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LONG-TIME BEHAVIOR OF SECOND ORDER LINEARIZED
VLASOV-POISSON EQUATIONS NEAR A HOMOGENEOUS
EQUILIBRIUM.

JOACKIM BERNIER AND MICHEL MEHRENBERGER

ABSTRACT. The asymptotic behavior of the solutions of the second order lin-
earized Vlasov-Poisson system around homogeneous equilibria is derived. It
provides a fine description of some nonlinear and multidimensional phenomena
such as the existence of Best frequencies. Numerical results for the 1D x1D and
2D x 2D Vlasov-Poisson system illustrate the effectiveness of this approach.

1. INTRODUCTION

We consider distribution functions f = f(t,z,v) : Rx Ty xR? — R and potentials
¢ = ¢(t,x) : R x Ty — R satisfying the Vlasov-Poisson system

Of+v-Vof =Vu0-V,f=0
(VP) Az =n(f) — Jga fdv
f(t=0)= fo.

Here periodic boundary conditions being used, T4 is a d dimensional torus: there
exist Lq,...,Lq > 0 such that Ty = (R/L1Z) x --- x (R/L4Z). Furthermore, doing
an assumption of neutrality, we only consider solutions of (VPJ|) such that

n(f) = //rded fdzdv.

In this paper, we aim at exhibiting nonlinear and multidimensional phenomena of
solutions of , pursuing a first preliminary work [2] on this subject. Beyond their
physical interest, these phenomena can be relevant to evaluate the performances
and the qualitative properties of numerical methods.

Since the very first developments of numerical methods for solving (we refer

o [II], for a review; the litterature is particularly huge in 1D x 1D and we can
mention [I0], as one of the earliest works in 2D x 2D), the numerical solutions
are compared to the solutions of the Vlasov-Poisson system linearized around a

2010 Mathematics Subject Classification. 35Q83 65Z05 44A10.

Key words and phrases. Dispersion relations, Best frequency, Landau damping, Vlasov-
Poisson, Laplace transform.

This work was granted access to the HPC resources of Aix-Marseille Université financed by
the project Equip@Meso (ANR-10-EQPX-29-01) of the program ”Investissements d’Avenir” su-
pervised by the Agence Nationale de la Recherche.

This work has been carried out within the framework of the EUROfusion Consortium and has
received funding from the Euratom research and training programme 2014-2018 and 2019-2020
under grant agreement No 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.



2 JOACKIM BERNIER AND MICHEL MEHRENBERGER
homogeneous equilibria f¢ = feq(v)ﬂ It consists in looking for solutions of (VP))

of the type
fo= 7" + g
¢ = 0 + e

Neglecting second order terms, g is formally a solution of
g +v-Vag —Vap -V, [ =0,
(VPL) Ay + /d g dv =0,
g(t = 0) = go.

This equation being linear and homogeneous, it is natural to try to solve it realizing
a Fourier transform we respect to the variable x. Thus, we get

G +i(v- k)G —it(k-V,)fe1 =0,

(VPLF) —|k|21$+/ Gdv=0,
Rd
g(t =0) = go,

where k € Ty = (2m/L1)Z x - -+ X (27r/Lq)Z and the Fourier transform with respect
to the space variable is defined for u € L'(T,) and k € T4 by
—1

d
u(k) = HLj /u(m)e*”’“'wdx.
j=1 Ta

It is relevant to notice on that there is no energy exchange between space
modes at the linear level. In other words, if g is a solution of such that
go = Go(v)et*® then it is of the form g(t,z,v) = g(t,v)e*®. As a consequence,
the linear analysis is not well suited to describe multidimensional phenomena that
could be confronted with numerical simulations.

