1 ∥Ψ∥ 2 + ρ 2 ∥Ψ∥ 2 + ρ 1 ∥W ∥ 2 + κ∥φ x + ψ + lω∥ 2 + b∥ψ x ∥ 2 + κ 0 ∥ω x -lφ∥ 2 .
Here and after, ∥•∥ denotes the L 2 (0, L) norm. We rewrite the initial-value problem (1.6), (1.7), (1.8) as a first-order system for U = (φ, Φ, ψ, Ψ, ω, W ) on the Hilbert space H as follows:

(2.12)

U t = A U, U (0) = U 0 .
Let U = (φ, Φ, ψ, Ψ, ω, W ), and we define the linear unbounded operators

A = A + B : D(A ) → H by (2.13) A =          0 1 0 0 0 0 κ ρ1 D 2 -κ0l 2 ρ1 I 0 κ ρ1 D 0 (κ+κ0)l ρ1 D 0 0 0 0 1 0 0 -κ ρ2 D 0 b ρ2 D 2 -κ ρ2 I 0 -κl ρ2 I 0 0 0 0 0 0 1 -(κ+κ0)l ρ1 D 0 -κl ρ1 I 0 κ0 ρ1 D 2 -κl 2 ρ1 I 0          , (2.14) B =          0 1 0 0 0 0 0 γ1 ρ1 D 2 -γ0l 2 ρ1 I 0 γ1 ρ1 D 0 (γ1+γ0)l ρ1 D 0 0 0 1 0 0 0 -γ1 ρ2 D 0 γ2 ρ2 D 2 -γ1 ρ2 I 0 -γ1l ρ2 I 0 0 0 0 0 1 0 -(γ1+γ0)l ρ1 D 0 -γ1l ρ1 I 0 γ0 ρ1 D 2 -γ1l 2 ρ1 I         
,

where D i = d i /dx i and (2.15) D(A ) = {U ∈ H 1 : Φ, Ψ, W ∈ H 1 0 (0, L), κ 0 ω + γ 0 W ∈ H 2 (0, L), κφ + γ 1 Φ ∈ H 2 (0, L) bψ + γ 2 Ψ ∈ H 2 (0, L)}.
Now, the next theorem provides the well-posedness of (1.6),(1.7),(1.8).

Theorem 2.1. A generates a C 0 semigroup S(t) of contractions on H . Proof. Firstly, by a direct calculation, we have

(A U, U ) H = -γ 1 ∥Φ x ∥ 2 -γ 2 ∥Ψ x ∥ 2 -γ 0 ∥W x ∥ 2 -γ 0 l 2 ∥Φ∥ 2 -γ 1 ∥Ψ∥ 2 -γ 1 l 2 ∥W ∥ 2 +2(γ 1 + γ 0 )l ∫ L 0 W x Φdx + 2γ 1 ∫ L 0 ΦΨ x dx -2γ 1 l ∫ L 0 W Ψdx = -γ 1 ∥Φ x ∥ 2 -γ 2 ∥Ψ x ∥ 2 -γ 0 ∥W x ∥ 2 -γ 0 l 2 ∥Φ∥ 2 -γ 1 ∥Ψ∥ 2 -γ 1 l 2 ∥W ∥ 2 -2γ 1 l ∫ L 0 W Φ x dx + 2γ 0 l ∫ L 0 W x Φdx -2γ 1 ∫ L 0 Φ x Ψdx -2γ 1 l ∫ L 0 W Ψdx = -γ 1 [ ∥Φ x ∥ 2 + ∥Ψ∥ 2 + l 2 ∥W ∥ 2 + 2γ 1 l ∫ L 0 Φ x W dx + 2γ 1 ∫ L 0 Φ x Ψdx + 2γ 1 l ∫ L 0 W Ψdx ] -γ 2 ∥Ψ x ∥ 2 -γ 0 [ ∥W x ∥ 2 + l 2 ∥Φ∥ 2 -2l ∫ L 0 W x Φdx ] .
Note that the expression multiplied by γ 1 is equal to ∥Φ x + Ψ + lW ∥ 2 and that multiplied by γ 0 is equal to ∥W x -lΦ∥ 2 . Thus,

(A U, U ) H = -γ 1 ∥Φ x + Ψ + lW ∥ 2 -γ 2 ∥Ψ x ∥ 2 -γ 0 ∥W x -lΦ∥ 2 ≤ 0.
So the dissipativity of A is proved. It remains to prove that (2.16)

A U = f, ∀f ∈ D(A ),
where f = (f 1 , f 2 , ..., f 6 ), has a unique solution U ∈ D(A ). Indeed, the first three equations in (1.6) give

u = f 1 , v = f 2 , and z = f 3 .
On the other hand, if we consider the bilinear form defined by B ( (φ, ψ, ω), ( φ), ψ, ω )

:= ∫ L 0 [ k(φ x + ψ + lω)( φ x + ψ + l ω) + bψ x ψ x + k 0 (ω x -lφ)( ω x -l φ) ] dx,
and if we use the Lax-Milgram theorem we conclude that there exists a unique (φ, ψ, ω) solution of the fourth, fifth, and sixth equations of (1.6). Hence, 0 ∈ ρ(A) and so by the resolvent identity, for small λ > 0 we have R(λ -A ) = H . Consequently, the Lumer-Phillip theorem implies that A generates a C 0 semigroup S(t) of contractions on H . □ Therefore the well-posedness is summarized in the following theorem.

Theorem 2.2. If U 0 = (φ 0 , ψ 0 , ω 0 , φ 1 , ψ 1 , ω 1 ) ∈ D(A ), problems (1.6),(1.7),(1.8) and (1.6),(??),(1.8) admits a unique solution U = (φ, ψ, ω, φ t , ψ t , ω t ) such that U ∈ C ( [0, +∞); D(A j ) ) ∩ C 1 ([0, +∞); H ) .

Exponential Stabilization

The main goal of this section is to prove the exponential decay of solutions which summarized in the following theorem. Our main tool is the result presented in the following lemma used in Haraux [START_REF] Haraux | Semi-groupes lineéaires et eéquations d'évolution lineéaires peériodiques[END_REF] and Lagnese [START_REF] Lagnese | Boundary Stabilization of Thin Plates[END_REF] (see [START_REF] Komornik | Exact controllability and stabilization. The Multiplier Method[END_REF] for the proof): Lemma 3.1. Let f : R + → R + be a non-increasing function and assume that there exists a constant T > 0 such that

∫ ∞ t f (s)ds ≤ T f (t), ∀t ∈ R + .
Then,

f (t) ≤ f (0)e 1-t T , ∀t ≥ T.
Theorem 3.1. There exist two positive constants C 1 and η such that the energy of the solution of (1.6),(1.7),(1.8) satisfies

(3.17) E(t) ≤ C 1 E(0)e -ηt ∀t ≥ 0.
Proof. Several steps are required for the proof of this theorem.

