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Probing transcription factor
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and in enhancers
Jimmy Vandel1,2, Océane Cassan1,2, Sophie Lèbre2,3,5†, Charles-Henri Lecellier2,4*†

and Laurent Bréhélin1,2*†

Abstract

Background: In eukaryotic cells, transcription factors (TFs) are thought to act in a combinatorial way, by competing
and collaborating to regulate common target genes. However, several questions remain regarding the conservation
of these combinations among different gene classes, regulatory regions and cell types.
Results: We propose a new approach named TFcoop to infer the TF combinations involved in the binding of a target
TF in a particular cell type. TFcoop aims to predict the binding sites of the target TF upon the nucleotide content of
the sequences and of the binding affinity of all identified cooperating TFs. The set of cooperating TFs and model
parameters are learned from ChIP-seq data of the target TF. We used TFcoop to investigate the TF combinations
involved in the binding of 106 TFs on 41 cell types and in four regulatory regions: promoters of mRNAs, lncRNAs and
pri-miRNAs, and enhancers. We first assess that TFcoop is accurate and outperforms simple PWMmethods for
predicting TF binding sites. Next, analysis of the learned models sheds light on important properties of TF
combinations in different promoter classes and in enhancers. First, we show that combinations governing TF binding
on enhancers are more cell-type specific than that governing binding in promoters. Second, for a given TF and cell
type, we observe that TF combinations are different between promoters and enhancers, but similar for promoters of
mRNAs, lncRNAs and pri-miRNAs. Analysis of the TFs cooperating with the different targets show over-representation
of pioneer TFs and a clear preference for TFs with binding motif composition similar to that of the target. Lastly, our
models accurately distinguish promoters associated with specific biological processes.
Conclusions: TFcoop appears as an accurate approach for studying TF combinations. Its use on ENCODE and
FANTOM data allowed us to discover important properties of human TF combinations in different promoter classes
and in enhancers. The R code for learning a TFcoop model and for reproducing the main experiments described in
the paper is available in an R Markdown file at address https://gite.lirmm.fr/brehelin/TFcoop.
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Background
Transcription factors (TFs) are regulatory proteins that
bind DNA to activate or repress target gene transcrip-
tion. TFs play a central role in controlling biological
processes, and are often mis-regulated in diseases [1].

*Correspondence: charles.lecellier@igmm.cnrs.fr; brehelin@lirmm.fr
†Sophie Lèbre, Charles-Henri Lecellier and Laurent Bréhélin contributed
equally.
1LIRMM, Univ. Montpellier, CNRS, Montpellier, France
2IBC, CNRS, Univ. Montpellier, Montpellier, France
Full list of author information is available at the end of the article

Technological developments over the last decade have
allowed the characterization of binding preferences for
many transcription factors both in vitro [2, 3] and in vivo
[4]. The current view is that TF combinations underlie
the specificity of eukaryotic gene expression regulation
[5], with several TFs competing and collaborating to reg-
ulate common target genes. As reviewed in Morgunova
et al. [6] and Reiter et al. [7], multiple mechanisms can
lead to TF cooperation. In its simplest form, coopera-
tion involves direct TF-TF interactions before any DNA
binding. But cooperation can also be mediated through
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DNA, either with DNA providing additional stability to a
TF-TF interaction [8], or even without any direct protein-
protein interaction. Different mechanisms are possible for
the later. For example, the binding of one TF may alter the
DNA shape in a way that increases the binding affinity of
another TF [6]. Another system is the pioneer/settler hier-
archy described in Sherwood et al. [9], with settler TFs
binding DNA only if adequate pioneer TFs have already
bound to open the chromatin. Lastly, other authors have
hypothesized a non-hierarchical cooperative system, with
multiple concomitant TF bindings mediated by nucle-
osomes [10]. This is related to the “billboard” system
proposed for enhancers [11]. On the other hand, TFs that
belong to the same protein family usually share identical
or similar motifs and may compete for sites that match
both motifs [12].
Several papers have studied the combinatorics of TFs

from a statistical point of view. Most works aim to iden-
tify co-occurring TF pairs, i.e. pair of TFs showing binding
sites that are in closest proximity than one would expect
by chance. These analyses have been done either on the
basis of TF binding sites (TFBSs) predicted in silico [13, 14]
or with TFBSs obtained from ChIP-seq experiments
[15, 16]. Depending on the approach, different difficulties
may arise. In silico predicted TFBSs are known to include
large amount of false positives (see below), whichmay bias
the analyses and impede the discovery of co-occurring
TFBSs. On the other hand, studies based on ChIP-seq data
require as many ChIP-seq data as the number of studied
TFs, and hence are intrinsically limited by the availability
of these data. Moreover, with hundreds (or even thou-
sands) of sequences, a small co-occurrence tendency may
be statistically significant, even if the effect is actually very
weak and would not be biologically relevant. A few works
have studied TF combinations in a more global way, above
the TF pair level. For example, Teng et al. [17] have applied
the “frequent itemset” methodology to identify sets of co-
occurring TFBSs on the basis of ChIP-seq data. However,
many questions remain on the molecular determinants
orchestrating TF binding and combinations [18]. Notably,
with the expanding coding capacity of the human genome
[19, 20], it remains to determine whether the expression
of all gene classes, in particular coding mRNAs, long non-
coding(lnc)RNAs and micro(mi)RNAs, is controlled by
similar TF combinations in a given cell type. Likewise, TFs
control gene expression through the binding of promot-
ers and enhancers, which harbor similar but also specific
genomic features [21]. It is then not clear whether the
binding preferences of a given TF are similar in enhancers
and promoters.
Here, we analyze global TF combinations from a dif-

ferent perspective. Rather than identifying TF pairs/sets
that co-occur more frequently than expected by chance,
we aim to identify TF combinations that can be predictive

of the binding of a target TF. More formally, given a class
of regulatory sequences (for example 500 bp around the
TSSs of the coding genes) and a ChIP-seq experiment
targeting a specific TF in a specific cell type, we aim to
identify the combinations of TFs whose predicted TFBSs
can be used for predicting which sequences are effectively
bound by the target TF in this cell type. Hence, rather than
using purely statistical co-occurrence analysis, we study
TF combinations in the framework of a TFBS prediction
problem. The approach has several advantages. First, a
single ChIP-seq experiment is theoretically sufficient to
identify all TFs cooperating/competing with the target TF
in the target cell type. Next, if a TF is selected in the com-
bination, this means that its predicted binding sites are
indicative of the presence of the target TF, which limit
the number of false positives and the problems of spu-
rious statistical significances. Finally, the approach takes
into account all TFs and can therefore identify all possible
TF combinations not just TF pairs.
TFBSs are traditionally modeled with position weight

matrices (PWMs) [22]. Several databases such as JAS-
PAR [23], HOCOMOCO [24], CisBP [25] and Transfac
[26], propose position frequency matrices (PFM, which
can be transformed in PWMs) for hundred of TFs. These
PWMs can be used to scan sequences and identify TFBSs
using tools such as FIMO [27] or MOODS [28]. However,
while a PWM usually identifies thousands of potential
binding sites for a given TF in the genome [29], ChIP-
seq analyses have revealed that only a fraction of those
sites are effectively bound [30]. There may be differ-
ent reasons for this discrepancy between predictions and
experiments. First, PWMs implicitly assume that the posi-
tions within a TFBS independently contribute to binding
affinity. Several approaches have thus been proposed to
account for positional dependencies within the TFBS (see
for example [31, 32]). Other studies have focused on the
TFBS genomic environment, revealing that TFs positions
of their core binding sites [33, 34]. Beyond the primary
nucleotide sequence, structural constraintsmay also affect
TF binding. For example, it is thought that TFs use DNA
shape features to distinguish binding sites with similar
DNA sequences [35, 36]. Some attempts have thus been
made to integrate DNA shapes information with PWMs
[37, 38]. Other studies have investigated the link between
TF binding and epigenetic marks, showing that many
TFs bind regions associated with specific histone marks
[39]. Similarly, ChIP-seq experiments also revealed that
most TFBSs fall within highly accessible (i.e., nucleosome-
depleted) DNA regions [40]. Consequently, several studies
have proposed to supplement PWM information with
DNA accessibility data to identify the active TFBSs in
a given cell type [41–43]. However, it remains unclear
whether these chromatin states are a cause or a conse-
quence of TF binding [44]. Hence, while these approaches
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may be very informative for predicting TF binding, they
should be used with caution if the goal is also to iden-
tify the DNA determinants of the binding. Besides, these
approaches do not take into account TF combinations,
which, as already discussed, may be important determi-
nants of TF binding. For this reason, studying TF combi-
nations through a TFBS prediction problem appears as an
appealing approach.
It is important to note that beyond approaches based

on known PWMs, several ab initio methods have also
been proposed recently for predicting TFBSs from
raw data sequences. Notably, deep learning approaches
based on neural networks have proved to give higher
prediction accuracy than simple PWM-based methods
[45, 46]. However, ab initio methods, and particularly
neural network approaches, are difficult to interpret (the
inherent trade-off between accuracy and interpretability).
Although some attempts have been made to post-analyze
learned neural networks (see for example [47]), studying
TF combinations and DNA determinants of TF binding
from these models is not straightforward.
Hence, we devised a simple non ab initio strategy names