Since is linear and autonomous, it is natural to solve it with the Laplace
transform. This transform is defined for functions u : R} — C such that there
exists A € R satisfying ue=* € L>°(R%.) and z € C such that Sz > A by

Clul(z) = / u(t)e*tdt,
0
Thus, it can be proven that solutions of (VPLF) are given by

t

(1) glt,z,v) =Y e* gy (k,v) +i / eh U= D) (s k) - V., f9(v)ds,
keT, 0

and for &z large enough

@) £ [Be.b)] () = 5 = o)

where Nj and Dy are holomorphic functions defined when 3z is large enough by
i go(k,v) 1 / k-V,fe(v)

3) N =—— ——=d d D =1-— | —————4d

(8) Ni(2) |k|2 /Rdv~k—z v k() |k|2 vk—z OV

Thus to get a solution g of (VPL) by we just have to solve the equation
(called dispersion relation) determining an inverse Laplace transform.

Lit can be noticed that every function depending only on v is an equilibrium of (VP)
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Up to some strong assumptions on f¢¢ and go(k) (precised later), it can be
proven that Nj and Dy are entire functions and that, for all A € R, the number of
zeros of Dy with an imaginary part larger than A is finite (see Remark . Thus,
using the formula

imtiml

(4) E[tme_iwt](2> = m7

weC, meN,
and realizing precise estimates of remainder terms, we can prove that has an
analytic solution 1 whose analytic expansion is given, for all A € R, by

(5) Ytk = Y Pos®)e ™ +0(M),
Dk(w):O
Sw>A

where P, j is the polynomial such that My(z) = L[P,x(t)e ™ (2) + O(1) is the
w

z—r
expansion of My(z) in w.

Such an analysis was first realized by Landau [6], in 1946. It has been done
rigorously and generalized in 1986 by Degond [4]. It gave a partial explanation to
the phenomenon of Landau damping. This latter corresponds to the dynamic of
(VP)) when for all k € 'T';, Dy.(z) does not vanish if &z > 0. In this case, the electric
potential goes exponentially fast to zero as ¢ goes to +oo. In 2011, Mouhot and
Villani proved the existence of this phenomenon for the nonlinear Vlasov-Poisson
equation in [7].

As we have just seen, due to the absence of energy exchange between the spaces
modes at the linear level, the linearization is not relevant to explain really mul-
tidimensional phenomena. Furthermore, of course, it can not explain nonlinear
phenomena. This motivates thus the study of the dynamic of the second order
term in the expansion of f as powers of €. More precisely, we look for a solution of

(VP) under the form

f = f9 4+ g9 + £h + o(e?),
¢ = 0 + e + u + oe?),

where h(t = 0) = 0. Neglecting the third order terms, it can be proven formally
that (h,v) is a solution of

Oth+v -V h —Vou -V, f=V,1-V,g,

(VPL2) N +/ h dv =0,
Rd
h(t = 0) = 0.

We recognize the linearized Vlasov-Poisson equations, with an initial condition
equal to zero but with a source term. In that case, we refer to Denavit [5], for
one of the first works on the subject, in 1965. Different second order oscillations
appear and have been studied by physicists (see for example [9] and references
therein; there are many references especially from the 1960s and 1970s). Our aim
is to make here a rigorous mathematical study of the asymptotical behavior of the
solutions of these equations, which has, to the best of our knowledge, not already
been performed.

Here, as for the linear case, we solve using a Laplace transform for the
time variable and a Fourier transform for the space variable. More precisely, some
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calculations prove that (VPL2) is equivalent to

t
h(t,z,v) = E z/ etk @=vt=)7(s k)k -V, f¢(v)ds
= Jo
keT

t
b [V agls ke e
0
and when &z is large enough
N,
_ Mi(z) =: My(2),

(6) LI R () = T 5 =

where Dy, is given by and N}, is a meromorphic function on C explicitly known.

As previously, there is just to invert a Laplace transform to solve (VPLZ2|). As
for the linear case, a precise study of My, and its poles gives a solution p of ([6)) and
an asymptotic expansion of the form

(7) VAER Hitk) = D Qualt)e ™ +0O(M).

where @, 1 is the polynomial such that My/(z) ijﬁ[Qw,k(t)e_i‘”t}(z) +0().