Step 1. Multiply the first equation of (1.6) by φ, the second by ψ, the third by ω, and integrate over [S, T ] × [0, L], we obtain:

(3.18)                - ∫ T S ∫ L 0 ρ 1 |φ t | 2 + ρ 1 ∫ L 0 [ φ t φ ] T S + k ∫ T S ∫ L 0 (φ x + ψ + lω)φ x +γ 1 ∫ T S ∫ L 0 (φ x + ψ + lω) t φ x -k 0 l ∫ T S ∫ L 0 (ω x -lφ)φ -lγ 0 ∫ T S ∫ L 0 (w x -lφ) t φ = 0, (3.19) 
               - ∫ T S ∫ L 0 ρ 2 |ψ t | 2 + ρ 2 ∫ L 0 [ ψ t ψ ] T S + b ∫ T S ∫ T S |ψ x | 2 +k ∫ T S ∫ L 0 (φ x + ψ + lω)ψ + γ 1 ∫ T S ∫ L 0 (φ x + ψ + lω) t ψ +γ 2 ∫ T S ∫ L 0 ψ xt ψ x = 0 and (3.20)                - ∫ T S ∫ L 0 ρ 1 |ω t | 2 + ρ 1 ∫ L 0 [ ω t ω ] T S + k 0 ∫ T S ∫ L 0 (ω x -lφ)ω x +lk ∫ T S ∫ L 0 (φ x + ψ + lω)ω + lγ 1 ∫ T S ∫ L 0 (φ x + ψ + lω)ω +γ 0 ∫ T S ∫ L 0 (ω x -lφ) t ω x = 0.
Step 2. Adding (3.18), (3.19) 

et (3.20) leads to (3.21)                        - ∫ T S ∫ L 0 ρ 1 |φ t | 2 - ∫ T S ∫ L 0 ρ 2 |ψ t | 2 - ∫ T S ∫ L 0 ρ 1 |ω t | 2 + k ∫ T S ∫ L 0 | φ x + ψ + lω | 2 +k 0 ∫ T S ∫ L 0 | ω x -lφ | 2 +b ∫ T S ∫ L 0 |ψ x | 2 + ρ 1 ∫ L 0 [ φ t φ ] T S + ρ 2 ∫ L 0 [ ψ t ψ ] T S +ρ 1 ∫ L 0 [ ω t ω ] T S + γ 0 ∫ T S ∫ L 0 (w x -lφ) t (w x -lφ) + γ 2 ∫ T S ∫ L 0 ψ xt ψ x +γ 1 ∫ T S ∫ L 0 (φ x + ψ + lω) t (φ x + ψ + lω) = 0.
Thus, from the definition of E we deduce

(3.22)        k ∫ L 0 | φ x + ψ + lω | 2 +k 0 ∫ L 0 | ω x -lφ | 2 +b ∫ L 0 |ψ x | 2 = 2E(t) - ∫ L 0 ρ 1 |φ t | 2 - ∫ L 0 ρ 2 |ψ t | 2 - ∫ L 0 ρ 1 |ω t | 2 .
By combining (3.21) and (3.22) we get

(3.23)                        2 ∫ T S E(t)dt = -ρ 1 ∫ L 0 [ φ t φ ] T S -ρ 2 ∫ L 0 [ ψ t ψ ] T S -ρ 1 ∫ L 0 [ ω t ω ] T S +γ 0 ∫ T S ∫ L 0 (w x -lφ) t (w x -lφ) + γ 2 ∫ T S ∫ L 0 ψ xt ψ x +γ 1 ∫ T S ∫ L 0 (φ x + ψ + lω) t (φ x + ψ + lω) +2 ( ∫ T S ∫ L 0 (ρ 1 |φ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 )dxdt
) .

Step 3. In this step, we shall estimate the terms of the right member of (3.23). By using the Young inequality and the Poincaré inequality, we deduce

(3.24) -ρ 1 ∫ L 0 [ φ t φ ] T S ≤ cE(S) ∀S ≥ 0, (3.25) -ρ 2 ∫ L 0 [ ψ t ψ ] T S ≤ cE(S) ∀S ≥ 0, and 
(3.26) -ρ 1 ∫ L 0 [ ω t ω ] T S ≤ cE(S) ∀S ≥ 0,
where c is a generic constant depends on ρ 1 , ρ 2 , E, I, G, γ 0 , γ 1 , and γ 2 .

On the other hand, the Cauchy-Shwarz and the Poincaré inequalities give us

∫ T S ∫ L 0 (w x -lφ) t (w x -lφ) ≤ ∫ T S ( ∫ L 0 |(w x -lφ) t | 2 dx ) 1 2 ( ∫ L 0 |w x -lφ| 2 dx ) 1 2 dt.
Hence, (1.10) implies

∫ T S ∫ L 0 (w x -lφ) t (w x -lφ) ≤ ∫ T S (-E ′ ) 1 2 E 1 2 ≤ c ε ∫ T S (-E ′ )dt + ε ∫ T S Edt,
for all ε > 0 from Young's inequality. Therefore, we have

(3.27) ∫ T S ∫ L 0 (w x -lφ) t (w x -lφ) ≤ cE(S) + 1 2 ∫ T S Edt ∀S ≥ 0.
By repeating the same argument to

∫ T S ∫ L 0 ψ xt ψ x and ∫ T S ∫ L 0 (φ x + ψ + lω) t (φ x + ψ + lω),
we conclude that (3.28)

∫ T S ∫ L 0 ψ xt ψ x ≤ cE(S) + ε ∫ T S E(t)dt ∀S ≥ 0 and (3.29) ∫ T S ∫ L 0 (φ x + ψ + lω) t (φ x + ψ + lω) ≤ cE(S) + ε ∫ T S E(t)dt ∀S ≥ 0.
Finally, the Poincarré inequality and the inequality ∫ 