TFcoop that predicts if a target TF binds a sequence of
interest using two kinds of variables: i) the binding affin-
ity (i.e. PWM affinity score) of the target TF as well as any
other TF identified as cooperating with the target TF; and
ii) the nucleotide composition of the sequence. TFcoop is
based on a logistic model. The set of cooperating TFs and
the model parameters are learned from ChIP-seq data of
the target TF via LASSO penalization [48]. Learning can
be done using a moderate amount of data, which allows
us to learn specific models for different types of regula-
tory sequences. Using ChIP-seq data from the ENCODE
project, we applied TFcoop to investigate the TF combi-
nations involved in the binding of 106 different TFs on
41 different cell types and in four different regulatory
regions: promoters of mRNAs, lncRNAs and miRNAs,
and enhancers [19, 20, 49, 50]. We first showed that the
approach outperforms simple PWMmethods and has sur-
prisingly good accuracy, close to that of ab initio methods
like DeepSea [45]. We next assessed with independent
experimental data that the cooperative TFs predicted by
TFcoop actually bind the same regulatory sequences as
the target TF. Then, we used TFcoop to analyze TF combi-
nations in different cell types and regulatory regions. First,
we show that TF combinations governing the binding of
the target TF on promoters are similar for different cell-
types but distinct in the case of enhancer binding. Second,
for a given TF, we observe that TF combinations are dif-
ferent between promoters and enhancers, but similar for
promoters of all gene classes (mRNAs, lncRNAs, andmiR-
NAs). Analysis of the composition of TFs cooperating
with the different targets show over-representation of pio-
neer TFs [9], especially in promoters, as well as binding

sites with nucleotide composition similar to that of the
target TF. We also observed that cooperating TFs are
enriched for TFs whose binding is weakened by methy-
lation [51]. Lastly, our models can accurately distinguish
promoters into classes associated with specific biological
processes.

Results
Computational approach
Given a target TF, the TFcoop method identifies the TFBS
combination that is indicative of the TF presence in a reg-
ulatory region.We first considered the promoter region of
all mRNAs (defined as the 1000bp centered around gene
start). TFcoop is based on a logistic model that predicts
the presence of the target TF in a particular promoter
using two kinds of variables: PWM affinity scores and
(di)nucleotide frequencies (see “Methods” section). For
each promoter sequence, we computed the affinity score
of the 638 JASPAR PWMs (redundant vertebrate collec-
tion for 519 different TFs), and the frequency of every
mono- and dinucleotide in the promoter. These variables
were then used to train a logistic model that aims to pre-
dict the outcome of a particular ChIP-seq experiment
in mRNA promoters. Namely, every promoter sequence
with a ChIP-seq peak is considered as a positive exam-
ple, while the other sequences are considered as negative
examples (see below). In the experiments below, we used
409 ChIP-seq datasets from ENCODE and different mod-
els. Each model targets one TF and one cell type. Given
a ChIP-seq experiment, the learning process involves
selecting the PWMs and (di)nucleotides that can help dis-
criminate between positive and negative sequences (this
is done by way of the LASSO penalization [48]), and
estimate the model parameters that minimize prediction
error. Note that the learning algorithm can select any
predictive variable including the PWM of the target TF.
See “Methods” section for more details on the data and
logistic model. Note also that, while several classifica-
tion approaches are available in the literature, all methods
are not suitable for our problem. Because our aim is to
identify TF combinations, only methods implementing
a feature selection procedure are eligible. To this aim,
LASSO penalization is often considered as a method of
choice [52]. An alternative would be to use classification
trees, but this method is known to suffer from stability
issues [53].
We used two different procedures for selecting the pos-

itive and negative sequences. Each procedure actually
defines a different classification problem. In the first case,
we kept all positive sequences (i.e. promoters overlapping
a ChIP-seq peak in the considered ChIP-seq experiment),
and randomly selected the same number of negative
sequences among all sequences that do not overlap a
ChIP-seq peak. In the second case, we used an additional
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dataset that measures gene expression in the same cell
type as the ChIP-seq data. We then selected all positive
sequences with non zero expression level and randomly
selected the same number of negative sequences among
all sequences that do not overlap a ChIP-seq peak but
that have a similar expression level as the selected pos-
itive sequences. Hence, in this case (hereafter called the
expression-controlled case), we learn a model that pre-
dicts the binding of a target TF in a promoter knowing
that the corresponding gene is expressed. On the con-
trary, in the first case we learn a model that predicts the
binding without knowledge about gene expression. The
purpose of the expression-controlled case is to decipher
TF combinations independently of the effect of epigenetic
modifications that are linked to expression (e.g. DNA
methylation and various histone marks). As all selected
sequences are associated with expressed genes, the pos-
itives and negatives sequences are likely to be associated
with the same epigenetic marks.

TFcoop assessment
We ran TFcoop on the 409 ChIP-seq datasets and for
the two prediction problems. The accuracy of each model
was assessed by cross-validation by plotting the Receiver
Operating Curve (ROC) and measuring the Area Under
the Curve (AUC). For comparison, we also measured
the accuracy of the classical approach that discriminates
between positive and negative sequences using only the
affinity score of the PWM associated with the target
TF. In addition, we estimated the accuracy of the TRAP
method, which uses a biophysically inspired model to
compute PWM affinity [54] and that of the approach
proposed in [37], which integrates DNA shape informa-
tion with PWMs. As shown in Fig. 1a and Additional
file 1: Figure S1 and Figure S2, TFcoop outperforms these
PWM-based approaches on many TFs (t-test p-values
1.4e−106, 2.2e−104 and 7.1e−80 ). Note that these com-
parisons are rather unfavourable for our method because
they integrate all 69 CTCF experiments, while TFcoop
has similar accuracy than classical PWMmethods on this
TF (see Additional file 1: Figure S2). Concerning TFcoop
accuracy, we can observe a strong link between the num-
ber of training sequences and the AUC (see Additional
file 1: Figure S3). Next, we ran TFcoop with tri- and
quadri-nucleotide frequencies in addition to di-nucleotide
frequencies. Although a consistent AUC improvement
was observed, the increase was very slight most of the
time (Additional file 1: Figure S4). Similarly, we also
ran TFcoop on two alternative PWM libraries that both
involve slightly more TFs than the JASPAR library (CisBP
[25] and HOCOMOCO [24], see “Methods” section) but
we observed similar results as that obtained with JASPAR
(Additional file 1: Figure S5). Lastly, we compared TFcoop
accuracy to that of the deep learning approach DeepSea