Ω ( |φ x | 2 +|ψ x | 2 +|ω x | 2 +b|ψ x | 2 ) ≤ c ( ∫ L 0 ( k|φ x + ψ + lω| 2 + b|ψ x | 2 + k 0 |ω x -lφ| 2 ) dx ) . lead to                2 ( ∫ T S ∫ L 0 (ρ 1 |φ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 )dxdt ) ≤ c ( ∫ T S ∫ L 0 (|φ xt | 2 + |ψ xt | 2 + |ω xt | 2 )dxdt ) ≤ c ( ∫ T S ∫ L 0 (|(φ x + ψ + lω) t | 2 + |ψ xt | 2 + |(ω x -lφ) t | 2 )dxdt ) Therefore, (3.30) 
       2 ( ∫ T S ∫ L 0 (ρ 1 |φ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 )dxdt ) ≤ c ∫ T S (-E ′ )dt ≤ cE(S) ∀S ≥ 0.
∫ T S E(t)dt ≤ cE(S), ∀S ≥ 0.
Thus, if we fix S and by making T -→ +∞, we obtain the proof complete by applying the lemma 2.1. □

The Discrete Problem

Firstly, we introduce a numerical scheme based on implicit Euler in time and finite elements in space. We briefly describe the method and we study the convergence of the proposed scheme. At the end of this section, we will show that the discrete energy is decreasing due the viscoelatic effect. 4.1. Description of the Discrete Problem. We denote by (T h ) h a partition of Ω which have the following properties:

(1)

T h = {K ⊂ Ω; K is closed in Ω} (2) ∀(K, K ′ ) ∈ T h ×T h ; |K| = |K ′ | and K∩K ′ = { empty set
or end point of both of them.

(

) Ω = ∪ K∈T h K. 3 
Since the problem is defined in 1D, 0 = x 0 < x 1 < ... < x s denotes a uniform partition of Ω, so that any K j ∈ T h can be written as K j = (x j-1 , x j ) for j = 0, ..., s. The associate discrete finite element space, denoted by S h , is defined by

The length of

(4.32) S h = {u h ∈ H 1 (Ω); ∀K ∈ T h ; u h | K ∈ P 1 (K)}
Where P k (K) denotes the space of restrictions to K of polynomials with one variable and degree less than or equal to k. By using the Implicit Euler scheme in time and the finite element variational approximation in space, we intoduce the following scheme :

(N P )                                              Find (φ n h , ψ n h , w n h ) ∈ (S 0 h ) 3 , ρ1 ∆t ( φ n h -φ n-1 h , φ h ) + k(φ n hx + ψ n h + ℓw n h , φ hx ) -ℓκ 0 (w n hx -ℓφ n h , φ h ) +γ 1 ( ϕ n hx + ℓ w n h + ψ n h , φ hx ) -γ 0 ℓ( w n hx -ℓ ϕ n h , φ h ) + γ 1 ( ϕ n hx + ℓ w n h + ψ n h , φ hx ) = 0, ρ2 ∆t ( ψ n h -ψ n-1 h , ψ h ) + b(ψ n hx , ψ hx ) + γ 2 ( ψ n hx , ψ hx ) + k(φ n hx + ψ n h + ℓw n h , ψ h ) +γ 1 ( ϕ n hx + ℓ w n h + ψ n h , ψ h ) = 0, ρ1 ∆t ( w n h -w n-1 h , w h ) + k 0 (w n hx -ℓφ n h , w hx ) + γ 0 ( w n hx -ℓ ϕ n h , w hx ) + kℓ(φ n hx + ψ n h + ℓw n h , w h ) +γ 1 ( ϕ n hx + ℓ w n h + ψ n h , w h ) = 0, φ n h = φ n-1 h + ∆t φ n h , ψ n h = ψ n-1 h + ∆t ψ n h , w n h = w n-1 h + ∆t w n h .
The discrete energy of the system at certain time t n is defined by :   

E n := 1 2 ( ∥ φ n h ∥ 2 0 + ∥ ψ n h ∥ 2 0 + ∥ w n h ∥ 2 0 + ∥ψ n hx ∥ 2 0 + ∥φ n hx + ψ n h + ℓw n h ∥ 2 0 +∥w n hx -ℓϕ n h ∥ 2 0
) .

Its decay is presented in the following proposition.

Proposition 4.1. For all n = 0, ..., N , we have

(4.33) E n ≤ E n-1 .
Proof. Taking φ h = φ n h , ψ h = ψ n h , and w h = w h in the scheme to get (4.34)

     ρ1 2∆t ( ∥ φ n h -φ n-1 h ∥ 2 + ∥ φ n h ∥ 2 -∥ φ n-1 h ∥ 2 ) + k(φ n hx + ψ n h + ℓw n h , φ n hx ) +γ 1 ( φ n hx + ψ n h + ℓ w n h , φ n hx ) -k 0 ℓ( w n hx -ℓφ n h , φ n h ) -γ 0 ℓ( w n hx -ℓ φ n h , φ n h ) = 0, (4.35) 
       ρ2 2∆t ( ∥ ψ n h -ψ n-1 h ∥ 2 + ∥ ψ n h ∥ 2 -∥ ψ n-1 h ∥ 2 ) + k(φ n hx + ψ n h + ℓw n h , ψ n h ) + b 2∆t ( ∥ψ n hx -ψ n-1 hx ∥ 2 + ∥ψ n hx ∥ 2 -∥ψ n-1 hx ∥ 2 ) + γ 2 ∥ ψ n hx ∥ 2 +γ 1 ( φ n hx + ψ n h + ℓ w n h , ψ n h ) = 0, (4.36) 
     ρ1 2∆t ( ∥ w n h -w n-1 h ∥ 2 + ∥ w n h ∥ 2 -∥ wn-1 h ∥ 2 ) + kℓ(φ n hx + ψ n h + ℓw n h , w n h ) +γ 1 ℓ( φ n hx + ψ n h + ℓ w n h , w n h ) + k 0 (w n hx -ℓφ n h , w n hx ) +γ 0 ( w n hx -ℓ φ n h , w n hx ) = 0, By noting that k(φ n hx + ψ n h + ℓw n h , φ n hx + ψ n h + ℓ w n h ) ≥ k 2∆t ( ∥φ n hx + ψ n h + ℓw n h ∥ 2 -∥φ n-1 hx + ψ n-1 h + ℓw n-1 h ∥ 2
) .

and

k 0 (w n hx -ℓφ n h , w n hx -ℓ φ n h ) ≥ k 0 2∆t ( ∥w n hx -ℓφ n h ∥ 2 -∥w n-1 hx -ℓφ n-1 h ∥ 2
) .

then summing (4.34)-(4.36), we deduce ρ 1 2∆t

( ∥ φ n h ∥ 2 -∥ φ n-1 h ∥ 2 + ∥ w n h ∥ 2 -∥ wn-1 h ∥ 2 ) + ρ 2 2∆t ( ∥ ψ n h ∥ 2 -∥ ψ n-1 h ∥ 2 ) + b 2∆t ( ∥ψ n hx ∥ 2 -∥ψ n-1 hx ∥ 2 ) + γ 2 ∥ ψ n hx ∥ 2 + k 2∆t ( ∥φ n hx + ψ n h + ℓw n h ∥ 2 -∥φ n-1 hx + ψ n-1 h + ℓw n-1 h ∥ 2 ) + k 0 2∆t ( ∥w n hx -ℓφ n h ∥ 2 -∥w n-1 hx -ℓφ n-1 h ∥ 2
)

+γ 1 ∥ φ n hx + ψ n h + ℓ w n h ∥ 2 + γ 0 ∥ w n hx -ℓ φ n h ∥ 2 ≤ 0.
this leads to the end of the proof. □

The main target is to derive and a priori estimate for the discretization error, which leads to the convergence of the proposed scheme. Theorem 4.1. Suppose that the solution (φ, ψ, w) of system (1.6), (1.7), (1.8) belongs to the space

W := ( H 4 ( 0, T ; H 2 (0, L) ) ) 3 .
Then the following priori error estimate holds:

(4.37)              ∥ φ n h -φ t (t n )∥ 2 0 + ∥ ψ n-1 h -ψ t (t n )∥ 2 0 + ∥ w n h -w(t n )∥ 2 0 +∥bψ n h x -bψ x ∥ 2 0 + k(φ n h x + ψ n h + lw n h ) -k ( φ(t n ) + ψ(t n ) + lw(t n ) ) 2 0 +∥w n h x -lφ n h - ( w x (t n ) -lφ ) ∥ 2 0 ≤ C ( h 2 + (∆t) 2 ) .
Proof. We start by introducing the following terms :

e n = φ n h -P 0 h φ(t n ), e n = φ n h -P 0 h φ t (t n ), q n = ψ n h -P 0 h ψ(t n ), q n = ψ n h -P 0 h ψ t (t n ), R n = w n h -P 0 h ω(t n ), R n = w n h -P 0 h ω t (t n ).
The present proof is divided into six steps.

Step 1: Replacing φ n h by e n + P 0 h φ(t n ) and taking φ h = e n leads to rewrite the first equation of (NP) as follow :

(4.38)                      ρ1 ∆t ( e n -e n-1 , e n ) + ρ1 ∆t ( P 0 h φ t (t n ) -P 0 h φ t (t n-1 ), e n ) +k ( e n x + q n + ℓR n , e n x ) + k ( (P 0 h φ(t n )) x + P 0 h ψ(t n ) + ℓP 0 h w(t n ), e n x ) -k 0 ℓ ( R n x -ℓe n , e n ) -k 0 ℓ ( (P 0 h w(t n )) x -ℓP 0 h φ(t n ), e n ) + γ 1 ( e n x + ℓ R n + q n , e n x ) +γ 1 ( (P 0 h φ t (t n )) x + ℓP 0 h w t (t n ) + P 0 h ψ t (t n ), e n x ) -γ 0 ℓ ( (P 0 h w t (t n )) x -ℓP 0 h ϕ t (t n ), e n ) -γ 0 ℓ ( R n x -ℓ e n , e n ) = 0. Hence, (4.39)                      ρ1 2∆t ( ∥ e n -e n-1 ∥ 2 + ∥ e n ∥ 2 -∥ e n-1 ∥ 2 ) + ρ1 ∆t ( P 0 h φ t (t n ) -P 0 h φ t (t n-1 ), e n ) +k ( e n x + q n + ℓR n , e n x ) + k ( (P 0 h φ(t n )) x + P 0 h ψ(t n ) + ℓP 0 h w(t n ), e n x ) -k 0 ℓ ( R n x -ℓe n , e n ) -k 0 ℓ ( (P 0 h w(t n )) x -ℓP 0 h φ(t n ), e n ) + γ 1 ( e n x + ℓ R n + q n , e n x ) +γ 1 ( (P 0 h φ t (t n )) x + ℓP 0 h w t (t n ) + P 0 h ψ t (t n ), e n x ) -γ 0 ℓ ( (P 0 h w t (t n )) x -ℓP 0 h ϕ t (t n ), e n ) -γ 0 ℓ ( R n x -ℓ e n , e n ) = 0.
φ is replaced by e n in the first equation of (WP). Combining with the first equation of 1.4 yields (4.40)

                                       ρ1 2∆t ( ∥ e n -e n-1 ∥ 2 + ∥ e n ∥ 2 -∥ e n-1 ∥ 2 ) +k ( e n x + q n + ℓR n , e n x ) -k 0 ℓ ( R n x -ℓe n , e n ) + γ 1 ( e n x + ℓ R n + q n , e n x ) -γ 0 ℓ ( R n x -ℓ e n , e n ) = ρ 1 ( φ tt (t n ) - P 0 h φ t (t n ) -P 0 h φ t (t n-1 ) ∆t , e n ) +k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( ( P 0 h φ(t n ) ) x + P 0 h ψ(t n ) + ℓP 0 h w(t n ) ) , e n x ) -k 0 ℓ ( w x (t n ) -ℓφ(t n ) - ( ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n ) ) , e n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) - ( P 0 h ϕ t (t n ) ) x -ℓP 0 h w t (t n ) -P 0 h ψ t (t n ), e n x ) -γ 0 ℓ ( w tx (t n ) - ( P 0 h w t (t n ) ) x -ℓφ t (t n ) + ℓP 0 h φ t (t n ), e n ) .
Therefore, (4.41)

                     1 2∆t ( ∥y n -y n-1 ∥ 2 0 + ∥y n ∥ 2 0 -∥y n-1 ∥ 2 0 ) + ( e n x + q n + a n , y n x ) - ( a n x -e n , y n ) = ( φ tt (t n ) - P 0 h φ t (t n ) -P 0 h φ t (t n-1 ) ∆t , y n ) + ( φ x + ψ + w - ( ( P * h φ(t n ) ) x + P * h ψ(t n ) + P * h w(t n ) ) , y n x ) - ( w x -φ(t n ) - ( ( P * h w(t n ) ) x -P 0 h φ(t n ) ) , y n
) .