[45] and observed very close results (see Fig. 1b; t-test p-
value 0.048). Hence, TFcoop performances appear to be in
the range of that of classical ab initio methods.
Next, we sought to assess the TF cooperations inferred

by the models. If true, they should be apparent in the
ChIP-seq experiments. Namely, if the PWM of TF B is
among the selected variables for predicting the presence
of TF A, then we should observe many common targets
among the ChIP-seq experiments of TFs A and B. To
test this, we first randomly selected one model for each
different TF, and restricted our analyses to the PWMs
associated with TFs with ENCODE ChIP-seq experi-
ments. Then, for each model A, we measured the Jaccard
index between promoters bound by TF A and promot-
ers bound by a TF B whose PWM has been selected in
model A (cases B = A were not considered), and we com-
pared these scores to the same scores computed on TFs
whose PWMs have not been selected in model A (see
“Methods” section). The LASSO procedure allows us to
rank the selected variables from the most predictive to
the less predictive ones. We measured the Jaccard index
for different cutoffs in this ranked list and observed that
Jaccard indexes i) vary accordingly with the cutoff and ii)
are always larger than Jaccard indexes computed for non-
selected TFs (t-test p-values < 1.e−16; see Fig. 1c). Hence,
the inferred TF cooperations are supported by experimen-
tal data. For comparison purpose, we repeated the same
analysis with TF pairs identified by Myšičková and Vin-
gron (2012) and found very similar performance measures
(see Fig. 1c).
Finally, we sought to take advantage of the relative

redundancy of target TFs in the set of 409 ChIP-seq
experiments to investigate the specificity of the learned
models. Namely, we compared pairs of models learned
from ChIP-seq experiments targeting (i) the same TF in
the same cell-type, (ii) the same TF in different cell-types,
(iii) different TFs in the same cell-type, and (iv) different
TFs in different cell-types. In these analyses, we used the
model learned on one ChIP-seq experiment A to predict
the outcome of another ChIP-seq experiment B, and we
compared the results to those obtained with the model
directly learned on B. More precisely, we measured the
difference of AUC between the model learned on A and
applied on B and the model learned and applied on B.
To avoid any effect driven by the over-representation of
CTCF in ChIP-seq data, we randomly selected only 10
ChIP-seq experiments targeting this TF in these analy-
ses. As shown in Fig. 1d and e, models learned on the
same TF (whether or not on the same cell-type) have
overall smaller AUC differences than models learned on
different TFs. For sake of comparison, we also ran the
same analysis on non-ENCODE ChIP-seq data target-
ing 10 different TFs (see “Methods” section). Namely, we
used the models learned on the corresponding ENCODE
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Fig. 1 Accuracy and specificity on mRNA promoters. a Violin plots of the area under the ROC curves obtained in the 409 ChIP-seq. Best hit (red),
TRAP (blue), DNAshape (green), TFcoop with no expression control (purple), and TFcoop with expression control (orange). ROC curves for Best hit,
TRAP and DNAshape were computed in the non expression-controlled case. b Comparison of AUC achieved by TFcoop and DeepSea approach [45].
Comparison was done on 214 ChIP-seq experiments for which the DeepSea server provides predictions. c Intersection between pairs of ChIP-seq
experiments associated with TFs identified as cooperating in promoters. These violin plots report the distribution of Jaccard indexes computed
between different pairs of Chip-seq experiments. Red, olive and green: for each TF A, we measured the Jaccard index between promoters bound by
A and promoters bound by a TF B whose PWM has been selected in the TFcoop model learned for A (cases B = A were not considered). λmin, λ1se
and λ3se denote three inclusive sets of parameters of increasing importance (see Methods for details). Purple: for each TF A, we measured the
Jaccard index between promoters bound by A and promoters bound by TFs whose PWMs have not been selected in the A model. Blue: for each TF
pair A-B identified in [13] (Additional file 1: Figure S1), we measured the Jaccard index between promoters bound by A and promoters bound by B.
Samples red, olive, green, blue and purple have been computed from 2796, 1723, 1037, 282 and 14,529 pairs, respectively. d–e Distribution of AUC
differences obtained when using a model learned on a first ChIP-seq experiment to predict the outcome of a second ChIP-seq experiment. Different
pairs of ChIP-seq experiments were used: experiments on the same TF and same cell type (red), experiments on the same TF but different cell types
(yellow), experiments on different TFs but same cell type (light blue), and experiments on different TFs and different cell types (blue). For each pair of
ChIP-seq experiment A-B, we measured the difference between the AUC achieved on A using the model learned on A, and the AUC achieved on A
using the model learned on B. AUC differences were measured on the non expression-controlled case (d) and on the expression-controlled case (e)
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data to predict the outcome of these 10 non-ENCODE
data. Results are overall very similar to those obtained
on ENCODE data (median AUC 0.83 on ENCODE data
vs. 0.82 on non-ENCODE data; see Additional file 1:
Figure S6).
We then analyzed cell and TF specificity more precisely.

Cell specificity refers to the ability of a model learned on
one TF and in one cell type to predict the outcome of the
same TF in another cell type. Oppositely, TF specificity
refers to the ability of a model learned on one TF in one
cell type to predict the outcome of another TF in the same
cell type. Cell and TF specificities were evaluated by the
shift between the associated distributions of AUC differ-
ences in Fig. 1d: cell specificity was assessed by the shift
between red and yellow distributions, while TF specificity
was assessed by the shift between red and light blue distri-
butions. We used a standard t-test to measure that shift.
Low p-values indicate high distribution shifts (hence high
cell/TF specificity), while high p-values indicate low shifts
(hence low specificity). Our results indicate very low cell
specificity (p-values 0.91 and 0.95 in the non-controlled
and expression-controlled cases, respectively) and high
TF specificity (1 ·10−61 and 3 ·10−83). The fact that the TF
specificity is slightly higher in the expression-controlled
case suggests that part of the TF combinations that help
discriminate between bound and unbound sequences is
common to several TFs in the non-controlled case. It is
indeed known that the majority of ChIP-seq peaks are
found in open and active promoters [40]. Thus, most pos-
itive examples are associated with open chromatin marks.
However, in the non-expression-controlled case, a large
part of the negative examples are in closed chromatin
and are therefore likely associated with other chromatin
marks. As a result, in this case, TFcoop presumably also
learns the TFBS signature that helps differentiate between
these chromatin marks. Oppositely, in the expression-
controlled case, the positive and negative examples have
similar chromatin states, and TFcoop unveils the TFBS
signature specific to the target TF. We can also observe
that this renders the former problem slightly easier than
the second one, as illustrated by the difference of TFcoop
performances in Fig. 1a (t-test p-value 2.6e−18). Finally the
low cell specificity means that the general rules govern-
ing TFBS combination in promoters do not dramatically
change from one tissue to another. This is important in
practice because it enables us to use a model learned on
a specific ChIP-seq experiment to predict TBFSs of the
same TF in another cell type.

Analysis of TFBS combinations in promoters
We next analyzed the different variables (PWM scores
and (di)nucleotide frequencies) that were selected in
the 409 learned models. Overall, 95% of the variables
correspond to PWM scores. Although only 5% of the

selected variables are (di)nucleotide frequencies, almost
all models include at least one of these features. As men-
tioned earlier, the learning algorithm does not use any
prior knowledge and can select the variables that best
help predict the ChIP-seq experiment without necessarily
selecting the PWM of the target TF. Our analysis shows
that, for 75% of the models, at least one version of the
target PWM was selected. Moreover, it is important to
note that similar PWMs tend to have correlated scores.
Hence, another PWM may be selected instead of the tar-
get. To overcome this bias, we also considered all PWMs
similar to the target PWM. We used Pearson correla-
tion between PWM scores in all promoters to measure
similarity and set a threshold value of 0.75 to define the
list of similar PWMs. With this threshold, 90% mod-
els include the target or a similar PWM. Analysis of the
remaining 10% models shows that they often correspond
to ChIP-seq experiments with low number of positive
sequences (median number 955 vs. 2477 for all ChIP-seq
experiments). This may be due either to technical prob-
lems, to lowly expressed TFs, or to TFs that rarely bind
promoters.
Next we thought to investigate the contribution alterna-

tive PWMs may have on model performance. For this, we
ran a whole new analysis using the non-redundant JAS-
PAR PWM library (one PWM per TF, i.e. 519 PWMs).
As shown in Additional file 1: Figure S5, results are
slightly less accurate than with the complete (redundant)
database, illustrating the fact that alternative motifs pro-
vide important information unveiled by TFcoop.
We further analyzed the most selected PWMs. To avoid

any bias linked to the number of CTCF ChIP-seq exper-
iments, we only considered 10 CTCF models that were
randomly selected for the analyses. We ranked the PWMs
by the number of models in which they appear, and
look for enrichment of certain JASPAR structural families
(bHLH, Zinc finger, . . . ). A gene set enrichment analysis
(GSEA, see “Methods” section) [55] shows that “trypto-
phan cluster factors” (FDR q-val< 10−4), “C2H2 zinc fin-
ger factors” (FDR q-val< 10−4) and “basic leucine zipper
factors” (FDR q-val = 2 · 10−3) are the most represented
classes of PWMs selected in the models (Additional file 1:
Figure S7). We then looked at the differences between
models learned in the expression-controlled experiments
and models learned in the non-controlled experiments.
For each non-controlled model, we enumerated the vari-
ables that are selected in this model and not selected in
the corresponding expression-controlled model. Several
PWMs are over-represented in this list (see Additional
file 1: Table S1).
Next, following the analyses of Levo et al. [33] and Dror

et al. [34] we used our models to investigate the link
between the nucleotide composition of the target PWM
and that of the TFBS flanking region. First, we did not
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observe a significant link between target PWM compo-
sition and the (di)nucleotide variables that were selected
in the models (Kolmogorov-Smirnov test p-val=0.448; see
Additional file 1: Figure S8). However, the (di)nucleotide
composition of target PWMexhibited strong resemblance
to that of the other selected PWMs (see Fig. 2a). Specif-
ically, the nucleotide and dinucleotide frequencies of the
target PWM were strongly positively correlated with that
of the PWMs selected with a positive coefficient. For
PWMs selected with a negative coeficient the correlations
are moderate or negative. This is in accordance with the
findings of Dror et al. [34], who show that TFBS flanking
regions often have similar nucleotide composition as the
the TFBS.
We next evaluated the possibility of clustering the