Step 2: The same procedure is applied for the second equation of (NP) ; that is ψ h is replaced by q n + P 0 h ψ(t n ) and ψ is replaced by q n in the second equation of (WP). We get (4.42)

                           ρ2 2∆t ( ∥ q n -q n-1 ∥ 2 + ∥ q n ∥ 2 -∥ q n-1 ∥ 2 ) + b ( q n x , q n x ) + γ 2 ( q n , q n x ) +k ( e n x + q n + ℓR n , q n ) + γ 1 ( e n x + ℓ R n + q n , q n ) = ρ 2 ( ψ tt (t n ) - P 0 h ψ t (t n ) -P 0 h ψ t (t n-1 ) ∆t , q n ) + b ( ψ x (t n ) - ( P 0 h ψ(t n ) ) x , q n x ) +γ 2 ( ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x , q n x ) +k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n ), q n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) - ( P 0 h φ t (t n ) ) x -ℓP 0 h w t (t n ) -P 0 h ψ t (t n ), q n
) .

Step 3: Again, substituting w n h by R n + P 0 h w(t n ) in third equations in (NP) and w by R n in (WP) leads to the following identity (4.43)

                                 ρ1 2∆t ( ∥ R n -R n-1 ∥ 2 + ∥ R n ∥ 2 -∥ R n-1 ∥ 2 ) + k 0 ( R n x -ℓe n , R n x ) +γ 0 ( R n x -ℓ e n , R n x ) +kℓ ( e n x + q n + ℓR n , R n ) + γ 1 ℓ ( e n x + q n + ℓ R n , R n ) = ρ 1 ( w tt (t n ) - P 0 h w t (t n ) -P 0 h w t (t n-1 ) ∆t , R n ) + k 0 ( w x (t n ) - ( P 0 h w(t n ) ) x -ℓφ(t n ) + ℓP 0 h φ(t n ), R n ) +γ 0 ( w x (t n ) - ( P 0 h w t (t n ) ) x -ℓφ t (t n ) + ℓP 0 h φ t (t n ), R n x ) +kℓ ( φ x (t n ) - ( P 0 h φ(t n ) ) x + ψ(t n ) -P 0 h ψ(t n ) + ℓw(t n ) -ℓP 0 h w(t n ), R n ) +γ 1 ℓ ( φ tx (t n ) + ψ t (t n ) + ℓw t (t n ) -P 0 h φ t (t n ) -P 0 h ψ t (t n ) -ℓP 0 h w t (t n ), R n )
Step 4: Summing (4.41), (4.42), and (4.43) gives (4.44

)                                                                                ρ1 2∆t ( ∥ e n -e n-1 ∥ 2 + ∥ e n ∥ 2 -∥ e n-1 ∥ 2 ) + ρ2 2∆t ( ∥ q n -q n-1 ∥ 2 + ∥ q n ∥ 2 -∥ q n-1 ∥ 2 ) + ρ1 2∆t ( ∥ R n -R n-1 ∥ 2 + ∥ R n ∥ 2 -∥ R n-1 ∥ 2 ) +k ( e n x + q n + ℓR n , e n x + q n + ℓ R n ) + k 0 ( R n x -ℓe n , R n x -ℓ e n ) +b ( q n x , q n x ) + γ 1 ( e n x + q n + ℓ R n , e n x + q n + ℓ R n ) +γ 0 ( R n x -ℓ e n , R n x -ℓ e n ) + γ 2 ( q n x , q n x ) = ρ 1 ( φ tt (t n ) - P 0 h φ t (t n ) -P 0 h φ t (t n-1 ) ∆t , e n ) +k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n ), e n x + q n + ℓ R n ) +k 0 ( w x (t n ) -ℓφ(t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n ), R n x -ℓ e n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) -P 0 h φ t (t n ) -P 0 h ψ t (t n ) -ℓP 0 h w t (t n ), e n x + q n + ℓ R n ) +γ 0 ( w tx (t n ) -ℓφ t (t n ) - ( P 0 h w t (t n ) ) x + ℓP 0 h φ t (t n ), R n x -ℓ e n ) +ρ 2 ( ψ tt (t n ) - P 0 h ψ t (t n ) -P 0 h ψ t (t n-1 ) ∆t , q n ) +b ( ψ x (t n ) - ( P 0 h ψ(t n ) ) x , q n x ) + γ 2 ( ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x , q n x ) +ρ 1 ( w tt (t n ) - P 0 h w t (t n ) -P 0 h w t (t n-1 ) ∆t , R n )
Step 5: We introduce the following terms

Y n := ( e n x + q n + ℓR n , e n x + q n + ℓ R n ) . T n := ( R n x -ℓe n , R n x -ℓ e n ) W n := ( q n x , q n x )
From the definitions of e n , q n and R n , we write

Y n = ( e n x + q n + ℓR n , e n x + q n + ℓ R n ) = ( e n x + q n + ℓR n , e n x -e n-1 x ∆t -(P 0 h φ t (t n )) x + (P 0 h φ(t n )) x -(P 0 h φ(t n-1 )) x ∆t + q n -q n-1 ∆t -P 0 h ψ t (t n ) + P 0 h ψ(t n ) -P 0 h ψ(t n-1 ) ∆t +ℓ ( R n -R n-1 ∆t -P 0 h w t (t n ) + P 0 h w(t n ) -P 0 h w(t n-1 ) ∆t ) ) = ( e n x + q n + ℓR n , 1 ∆t 
( ( e n x + q n + ℓR n ) - ( e n-1
x + q n-1 + ℓR n-1 ) )

+ (P 0 h φ(t n )) x -(P 0 h φ(t n-1 )) x ∆t -(P 0 h φ t (t n )) x + P 0 h ψ(t n ) -P 0 h ψ(t n-1 ) ∆t -P 0 h ψ t (t n ) +ℓ ( P 0 h w(t n ) -P 0 h w(t n-1 ) ∆t -P 0 h w t (t n ) ) )
.

It follows that

Y n = 1 2∆t [ ∥e n x + q n + ℓR n -(e n-1 x + q n-1 + ℓR n-1 )∥ 2 + ∥e n x + q n + ℓR n ∥ 2 -∥e n-1 x + q n-1 + ℓR n-1 ∥ 2 ] + ( e n x + q n + ℓR n , -(P 0 h φ t (t n )) x + (P 0 h φ(t n )) x -(P 0 h φ(t n-1 )) x ∆t + -P 0 h ψ t (t n ) + P 0 h ψ(t n ) -P 0 h ψ(t n-1 ) ∆t +ℓ ( -P 0 h w t (t n ) + P 0 h w(t n ) -P 0 h w(t n-1 ) ∆t ) )
In a similar way, we obtain (4.45

)                T n = 1 2∆t ( R n x -ℓe n -(R n-1 x -ℓe n-1 ) 2 + ∥R n x -ℓe n ∥ 2 -∥R n-1 x -ℓR n-1 ∥ 2 ) + ( R n x -ℓe n , P 0 h w(t n ) -P 0 h w(t n-1 ) x ∆t -(P 0 h w t (t n )) x ) -ℓ ( R n x -ℓe n , P 0 h φ(t n ) -P 0 h φ(t n-1 ) ∆t -P 0 h φ t (t n ),
) and (4.46)

   W n = 1 2∆t ( ∥q n x -q n-1 x ∥ 2 + ∥q n x ∥ 2 -∥q n-1 x ∥ 2 ) + ( ψ x (t n ) -ψ x (t n-1 ) ∆t -ψ tx (t n ), q n x ) .
By inserting the obtained forms of Y n , T n and W n in 4.44, we obtain :

(4.47)                                                                                                                                                                      ρ 1 2∆t ( ∥ e n -e n-1 ∥ 2 + ∥ e n ∥ 2 -∥ e n-1 ∥ 2 ) + ρ 2 2∆t ( ∥ q n -q n-1 ∥ 2 + ∥ q n ∥ 2 -∥ q n-1 ∥ 2 ) + ρ 1 2∆t ( ∥ R n -R n-1 ∥ 2 + ∥ R n ∥ 2 -∥ R n-1 ∥ 2 ) + k 2∆t [ ∥e n x + q n + ℓR n -(e n-1 x + q n-1 + ℓR n-1 )∥ 2 + ∥e n x + q n + ℓR n ∥ 2 -∥e n-1 x + q n-1 + ℓR n-1 ∥ 2 ] +k ( ( P 0 h φ(t n ) -P 0 h φ(t n-1 ) ) x ∆t -(P 0 h φ t (t n )) x , e n x + q n + ℓR n ) +k ( P 0 h ψ(t n ) -P 0 h ψ(t n-1 ) ∆t -P 0 h ψ t (t n ), e n x + q n + ℓR n ) +kℓ ( P 0 h w(t n ) -P 0 h w(t n-1 ) ∆t -P 0 h w t (t n ), e n x + q n + ℓR n ) + k 0 2∆t ( ∥R n x -ℓe n - ( R n-1 x -ℓe n-1 ) ∥ 2 + ∥R n x -ℓe n ∥ 2 -∥R n-1 x -ℓe n-1 ∥ 2 ) +k 0 ( ( P 0 h w(t n ) -P 0 h w(t n-1 ) ) x ∆t - ( P 0 h w t (t n ) ) x , R n x -ℓe n ) -k 0 ℓ ( P 0 h φ(t n ) -P 0 h φ(t n-1 ) ∆t -P 0 h φ t (t n ), R n x -ℓe n ) + b 2∆t ( ∥q n x -q n-1 x ∥ 2 + ∥q n x ∥ 2 -∥q n-1 x ∥ 2 ) + b ( ψ x (t n ) -ψ x (t n-1 ) ∆t -ψ tx (t n ), q n x ) +γ 1 ∥ e n x + ℓ R n + q n ∥ 2 + γ 0 ∥ R n x -ℓ e n ∥ 2 + γ 2 ∥ q n x ∥ 2 = ρ 1 ( φ tt (t n ) - P 0 h φ t (t n ) -P 0 h φ(t n-1 ) ∆t , e n ) +k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n ) , e n x + q n + ℓ R n ) +k 0 ( w x (t n ) -ℓφ(t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n ), R n x -ℓ e n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) -P 0 h φ t (t n ) -P 0 h ψ t (t n ) -ℓP 0 h w t (t n ) , e n x + q n + ℓ R n ) +γ 0 ( w tx (t n ) -ℓφ t (t n ) - ( P 0 h w t (t n ) ) x + ℓP 0 h φ t (t n ), R n x -ℓ e n ) +ρ 2 ( ψ tt (t n ) - P 0 h ψ t (t n ) -P 0 h ψ t (t n-1 ) ∆t , q n ) + b ( ψ x (t n ) - ( P 0 h ψ(t n ) ) x , q n x ) +ρ 1 ( w tt (t n ) - P 0 h w t (t n ) -P 0 h w t (t n-1 ) ∆t , R n ) + γ 2 ( ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x , q n x )
Step 6: By taking into consideration that ∥e n x +q n +ℓR n -(e n-1

x +q n-1 +ℓR n-1 )∥ 2 , ∥ e n -e n-1 ∥ 2 , ∥ q n -q n-1 ∥ 2 , ∥ R n -R n-1 ∥ 2 , ∥R n x -ℓe n - ( R n-1 x -ℓe n-1 ) ∥ 2 , ∥q n x -q n-1
x ∥ 2 are positive and rearranging some terms in 4.48, we get (4.48)

                                                                                                                                                               ρ 1 2∆t ( ∥ e n ∥ 2 -∥ e n-1 ∥ 2 ) + ρ 2 2∆t ( ∥ q n ∥ 2 -∥ q n-1 ∥ 2 ) + ρ 1 2∆t ( ∥ R n ∥ 2 -∥ R n-1 ∥ 2 ) + k 2∆t [ ∥e n x + q n + ℓR n ∥ 2 -∥e n-1 x + q n-1 + ℓR n-1 ∥ 2 ] + k 0 2∆t ( ∥R n x -ℓe n ∥ 2 -∥R n-1 x -ℓe n-1 ∥ 2 ) + b 2∆t ( ∥q n x ∥ 2 -∥q n-1 x ∥ 2
)