409 learned models using the selected variables. As
shown in Additional file 1: Figure S10, the models
can be partitioned in a few different classes with a k-
means algorithm (5 classes were used in this figure).
Additional file 1: Figure S11 reports the most used vari-
ables in these different classes. We can first observe
that, in agreement with our analysis of model specificity,
the models associated with the same TF tend to clus-
ter together. For example, the 4th class of our clustering
(the blue one in Additional file 1: Figure S10) is exclu-
sively composed of CTCF models. Note that we did not

observe any enrichment for the classical TF structural
families (bHLH, Zinc finger, . . . ) in the different classes
(data not shown). Actually, the clustering seems to be
essentially driven by the nucleotide composition of the
PWMs belonging to the models (see Additional file 1:
Figure S12).
Pioneer TFs are thought to play an important role in

transcription by binding to condensed chromatin and
enhancing the recruitment of other TFs [9]. As shown
in Fig. 2b and by a GSEA analysis (Additional file 1:
Figure S9), pioneer factors clearly are over-represented in
the selected variables of the models, whereas they rep-
resent less than 14% of all TFs. These findings are in
agreement with their activity: pioneer TFs occupy pre-
viously closed chromatin and, once bound, allow other
TFs to bind nearby [9]. Hence the binding of a given
TF requires the prior binding of at least one pioneer TF.
We also observed that TFs whose binding is weakened
by methylation [51] are enriched in all models (Addi-
tional file 1: Figure S13). This result may explain how CpG
methylation can negatively regulate the binding of a given
TF in vivo while methylation of its specific binding site
has a neutral or positive effect in vitro [51]: regardless of
the methylation status on its binding site, the binding of a
TF can also be influenced in vivo by the sensitivity of its
partners to CpG methylation.

a b
Fig. 2 Selected PWMs in mRNA promoters. a Pearson correlation between nucleotide composition of the target PWM and the mean composition of
selected PWMs (with positive and negative coefficients in red and blue, respectively) in 409 models. Grey: correlation achieved by randomly
selecting the same number of PWMs for each model. b Pioneer TF distribution of selected PWMs in the different models. We kept one model for
each target PWM to avoid bias due to over-representation of the same PWM in certain classes. Grey represents the distribution of all PWMs
associated with a family in Sherwood et al. [9] (159 over 519 non-redundant PWMs)
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TFBS combinations in lncRNA and pri-miRNA promoters
We then ran the same analyses on the promoters of lncR-
NAs and pri-miRNAs using the same set of ChIP-seq
experiments. Results are globally consistent with what
we observed on mRNA promoters (see Fig. 3 for the
expression-controlled case). Overall, models show good
accuracy and specificity on lncRNAs. Models are less
accurate and have lower specificity for pri-miRNAs but
this likely results from the very low number of posi-
tive examples available for these genes in each ChIP-seq
experiment (Additional file 1: Figure S14), which impedes
both the learning of the models and estimation of their
accuracy.
Next we sought to compare the models learned on

mRNA promoters to the models learned on lncRNA
and pri-miRNA promoters. For this, we interchanged the
models learned on the same ChIP-seq experiment, i.e. we
used the model learned on mRNA promoters to predict
the outcome on lncRNA and pri-miRNA promoters. One
striking fact illustrated by Fig. 3c and Additional file 1:
Figure S15 is that models learned on mRNA promoters

and those learned on lncRNA promoters are almost per-
fectly interchangeable. This means that the TFBS rules
governing the binding of a specific TF in a promoter are
similar for both types of genes. We obtained consistent
results when we used the models learned on mRNAs to
predict the ChIP-seq outcomes on pri-miRNA promot-
ers (Fig. 3c and Additional file 1: Figure S15). Accuracy is
even better than that obtained by models directly learned
on pri-miRNA promoters, illustrating the fact that the
poor performance achieved on pri-miRNA promoters
likely results from the small number of learning examples
available for these genes.

TFBS combinations in enhancers
We next applied the same approach on 38,554 enhancers
defined by the FANTOM consortium [50]. We used the
same ChIP-seq experiments as for the promoters. All
enhancer sequences overlapping a ChIP-seq peak in the
considered ChIP-seq experiment were considered as pos-
itive examples. As for promoters, we used two strategies
to select positives and negative examples: in a first case

a

c

b

Fig. 3 Accuracy and specificity on lncRNA and pri-miRNA promoters. Top: Model specificity on promoters of lncRNA (a) and pri-miRNAs (b). These
figures represent the distribution of AUC differences obtained when using a model learned on a first ChIP-seq experiment to predict the outcome of
a second ChIP-seq experiment. Different pairs of ChIP-seq experiments were used: experiments on the same TF and same cell type (red),
experiments on the same TF but different cell types (yellow), experiments on different TFs but same cell type (light blue), and experiments on
different TFs and different cell types (blue). For each pair of ChIP-seq experiment A-B, we measured the difference between the AUC achieved on A
using the model learned on A, and the AUC achieved on A using the model learned on B. AUC differences were measured on the
expression-controlled case. Bottom: Promoter models are interchangeable. For each ChIP-seq experiment, we computed the AUC of the model
learned and applied on mRNAs (pink), learned and applied on lncRNAs (yellow-green), learned and applied on pri-miRNAs (blue), learned on mRNAs
and applied to lncRNAs (green), learned on mRNAs and applied to pri-miRNAs (purple)
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we did not apply any control on their expression, while
in a second case, we used CAGE expression data in the
different tissues to only select expressed enhancers.
As observed for promoters, TFcoop outperforms clas-

sical PWM-based approaches on many TFs (see Fig. 4a
and Additional file 1: Figure S16; t-test p values 2.2e−77,
9.7e−67 and 1.4e−88) and achieves results close to that of
DeepSea [45] (Fig. 4b, t-test p-value 0.37). Here again,
the non expression-controlled problem seems slightly eas-
ier than the controlled one (t-test p-value 6.1e−23). Using
the same “Jaccard index test” used for promoters, we also
assessed that the TF cooperations inferred by the models
can be observed in ChIP-seq data and hence are likely to
be biologically valid (p-value < 1.e−16 and Fig. 4c).
However, analysis of model specificity reveals somewhat

different results from that observed for promoters. Glob-
ally, models have good TF specificity: models learned on
the same TF have more similar prediction accuracy than
models learned on different TFs. However, in contrast to
promoters, cell specificity is high in the non-controlled
case (p-value 2 · 10−45; see peak shift in Fig. 4d), although
much lower in the expression-controlled case (p-value
1.6 · 10−12). Additionally, TF specificity seems slightly
higher in the expression-controlled case than in the non-
controlled case (p-values 1.7 · 10−102 vs. 1. · 10−114).
This is in accordance with our hypothesis formulated
for promoters, that part of the TF combinations learned
by TFcoop in the non-controlled case actually differenti-
ates between active and inactive chromatin marks. This
also seems to indicate that these TF combinations are
cell-type specific, while the remaining combinations are
more general (as illustrated by the 1.6 · 10−12 p-value
measured on the expression-controlled case). Moreover,
analysis of selected variables reveals that models learned
without expression control involve much more variables
than models learned with expression control (median
numbers 18 vs. 11; t-test p-value ∼ 10−9). As a conse-
quence, several variables are statistically more abundant
in non-controlled models than in the cognate expression-
controlled models (see Additional file 1: Table S1). Interest-
ingly, among the four variables with the most important
differences, three are dinucleotides CpG, TpC and ApT.
This may indicate that part of the active/inactive chro-
matin marks is linked to the dinucleotide composition
of the underlying sequence. This proposal is in line with
findings revealing the existence of sequence-level instruc-
tions for chromatin modifications [45, 46, 56]. Moreover,
a GSEA analysis shows that the PWMs with the strongest
differential enrichments belong to the “three-zinc finger
kruppel-related factors” (FDR q-val 1 · 10−2). As some of
these factors, in particular KLF1 [57], are linked to chro-
matin remodeling, this enrichment supports the idea that
TFcoop also identifies TF combinations linked to epige-
netics. The fact that cell-type specificity is more apparent