+γ 1 ∥ e n x + ℓ R n + q n ∥ 2 + γ 0 ∥ R n x -ℓ e n ∥ 2 + γ 2 ∥ q n x ∥ 2 ≤ k ( (P 0 h φ t (t n )) x - ( P 0 h φ(t n ) -P 0 h φ(t n-1 ) ) x ∆t , e n x + q n + ℓR n ) +k ( P 0 h ψ t (t n ) - P 0 h ψ(t n ) -P 0 h ψ(t n-1 ) ∆t , e n x + q n + ℓR n ) +kℓ ( P 0 h w t (t n ) - P 0 h w(t n ) -P 0 h w(t n-1 ) ∆t , e n x + q n + ℓR n ) +b ( ψ tx (t n ) - ψ x (t n ) -ψ x (t n-1 ) ∆t , q n x ) +k 0 ( ( P 0 h w t (t n ) ) x - ( P 0 h w(t n ) -P 0 h w(t n-1 ) ) x ∆t , R n x -ℓe n ) +k 0 ℓ ( P 0 h φ(t n ) -P 0 h φ(t n-1 ) ∆t -P 0 h φ t (t n ), R n x -ℓe n ) +ρ 1 ( φ tt (t n ) - P 0 h φ t (t n ) -P 0 h φ(t n-1 ) ∆t , e n ) +k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n ) , e n x + q n + ℓ R n ) +k 0 ( w x (t n ) -ℓφ(t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n ), R n x -ℓ e n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) -P 0 h φ t (t n ) -P 0 h ψ t (t n ) -ℓP 0 h w t (t n ) , e n x + q n + ℓ R n ) +γ 0 ( w tx (t n ) -ℓφ t (t n ) - ( P 0 h w t (t n ) ) x + ℓP 0 h φ t (t n ), R n x -ℓ e n ) +ρ 2 ( ψ tt (t n ) - P 0 h ψ t (t n ) -P 0 h ψ t (t n-1 ) ∆t , q n ) + b ( ψ x (t n ) - ( P 0 h ψ(t n ) ) x , q n x ) +ρ 1 ( w tt (t n ) - P 0 h w t (t n ) -P 0 h w t (t n-1 ) ∆t , R n ) + γ 2 ( ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x , q n x )
The target is to eliminate the viscoelastic terms from the left side of the previous inequality. So, we denote by

           Θ 1 := k ( φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n ) , e n x + q n + ℓ R n ) +γ 1 ( φ tx (t n ) + ℓw t (t n ) + ψ t (t n ) -P 0 h φ t (t n ) -P 0 h ψ t (t n ) -ℓP 0 h w t (t n ) , e n x + q n + ℓ R n
) By using Young inequality, for all ε 1 > 0 and ε 2 > 0, we have (4.49)

Θ 1 ≤ k [ 1 2ε 1 ∥φ x (t n ) + ψ(t n ) + ℓw(t n ) - ( P 0 h φ(t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n )∥ 2 + ε 1 2 ∥ e n x + q n + ℓ R n ∥ 2 ] +γ 1 [ 1 2ε 2 ∥φ tx (t n ) + ψ t (t n ) + ℓw t (t n ) - ( P 0 h φ t (t n ) ) x -P 0 h ψ(t n ) -ℓP 0 h w(t n )∥ 2 + ε 2 2 ∥ e n x + q n + ℓ R n ∥ 2
We choose ε 1 and ε 2 in such a way the following equality holds :

γ 1 = kε 1 2 + γ 1 ε 2 2 . We note (4.50)            Θ 2 := k 0 ( w x (t n ) -ℓφ(t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n ) , R n x -ℓ e n ) +γ 0 ( w tx (t n ) -ℓφ t (t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ t (t n ) , R n x -ℓ e n
) By using Young inequality, we get (4.51)

Θ 2 ≤ k 0 [ 1 2ε 3 ∥w x (t n ) -ℓφ(t n ) - ( P 0 h w(t n ) ) x + ℓP 0 h φ(t n )∥ 2 + ε 3 2 ∥ R n x -ℓ e n ∥ 2 ] +γ 0 [ 1 2ε 4 ∥w tx (t n ) -ℓφ t (t n ) - ( P 0 h w t (t n ) ) x + ℓP 0 h φ t (t n )∥ 2 + ε 4 2 ∥ R n x -ℓ e n ∥ 2

]

We choose ε 3 and ε 4 in such a way the following equality holds :

γ 0 = k 0 ε 3 2 + γ 0 ε 4 2 . We note (4.52) { Θ 3 = γ 2 ( ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x , q n x ) + b ( ψ x (t n ) - ( P 0 h ψ(t n ) ) x , q n x )
Again by using Young inequality, we conclude :

(4.53)            Θ 3 ≤ b [ 1 2ε 5 ∥ψ x (t n ) - ( P 0 h ψ(t n ) ) x ∥ 2 + ε 5 2 ∥ q n x ∥ 2 ] +γ 2 [ 1 2ε 6 ∥ψ tx (t n ) - ( P 0 h ψ t (t n ) ) x ∥ 2 + ε 6 2 ∥ q n x ∥ 2 ]
We choose ε 5 and ε 6 in such a way the following equality holds :

γ 2 = bε 5 2 + γ 2 ε 6 2 . Step 7: We introduce Z n = ρ 1 ∥ e n ∥ 2 + ρ 2 ∥ q n ∥ 2 + ρ 1 ∥ R n ∥ 2 + k e n x + q n + ℓR n 2 + k 0 ∥R n x -ℓe n ∥ 2 + ∥q n x ∥ 2
By using Young's inequality, there exists a positive constant c > 0 such that : 

(4.54)                                                                                                                                        (1 -2c∆t)Z n ≤ Z n-1 + ∆t P 0 h ψ t (t n ) - P 0 h ψ(t n ) -P 0 h ψ(t n
f (ξ n ) ≤ C∥f ∥ L 2 (0,T ) ∥f t ∥ L 2 (0,T ) ≤ C ( ∫ T 0 |f (t)| 2 dt ) 1 2 ( ∫ T 0 |f t (t)| 2 dt ) 1 2 ≤ C ( ∫ T 0 ∥ψ tt (t)∥ 2 dt ) 1 2 ( ∫ T 0 ∥ψ ttt ∥ 2 dt ) 1 2
≤ C ∥ψ∥ H 2 (0,T,L 2 (Ω)) ∥ψ∥ H 3 (0,T,L 2 (Ω)) .

Similarly, we show the following estimate ∥ψ tx (t n )∥ 2 ≤ C∥ψ∥ H 1 (0,T,H 1 (Ω)) ∥ψ∥ H 2 (0,T,H 1 (Ω)) .