for enhancers than for promoters in the non expression-
controlled case (2 · 10−45 for enhancers vs. 0.91 for pro-
moters) is in accordance with the fact that, contrary to
promoters, most enhancers are expressed in a cell-specific
manner (Additional file 1: Figure S17 and ref. [50]).
As for promoters, we observed that the selected PWMs

tends to have similar (di)nucleotide composition as the
target PWM (Fig. 5a). Moreover, models can also be par-
titioned in a few different classes according to the selected
variables (Additional file 1: Figure S18 and Additional
file 1: Figure S19). These classes mostly correspond to the
nucleotide composition of the target and selected PWMs
(Additional file 1: Figure S20). Pioneer TFs are also over-
represented in the selected PWMs (Fig. 5b and Additional
file 1: Figure S9).
Next we sought to compare the models learned on

enhancers to the models learned on promoters. First, we
observed that enhancer models involve PWMs that are
different from that used in promoter models (Additional
file 1: Table S2). Note for instance that several AP-1 TFs
(FOS/JUN) are enriched in enhancers, in accordance with
their prominent role in enhancer selection [58]. The same
three structural classes are found enriched, but in dif-
ferent proportions, with more “C2H2 zinc finger factors”
in promoters and more “basic leucine zipper factors” in
enhancers (Additional file 1: Figure S7). In term of predic-
tion, promoter and enhancer models have globally similar
accuracy (see Fig. 6 on the expression-controlled cases).
However, a pairwise comparison of the models learned
on each ChIP-seq experiment shows that the prediction
accuracy is only moderately correlated (Pearson correla-
tion 0.33; see Additional file 1: Figure S21). Moreover,
if we interchange the two models learned on the same
ChIP-seq experiment, we observe that the model learned
on promoters is generally not as good on enhancers as it
is on promoters and vice-versa (Fig. 6). Hence, while the
rules learned on enhancers (promoters) in a given cell type
are globally valid for enhancers (promoters) of other cell
types, they do not apply to promoters (enhancers) of the
same cell type. Note that AUCs of models learned on pro-
moters and applied to enhancers are greater than that of
models learned on enhancers and applied to promoters
(Fig. 6). This result might be explained by the existence of
promoters able to exert enhancer functions [59, 60]. Con-
versely, the FANTOM definition of enhancers precludes
potential promoter functions [50].

Using TFcoop scores to describe regulatory sequences
We next explored whether TFcoop scores could be used to
provide meaningful descriptions of regulatory sequences.
This was assessed in two ways. First, we used the
TFcoop models to cluster mRNA promoters and searched
for over-represented gene ontology (GO) terms in the
inferred clusters. We randomly selected one model for
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a b

d e

c

Fig. 4 Accuracy and specificity on enhancers. a Violin plots of the area under the ROC curves obtained in the 409 ChIP-seq. Best hit (red), TRAP
(blue), DNAshape (green), TFcoop with no expression control (purple), and TFcoop with expression control (orange). ROC curves for Best hit, TRAP
and DNAshape were computed in the non expression-controlled case. b Comparison of AUC achieved by TFcoop and DeepSea approach [45].
Comparison was done on 214 ChIP-seq experiments for which the DeepSea server provides predictions. c Intersection between pairs of ChIP-seq
experiments associated with TFs identified as cooperating in promoters. These violin plots report the distribution of Jaccard indexes computed
between different pairs of Chip-seq experiments. Red, green and blue: for each TF A, we measured the Jaccard index between promoters bound by
A and promoters bound by a TF B whose PWM has been selected in the TFcoop model learned for A (cases B = A were not considered). λmin, λ1se
and λ3se denote three inclusive sets of parameters of increasing importance (see “Methods” section for details). Purple: for each TF A, we measured
the Jaccard index between promoters bound by A and promoters bound by TFs whose PWMs have not been selected in the A model. d–e
Distribution of AUC differences obtained when using a model learned on a first ChIP-seq experiment to predict the outcome of a second ChIP-seq
experiment on enhancers. Different pairs of ChIP-seq experiments were used: experiments on the same TF and same cell type (red), experiments on
the same TF but different cell types (yellow), experiments on different TFs but same cell type (light blue), and experiments on different TFs and
different cell types (blue). For each pair of ChIP-seq experiment A-B, we measured the difference between the AUC achieved on A using the model
learned on A, and the AUC achieved on A using the model learned on B. AUC differences were measured on the non expression-controlled case (d)
and on the expression-controlled case (e)
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a b
Fig. 5 Selected PWMs in enhancers. a Pearson correlation between nucleotide composition of the target PWM and the mean composition of
selected PWMs (see legend of Fig. 2a) b Pioneer TF distribution in selected PWMs (same legend as Fig. 2b)

each TF, and used the 106 selected models to score
the 20,846 mRNA promoter sequences. Each promoter
sequence was then described by a vector of length 106.We
next ran a k-means algorithm to partition the promoters
into 5 different clusters. For comparison, we ran the same
procedure using two other ways to describe the promoter

sequences: the classical PWM scores of the same 106
selected TFs (so promoters are also described by vectors
of length 106), and the (di)nucleotide frequencies of the
promoters (vector of length 12). We obtained three dif-
ferent clusterings of 5 clusters each. Then, we searched
for over-represented GO terms in each clusters of the 3

Fig. 6 AUCs obtained in mRNA promoter and enhancer models. For each ChIP-seq experiment we computed the AUC of the model learned and
applied on the promoters (red), learned and applied on the enhancers (green), learned on enhancers and applied to promoters (blue), and learned
on promoters and applied to enhancers (purple)
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clusterings. The rationale of this analysis was the follow-
ing: a meaningful clustering should group together pro-
moters of genes involved in the same biological functions,
while a “random” partition should mix up promoters and
prevent the observation of any over-representation of GO
terms in clusters. Overall, the same 5 GO terms appeared
to be over-represented in the different clusterings: defense
response, immune system process, cell cycle, metabolic
process, and developmental process. We noticed that the
p-values obtained with the TFcoop scores were invariably
better than the two others. To avoid any clustering bias,
we repeated the k-means clusterings several times, with
various numbers of clusters. Namely, for each approach
we ran 3 clusterings for each number of clusters rang-
ing between 3 and 10 (resulting in 24 different clusterings
for each approach) and computed over-representation
p-values for the 5 GO terms in each cluster. When
the same GO term was enriched in several clusters of
the same clustering, only the best p-value was kept.
As shown in Fig. 7a, the TFcoop scores substantially
and systematically outperform the other scoring func-
tions, indicating that the classification obtained with
this score is more accurate to functionally annotate

promoters than the others. Implicitly, these results are
also consistent with a model in which most biologi-
cal processes are controlled by specific combinations
of TFs.
Next, we used the TFcoop models to discriminate

between mRNA promoters and enhancers. We randomly
split the sets of promoters and enhancers in training and
test sets, and learned a K-nearest neighbor (KNN) clas-
sifier for discriminating between promoter and enhancer
sequences on the basis of scores of the TFcoop mod-
els learned on promoters. As above, we also used the
classical PWM scores of the same 106 selected TFs
and (di)nucleotide frequencies of the sequences. We
resumed the procedure with a number of neighbors (K)
varying between 1 and 20, and computed the num-
ber of errors obtained by each approach on the test
set (Fig. 7b). Here again, TFcoop description outper-
forms other description methods, with an error rate
around 2% for TFcoop vs. 15% and 25% for the other
approaches. This result confirms the existence of DNA
features distinguishing enhancers from mRNA promot-
ers [21, 50] and identifies TF combinations as potent
classifiers.

a

b
Fig. 7 Using TFcoop scores for describing regulatory sequences. a GO term enrichment obtained with different promoter descriptions. Promoters
were described using three different representations—TFcoop scores (red), (di)nucleotide frequencies (green), classical PWM scores (blue)— and
then partitioned several times with different k-means and different class numbers (see main text). For each clustering we identified the best p-value
(Fisher exact test) associated with 5 GO terms (“defense response”, “immune system process”, “cell cycle”, “metabolic process”, “developmental
process”) in any cluster. b Classification errors achieved with KNN classifiers discriminating between promoter and enhancer sequences. Boxplots
describe the errors obtained using TFcoop scores (red), (di)nucleotide frequencies (green), and the classical PWM scores (blue), using different
number of neighbors (K)
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Discussion
In this paper we proposed a method to identify TF combi-
nations that can be predictive of the binding of a target TF.
Our approach is based on a logistic model learned from
ChIP-seq experiments on the target TF. Cross-validation
study showed that the approach is effective and outper-
forms classical PWM based approaches on many TFs. It is
important to note that TFcoop combinations do not nec-
essarily reflect just cooperation, but also competition. For
instance, a TF A competing with a TF B may be useful to
predict the binding of B and would thus appear in the TF
B model while A and B do not cooperate.
We distinguished two prediction problems associated

with two situations, depending whether the aim is to
predict binding in any promoter/enhancer or solely in
expressed promoters/enhancers. For expressed promot-
ers/enhancers, our experiments showed that the learned
models have high TF specificity and quite low cell-
type specificity. On the other hand, for the problem of
expressed and not expressed promoters/enhancers bind-
ing, the learned models are less TF specific and more
cell-type specific (especially for enhancers). These results
are in accordance with a two-level model of gene reg-
ulation: (i) cell-type specific level that deposits specific
chromatin marks on the genome, and (ii) non, or poorly,
cell-type specific level that regulates TF binding in all
DNA regions associated with appropriate marks.
An important property highlighted by our models is

that rules governing TF combinations are very similar in
the promoters of the three gene types analyzed (mRNA,
pri-miRNA and lncRNA), but different between promot-
ers and enhancers. Our results are in agreement with
that of Andersson et al. [50], who showed that some
motifs are enriched in enhancers (e.g. AP-1 or OCT4),
while other are enriched in promoters (ELF1 or NRF1).
We further confirmed these differences between pro-
moter and enhancer sequences showing that scores pro-
duced by TFcoop models allow accurate classification
between the two types of sequences. Our results thus
argue for a prominent role of transcription factor bind-
ing as the fundamental determinant of regulatory activity
able to distinguish enhancers and promoters [21]. Further-
more, as promoters and enhancers produce different RNA
molecules [21, 50], our results also suggest that the pro-
duction of enhancer RNAs (eRNAs) on one hand, and that
of mRNAs, lncRNAs, and miRNAs on the other hand,
requires a specific and distinct subset of TFs.
Our approach could be improved in several ways. A

quite straightforward improvement would be to use the
DNAshape score developed byMathelier et al. [37] instead
of the classical PWM score. This could improve TFcoop
accuracy for several TFs, especially for TFs such as CTCF
for which TFcoop does not outperform classical PWM
scoring. More profoundly, one drawback of TFcoop is

that the logistic model enables us to learn only a sin-
gle TF combination for each target TF. However, we can
imagine that certain TFs may be associated with two
or more different TF combinations depending on the
promoter/enhancer they bind. A solution for this would
be to learn a discrimination function based on several
logistic models instead of a single one.

Conclusions
On the whole, studying TF combinations by the way
of a TFBS prediction problem appears as a promising
approach. We showed here that, despite its simplicity,
the TFcoop method is accurate and allows identifying
complex combinations on the basis of a single ChIP-seq
experiment. We used it on ENCODE and FANTOM data
and identified important properties of TF combinations in
human. Specifically we showed that combinations govern-
ing TF binding on enhancers are more cell-type specific
than that governing binding in promoters. Moreover, for
a given TF and cell type, TF combinations are different
between promoters and enhancers, but similar for pro-
moters of mRNAs, lncRNAs and pri-miRNAs. Finally,
analysis of the TFs cooperating with the different targets
show over-representation of pioneer TFs and a clear pref-
erence for TFs with binding motif composition similar to
that of the target.

Methods
Promoter, enhancer, long non-coding RNA andmicroRNA
sequences
We predicted TF binding in both human promoters and
enhancers. For promoters, sequences spanning ±500 bp
around starts (i.e. most upstream TSS) of protein-coding
genes, long non-coding RNAs and microRNAs were con-
sidered. Starts of coding and lncRNA genes were obtained
from the hg19 FANTOM CAGE Associated Transcrip-
tome (CAT) annotation [19, 49]. Starts of microRNA
genes (primary microRNAs, pri-miRNAs) were from [20].
For enhancers, sequences spanning ±500 bp around the
mid-positions of FANTOM-defined enhancers [50] were
used. Lastly, our sequence datasets are composed of
20,845 protein coding genes, 1250 pri-microRNAs, 23,887
lncRNAs, and 38,553 enhancer sequences.

Nucleotide and dinucleotide features
For each of these sequences, we computed nucleotide
and dinucleotide relative frequencies as the occurrence
number in the sequence divided by sequence length. Fre-
quencies were computed in accordance with the rule of
DNA reverse complement. For nucleotides, we computed
the frequency of A/T and G/C. Similarly, frequencies of
reverse complement dinucleotides (e.g. ApG and CpT)
were computed together. This results in a total of 12
features (2 nucleotides and 10 dinucleotides).
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PWMs
Weused vertebrate TF PFMs from JASPAR [23], including
all existing versions of each PFM, resulting in a set of 638
PFMs with 119 alternative versions (i.e. 519 different TFs).
We also used the non-redundant version of the JASPAR
vertebrate database (519 PFMs) and the two alternative
PFM libraries CisBP [25] and HOCOMOCO [24]. CisBP
is a meta-library gathering PFMs from various sources,
which contains up to 972 human PFMs (http://cisbp.
ccbr.utoronto.ca). We collected, for each TF, all directly
determined motifs indicated in TF_Information.txt of the
Homo sapiens archive. To avoid redundancy, we selected
only one model for each TF by arbitrarily selecting the
longest PWM.Moreover we also excluded all TRANSFAC
PWMs that are not publicly available (this reduces the set
of TFs associated with a PFM to 625). Note that CisBP is
built on JASPAR and HOCOMOCO 2014 versions. For
HOCOMOCO, we used the human PCM v11 full col-
lection of the core mononucleotide models (771 PCMs
corresponding to 680 TFs). PCMs were converted into
PFMs and PFMs were further transformed into PWMs as
described in Wasserman and Sandelin [22]. PWM scores
used by TFcoop for a given sequence were computed as
described in [22], keeping the maximal score obtained in
any position of the sequence. Namely, each PWM was
used to scan the entire sequence and score each position,
and the maximal score was used as potential predictive
feature by TFcoop.

ChIP-seq data
We collected ChIP-seq data from the ENCODE project
[61] for human immortalized cell lines, tissues, and
primary cells. Experiments were selected when the tar-
geted TF were identified by a PWM in JASPAR. Thus
we studied 409 ChIP-seq experiments for 106 distinct
TFs and 41 different cell types. The most represented
TF is CTCF with 69 experiments, while 88% of the
experiments are designed from immortalized cell lines
(mainly GM12878, HepG2 and K562). The detailed
list of all used experiments is given in Supplementary
materials. For each ChIP-seq experiment, regulatory
sequences were classified as positive or negative for
the corresponding ChIP targeted TF. We used Bedtools
v2.25.0 [62] to detect intersection between ChIP-seq
binding sites and regulatory sequences (both mapped
to the hg19 genome). Each sequence that intersects at
least one ChIP-seq binding region was classified as a
positive sequence. The remaining sequences formed a
negative set. The number of positive sequences varies
greatly between experiments and sequence types.
Mean and standard deviation numbers of positive
sequences are respectively 2661(±1997) for mRNAs,
1699(±1151) for lncRNAs, 216(±176) for microRNAs,
and 1516(±1214) for enhancers. For sake of comparison,

we also used non-ENCODE ChIP-seq data collected
from the Cistrome database [63] (http://cistrome.org).
Note that Cistrome provides hg38 ChIP-seq peaks, not
narrow peaks as provided by ENCODE.We collected data
corresponding to GSM2224586 (ELF1), GSM1056931
(ETS1), GSM894076 (MAX), GSM1423725 (MYC),
GSM1698353 (USF1), GSM1614036 (JUN), GSM2042914
(JUND), GSM1917774 (ATF3), GSM1708340 (YY1) and
GSM1334010 (ZBTB33). The bed files were liftovered
into hg19 coordinates using UCSC liftover tool.