Therefore,

I 1 ≤ C ( h 2 + ∆t 2 ) ∥ψ∥ 2
H 3 (0,T,H 1 (Ω))

Following same strategy (combining Taylor expansion with estimate of P h 0 and Galiardo-Neirenberg inequality), the following estimates holds : (4.55)

                                                   I 2 ≤ C(h 2 + ∆t 2
)∥ϕ∥ H 3 (0,T,H 2 (Ω)) I 3 ≤ C(h 2 + ∆t 2 )∥w∥ H 3 (0,T,H 1 (Ω)) I 4 ≤ C(h 2 + ∆t 2 )∥ψ∥ H 3 (0,T,H 2 (Ω)) I 5 ≤ C(h 2 + ∆t 2 )∥w∥ H 3 (0,T,H 2 (Ω)) I 6 ≤ C(h 2 + ∆t 2 )∥φ∥ 2 H 3 (0,T,H 1 (Ω)) 

I 7 ≤ C(h 2 + ∆t 2 )∥φ∥

Figure :

 : Figure: After deformation the particle M 0 of the beam take the position M Considering Bresse equations with Kelvin-Voigt damping, the external forces are given by:

Step 4 .

 4 Using (3.24), (3.25), (3.26), (3.27), (3.28), (3.29), and (3.30) in (3.23) yields 2 ∫ T S E(t)dt ≤ cE(S) + ε ∫ T S E(t)dt ∀S ≥ 0 and so (3.31)

  K j is denoted by h = L s .Given a positive integer N ∈ N * and a final time T > 0, we define the time step ∆t = T N and the nodes t n = n∆t, n = 0, 1, ... , N.

  Before applying the discrete Gronwall inequality, the residual term R n = must be estimate. By extending ψ(t n-1 ) using Taylor formula near t n and using the linearity and properties of P h 0 we get :(t n ) -ψ t (t n )∥ 2 + 2 ψ t (t n ) -≤ ch 2 ∥ψ tx ∥ 2 + 2 ψ t (t n ) -P 0 h ψ(t n ) -P 0 h ψ t (t n-1 ∆t ≤ ∥ψ t (t n ) -P 0 h ψ t (t n )∥ 2 + c∆t 2 ∥ψ tt (ξ n )∥ 2 We introduce f (ξ n ) := ∥ψ tt (ξ n )∥.With the help og Galiardo-Neirenberg inequality we deduce

	I 1 =	P 0 h ψ t (t n ) -	∆t h ψ(t n ) -P 0 P 0 h ψ(t n-1 )	2
			≤ 2∥P 0 h ψ t P 0 h ψ(t n ) -P 0 ∆t h ψ(t n-1 )	2
												2
												-1 )	2
			≤	ψ t (t n ) -P 0 h ψ t (t n ) +	1 2	:=I1 h ψ tt (ξ n ) ∆tP 0	2 0	∆t
	+∆t	(	P 0 h φ t (t n ) )	x -	(P 0 h φ(t n ) -P 0 h φ(t n-1 )) x ∆t	2	+∆t P 0 h w t (t n ) -	∆t h w(t n ) -P 0 P 0 h w(t n-1 )	2
											:=I2	:=I3
	+∆t ψ tx (t n ) -	P 0 h ψ x (t n ) -P 0 h ψ x (t n-1 ) ∆t	2	+∆t	(	P 0 h w t (t n ) )	x -	(	∆t h w(t n ) -P 0 P 0 h w(t n-1 ) )	x	2
									:=I4	:=I5
												2
	+∆t P 0								
												:=I7
	+∆t φ x (t n ) + ψ(t n ) + ℓw(t n ) -	(	P 0 h φ(t n )	)
										(	P 0 h w(t n ) )	x + ℓP 0 h φ(t n )
												2
												:=I11
	+∆t ψ tt (t n ) -		P 0 h ψ t (t n ) -P 0 h ψ t (t n-1 ) ∆t	2	+∆t w tt (t n ) -	∆t h w t (t n ) -P 0 P 0 h w t (t n-1 )	2
									:=I12	:=I13
	+∆t ψ x (t n ) -	(	P 0 h ψ(t n )	)	x	2	+∆t ψ tx (t n ) -	(	P 0 h ψ t (t n ) )	x	2
				:=I14				:=I15
												15 ∑
												I i
												j=1

h φ t (t n ) -P 0 h φ(t n ) -P 0 h φ(t n-1 ) ∆t 2 :=I6 +∆t φ tt (t n ) -P 0 h φ t (t n ) -P 0 h φ t (t n-1 ) ∆t x -P 0 h ψ(t n ) -ℓP 0 h w(t n ) 2 :=I8 +∆t w x (t n ) -ℓφ(t n ) -2 :=I9 +∆t w tx (t n ) -ℓφ t (t n ) -( P 0 h w t (t n ) ) x + ℓP 0 h φ t (t n ) 2 :=I10 +∆t φ tx (t n ) + ψ t (t n ) + ℓw t (t n ) -( P 0 h φ t (t n ) ) x -P 0 h ψ t (t n ) -ℓP 0 h w t (t n )

2

  H4 (0,T,H 1 (Ω))I 8 ≤ Ch 2 (∥φ∥ 2 L 2 (0,T,H 2 (Ω)) + ∥ψ∥ 2 L 2 (0,T,H 1 (Ω)) + ∥w∥ 2 L 2 (0,T,H 1 (Ω)) ) I 9 ≤ Ch 2 (∥φ∥ 2 L 2 (0,T,H 1 (Ω)) + ∥w∥ 2 L 2 (0,T,H 2 (Ω)) ) I 10 ≤ Ch 2 (∥φ∥ 2 H 1 (0,T,H 1 (Ω)) + ∥w∥ 2 H 1 (0,T,H 2 (Ω)) ) I 11 ≤ Ch 2 (∥φ∥ 2 H 1 (0,T,H 2 (Ω)) + ∥ψ∥ 2 H 1 (0,T,H 1 (Ω)) + ∥w∥ 2 H 1 (0,T,H 1 (Ω)) ) I 12 ≤ C(h 2 + ∆t 2 )∥ψ∥ 2 H 4 (0,T,H 1 (Ω)) I 13 ≤ C(h 2 + ∆t 2 )∥w∥ 2 H 4 (0,T,H 1 (Ω)) I 14 ≤ Ch 2 (∥ψ∥ 2 L 2 (0,T,H 2 (Ω)) ) I 15 ≤ Ch 2 ∥ψ∥ 2 H 1 (0,T,H 2 (Ω))

By denoting R n = 1 ∑ i=1 5I i , and using the estimates of I i , we get

Taking into consideration that nδt ≤ T and applying the discrete Gronwall lemma leads to the end of the proof. □