Expression data
To control the effect of expression in our analyses, we
used ENCODE CAGE data restricted to 41 cell lines. The
expression per cell line was calculated as the mean of
the expression observed in all corresponding replicates.
For microRNAs, we used the small RNA-seq ENCODE
expression data collected for 3043 mature microRNAs
in 37 cell lines (corresponding to 403 ChIP-seq exper-
iments). The expression of microRNA genes (i.e. pri-
microRNAs) was calculated as the sum of the expression
of the corresponding mature microRNAs.

Logistic model
We propose a logistic model to predict the regulatory
sequences bound by a specific TF. Contrary to classi-
cal approaches, we not only consider the score of the
PWM associated with the target TF, but also the scores
of all other available PWMs. The main idea behind
this is to unveil the TF interactions required for effec-
tive binding of the target TF. We also integrate in our
model the nucleotide and dinucleotide compositions of
the sequences, as the environment of TFBSs are thought
to play major role in binding affinity [33, 34].
For each ChIP-Seq experiment, we learn different mod-

els to predict sequences bound by the target TF in four
regulatory regions (promoters of mRNA, lncRNA and
pri-miRNA, and enhancers). For a given experiment and
regulatory region, our model aims to predict response
variable ys by the linear expression

α +
∑

m∈Motifs
βm × Scorem,s +

∑

n∈Nucl
βn × Raten,s + εs,

where ys is the Boolean response variable representing the
TF binding on the given sequence s (ys = 1 for TF binding,
0 otherwise); Scorem,s is the score of motifm on sequence
s; Raten,s is the frequency of (di)nucleotide n in sequence
s; α is a constant; βm and βn are the regression coefficients
associated withmotifm and (di)nucleotide n, respectively;
and εs is the error associated with sequence s. Motifs and
Nucl sets respectively contain 638 JASPAR PWMs and 12
(di)nucleotide frequencies.
To perform variable selection (i.e. identifying cooperat-

ing TFs), we used the LASSO regression minimising the

http://cisbp.ccbr.utoronto.ca
http://cisbp.ccbr.utoronto.ca
http://cistrome.org
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prediction error within a constraint over l1-norm of β

[48]. The weight of the LASSO penalty is chosen by cross-
validation by minimising the prediction error with the R
package glmnet [64] (see below).

Cross-validations
TFcoop models were trained with the cv.glmnet func-
tion of the glmnet package, with options nfolds = 10.
This runs a 10-fold cross validation. In each validation
loop, 90% of sequences are used to learn the β param-
eters and the remaining 10% are used to evaluate the
predictive performance of the model. We set the option
keep = TRUE to memorize the predictions achieved dur-
ing cross-validation. These predictions were then system-
atically used in the AUC estimations to avoid over-fitting.
There are two different situations here: when comput-
ing the AUC of a model trained on the same ChIP-seq
data (for example in Fig. 1a) only the cross-validated pre-
dictions were used. However, when computing the AUC
of a model trained on a different ChIP-seq data (for
example in Fig. 1d), all test sequences do not belong to
the training data (because all negative sequences were
not used for training). In this case, we used the learned
model to predict the outcome of the sequences that do
not belong to the training data, and we used the predic-
tion obtained during cross-validation by cv.glmnet for the
other sequences.

Alternative approaches
We compared the predictive accuracy of our model to
three other approaches.

Best hit approach The traditional way to identify TF
binding sites consists in scanning a sequence and scoring
the corresponding PWM at each position. Positions with
a score above a predefined threshold are considered as
potential TFBS. A sequence is then considered as bound if
it contains at least one potential TFBS.

TRAP score An alternative approach proposed by Roider
et al. [54] is based on a biophysically inspired model that
estimates the number of bound TF molecules for a given
sequence. In this model, the whole sequence is considered
to define a global affinity measure, which enables us to
detect low affinity bindings. We use the R package tRap
[64] to compute the affinity score of the 638 PWMs for all
sequences. As proposed in [54], we use default values for
the two parameters (R0(width), λ = 0.7).

DNA shape In addition to PWMs, Mathelier et al. [37]
considered 4 DNA shapes to increase binding site identi-
fication: helix twist, minor groove width, propeller twist,
and DNA roll. The 2nd order values of these DNA shapes
are also used to capture dependencies between adjacent

positions. Thus, each sequence is characterized by the
best hit score for a given PWM plus the 1st and 2nd
DNA shape order values at the best hit position. The
approach based on gradient boosting classifier requires
a first training step with foreground (bound) and back-
ground (unbound) sequences to learn classification rules.
Then the classifier is applied to the set of test sequences.
We used the same 10-fold cross-validation scheme that
we used in our approach. We applied two modifications
to speed-up the method, which was designed for smaller
sequences. First, in the PWM optimization step of the
training phase, we reduced the sequences to ±50 bp
around the position with highest ChIP-Seq peak for pos-
itive sequences and to ±50 bp around a random position
for negative sequences. Second, after this first step we also
reduced sequences used to train and test the classifiers
to ±50 bp around the position for which the (optimized)
PWM gets the best score.

DeepSEA Zhou and Troyanskaya [45] proposed a deep
learning approach for predicting the binding of chro-
matin proteins and histone marks from DNA sequences
with single-nucleotide sensitivity. Their deep convolu-
tional network takes 1000 bp genomic sequences as input
and predicts the states associated with several chro-
matin marks in different tissues. We used the predictions
provided by DeepSEA server (http://deepsea.princeton.
edu/). Namely, coordinates of the analyzed promoter and
enhancer sequences were provided to the server, and the
predictions associated with each sequence were retrieved.
Only the predictions related to the ChIP-seq data we used
in our analyses were considered (i.e. 214 ChIP-seq data in
total).

Intersection between ChIP-seq experiments We used
the Jaccard index to assess the validity of the TF cooper-
ations inferred by TFcoop or by the approach proposed
in [13]. Namely, given two TFs A and B predicted to be
cooperating in promoters (resp. enhancers), we identified
the set of promoters (resp. enhancers) XA with a ChIP-seq
peak for TF A, and the set of promoters (resp. enhancers)
XB with a ChIP-seq peak for TF B, and measured the
quantity

Jaccard(A,B) = XA ∩ XB
XA ∪ XB

.

TFs that bind exactly the same sequences have a Jaccard
index equal to 1, while TFs that bind exclusively differ-
ent sequences have a Jaccard index equal to 0. For the
method of Myšičková and Vingron, we used the TF pairs
identified in the Additional file 1 of ref. [13]. For TFcoop,
given a model predicting the presence of TF A, we enu-
merated all TFs B whose PWMs have been selected in
model A. More precisely, the LASSO penalization allows

http://deepsea.princeton.edu/
http://deepsea.princeton.edu/
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us to rank the selected variables by order of importance
(from the most to the less important variable). With this
ranking, we used three cutoffs to distinguish three sets
of PWMs: Sλmin , Sλ1se and Sλ3se , with Sλ3se ⊂ Sλ1se ⊂
Sλmin . Set Sλmin contains all selected PWMs (which is by
far smaller than the set of all possible PWMs), while
sets Sλ1se and Sλ3se are restricted to the most important
PWMs of Sλmin . More precisely, λmin is the penalization
weight that gives minimum cross-validated error, while
λ1se (resp. λ3se) corresponds to penalization weights pro-
ducing error within 1 (resp. 3) standard error of the
minimum.

Model clustering We used the kmeans procedure imple-
mented in R to classify the 2 × 409 models trained on
promoters and enhancers. Each model was described by
a Boolean vector describing the selected/non-selected
variables (dinucleotides and PWMs). Different numbers
of classes from 1 to 10 were tested. For each num-
ber, the kmeans was run 200 times and the best clas-
sification (according to the statistic optimized by the
kmeans) was returned. To choose the “best” number of
classes, we used a very simple procedure. We plotted the
kmeans statistics vs. their corresponding class numbers
and selected what can be considered as the best trade-off
between modelling and complexity (see Additional file 1:
Figure S10).

GSEA analyzes We used the GSEA program from the
Broad Institute [55] to assess enrichment of specific anno-
tations among the PWMs selected in our model. Differ-
ent experiments have been done. In one experiment we
ranked the PWMs by the number of models in which
they appear (in promoters, and then in enhancers), and
look for enrichment of certain JASPAR structural fami-
lies (PWM annotations provided by JASPAR) or of pio-
neer factors (see below) in the PWMs at the top of the
list. In other experiments, PWMs were ranked by their
difference of utilization between models learned in the
expression controlled experiments and non-expression
controlled experiment (see Additional file 1: Table S1)
or between promoter models and enhancer models
(Additional file 1: Table S2) and we looked for enrichment
of certain JASPAR structural families in the top PWMs of
these lists.

Pioneer factors We used the classification of [9] to dis-
tinguish pioneers, settlers and migrants TFs. ’Pioneer’
TFs occupy previously closed chromatin and, once bound,
allow other TFs to bind nearby. ’Settler’ designate TFs
whose binding is predominantly dependent on the open-
ness of chromatin at their motifs. ’Migrants’ bind only
sporadically even when chromatin at their motifs is open.

Additional file

Additional file 1: Figure S1. Comparison of the accuracy of the different
approaches on the 409 experiments in the non expression-controlled
challenge for promoters. (a) TRAP vs. Best hit, (b) DNA shape vs. Best hit, (c)
TFcoop vs. Best hit, (d) TFcoop vs. DNA shape. Figure S2. ROC curves
obtained on mRNA promoters for the 409 ChIP-seq experiments (non
expression-controlled challenge). Figure S3. Link between the number of
training sequences (x-axis) and model AUCs (y-axis). Figure S4.
Comparison of AUCs achieved when using nucleotide and dinucleotide
frequencies only (x-axis) and when using nucleotide, di-, tri-, and
quadri-nucleotide frequencies (y-axis). Figure S5. Comparison of AUCs
achieved with the JASPAR (complete), JASPAR (non-redundant), CisBP and
HOCOMOCO databases of PWMs. Figure S6. Comparison of AUCs
achieved on ENCODE and non-ENCODE data. Each column corresponds to
a TFcoop model learned on a specific ENCODE ChIP-seq experiment. Black
points correspond to AUC achieved when using these models on other
ENCODE ChIP-seq data targeting the same TF, while red triangles
correspond to the AUC achieved when using these models on a
non-ENCODE ChIP-seq targeting the same TF. Globally, AUCs achieved on
non-ENCODE data are in the range of the AUCs achieved on ENCODE data.
Figure S7. Enrichment of three different PWM classes in the selected
PWMs of promoter (up) and enhancer (down) models. For these analyses,
PWMs were ranked according to the number of times they have been
selected in promoter and enhancer models, and the GSEA method was
applied to identify over-represented PWM classes among most used
PWMs. Figure S8.Mean rank of the selected dinucleotides in promoter
models according to the dinucleotide composition of the corresponding
target PWM. For each model, the 16 dinucleotide variables were ordered
according to their frequency in the target PWM. Then, the rank of each
dinucleotide was averaged for all models. High mean rank thus indicates
that, when selected, the dinucleotide was also frequent in the target PWM.
Figure S9. Enrichment of pioneer factors among selected PWMs for
promoters (a) and enhancers (b). For these analyses, PWMs were ranked
according to the number of times they have been selected in promoter
and enhancer models, and the GSEA method has been applied to
compute the enrichment of pioneers among most used PWMs.
Figure S10. (Up): Heatmap of the selected variables in the 409 logistic
models learned on the mRNA promoters in the expression-controlled
challenge. Each column corresponds to one of the logistic model, while
the rows represent the variables used in the models (PWM affinity scores
and mono- and di-nucleotide frequencies). Models (columns) have been
partitioned in 5 different classes (represented by different colors on the top
line) by a k-means algorithm. The number of classes 5 was empirically
chosen because it shows good trade-off between modelling and
complexity. (Down): Trade-off between modelling and complexity. This
figure reports the average distance (y-axis) between points in the same
class, according to the number of classes of the classification (x-axis). Until
5 classes, we can observe substantial decrease of the average distance
between points, while after 5 classes the decrease is slighter and almost
linear. Figure S11. The 30 most common variables in the five classes of
models represented in Additional file 1: Figure 10. Each bar represents the
proportion of models (in the class) which use the considered variable. Dark
bars represent TFs classified as “pioneers factors” in the reference [9], while
pale bars correspond to TF classified as “settler” or “migrant” in the same
publication. Plain bars correspond to non-classified TFs as well as to mono-
or di-nucleotides. Figure S12. AT rate distributions of selected PWMs in
mRNA promoter models (with β > 0). For each cluster we keep one model
per target PWM to avoid bias due to overrepresentation of some PWMs. As
cluster 4 is only composed of CTCF models, the distribution associated
with this cluster is represented by a vertical segment on the x-axis.
Figure S13. Distribution of methylation binding influence in selected
PWMs of mRNA promoter models. We kept one model for each target
PWM to avoid bias due to over-representation of the same PWM in certain
classes. In grey is represented the distribution of all PWMs associated with a
methylation class originally defined in reference [51] (190 over 520 non
redundant PWMs). “Little” designates TFs recognizing CpG-containing
sequences, but methylation of the CpG has little effect on binding.
“MethylMinus” refers to TFs, which do not bind to, or more weakly to,
methylated versions of their recognition sequences. Conversely, TFs

https://doi.org/10.1186/s12864-018-5408-0
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that prefer to bind to methylated sequences over the corresponding
unmethylated sequence belong to the “MethylPlus” class. see [51] for
further details. Figure S14. Distribution of the number of mRNA and
miRNA promoters overlapping a ChIP-seq peak in the 409 ChIP-seq
experiments. Figure S15. Promoter models are interchangeable. Left: AUC
comparaison of models learned and applied on lncRNAs and of models
learned on mRNAs and applied on lncRNAs. Right: AUC comparaison of
models learned and applied on pri-miRNAs and of models learned on
mRNAs and applied on pri-miRNAs. Figure S16. Comparison of the
accuracy of the different approaches on the 409 experiments in the non
expression-controlled challenge for enhancers. (a) TRAP vs. Best hit, (b)
DNA shape vs. Best hit, (c) TFcoop vs. Best hit, (d) TFcoop vs. DNA shape.
Figure S17. Distribution of Gini coefficients computed for 53,220 gene
promoters and 65,423 FANTOM5 enhancers on 1827 and 1897 samples,
respectively. Gini coeficient is a measure of statistical dispersion which can
be used to measure gene ubiquity: value 0 represents genes expressed in
all samples, while value 1 represents genes expressed in only one sample.
Figure S18. Heatmap of the selected variables in the 409 logistic models
learned on the mRNA enhancers in the expression-controlled challenge.
Each column corresponds to one of the logistic model, while the rows
represent the variables used in the models (PWM affinity scores and mono-
and di-nucleotide frequencies). Models (columns) have been partitioned in
6 different classes (represented by different colors on the top line) by a
k-means algorithm. Figure S19. The 30 most common variables in the six
classes of models represented in Additional file 1: Figure S18. Each bar
represents the proportion of models (in the class) which use the
considered variable. Dark bars represent TFs classified as “pioneers factors”
in the reference [9], while pale bars correspond to TF classified as “settler” or
“migrant” in the same publication. Plain bars corresponds to non-classified
TFs as well as to mono- or di-nucleotides. Figure S20. AT rate distributions
of selected PWMs in enhancer models (with β > 0). For each cluster we
keep one model per target PWM to avoid bias due to overrepresentation
of some PWMs. Figure S21. Dotplot of the AUCs computed on mRNA
promoter and on enhancers for the same ChIP-seq experiment. Table S1.
Variables that are more selected in the non-controlled models than in the
corresponding expression-controlled models in promoters (left) and
enhancers (right). #¬contr.: number of non controlled models that involve
each variable. # contr.: number of corresponding expression-controlled
models that also involve the variable. P-values were computed by
hypergeometric tests. Table S2. Variables that are differentially selected in
promoters and enhancers. (left) variables more selected in promoter
models than in enhancers. (right) variables more selected in enhancer
models than in promoters. # promo: number of promoter models
involving this variable. # enhancer: number of enhancer models involving
this variable. P-values were computed by chi2 test. (PDF 4198 kb)
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