The poles of M, are of two kinds: they can be zeros of Dy, (generating the same
frequencies as at the first order) or poles of . The study of the poles is technical
because N}, is defined from the solution of . However, the asymptotic expan-
sion of 1 (see (5))) enables a decomposition of Ny in more elementary terms whose
poles can be determined.

In order to give an intuition of these poles, we consider a term that is very
representativeﬂ of this decomposition:

NP (z) = £ [P (0)] (2)

where

(8) F]grep) (t) _ e—i(w1t+w2t) // ei(w1T+w25)9[feq](Tk1 + Skg) ds dr
0<7<s<t

with kq,ky € 'I/'\d \ 0 satisfy k1 + ko = k, w1,ws € C are such that Dy, (w1) =
Dy, (w2) = 0 and F[f] is the Fourier transform of f¢?. The later being defined
for u € L'(RY) and ¢ € R? by

Flu)() = / w(v)e= "€ dy.
Rd
Since N, ,srep ) is the Laplace transform of F ,Ewp ) (t), it can be proven that its poles

are given by the asymptotic expansion of F]grep ) (t) with the formula ({). As it is
suggested by the formula , the behavior of this later is quite different if the set
of the points (7, s) such that 7k + ske = 0 is a line segment (resonant case) or a
point (non-resonant case).

In the non-resonant case, there exists a constant ¢ > 0 such that

0<7<s<t, |tk + ska| > cs.

2but slightly simplified.
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So, assuming that f¢? is regular enough so that Z#[f¢](£) decreases faster than
any exponential as |£] goes to +o00 (for example like a Gaussian), we can prove that
the integral in converges faster than any exponential as t goes to +0o. As a
consequence, we get a constant a € C such that

= R, FISTEP) (t) _ ae—i(wlt—i-wzt) + O(e)\t)'
In the resonant case, there exists v € (0,1) such that
kQ = —")/kl

Realizing a natural change of coordinates in , we get

(1=)s
r€p / / —i(wy (t—T—8)Fwa(t— 9))y[f€q](7_kl) dr ds.

Thus, assuming that f°? is regular enough so that 7 [f°?](¢) decrease faster than
any exponential as |£| goes to +00, we have

t
F[grep)(t) _ (/0 e—i(wl(t—'ys)+w2(t—s))d8) </R 6iw17§[feq](7k1>d7'>

,zt(w +w z(w (T47y8)4was) eq
o / />(1 v)s ' 2 fY (k) dr ds

or T<—78

—it(wytw2) z(w (7478)+was) eq
e / />(1 s 2T (k) dT ds,

or T<—7s
and we can prove that the third term decreases faster than any exponential. Thus,
this decomposition provides the following asymptotic expansion

= R, F]grep)(t) _ aefit(lerwg) +b€7itwb + O(GM),

where a,b € C and wy, = (1 — vy)w1 = (|k|/|k1])w is the Best frequency (according
to [9]).

As suggested by this sketch of proof, we can prove that My, have three kinds of
poles. More precisely, if w is a pole of My it satisfies one of the following conditions
(I) w is a zero of Dy,
(IT) w = wy + wo where Dy, (w1) = Di,(w2) =0 and ky + ko = k,
(III) w = (|k|/|k1])w1 where Dy, (w1) = 0 and there exists v € (0,1) such that
k= "}/kl
We recall that these poles drive the asymptotic behavior of fi(k) through formula
(7). The frequencies (I) and (IT) have already been identified in our preliminary
work on this subject [2], but not the frequency (III). We emphasize that all the
three type of frequencies are listed in [9], which makes our analysis coherent with
the physics litterature.

To conclude this presentation, we are going to state a precise theorem giving the
asymptotic behavior of the solutions of (VPL2). To this end, we need to introduce
some notations.

Definition 1.1. Let &(R?) be the subspace of the Schwartz space .7 (R?), of func-
tions f, whose Fourier transform, Z f, extends to an entire function on C¢ and
such that

(9) Fae (0, ) VB e (0,0),VA€R, sup sup eMN|.Z f(e2)] < o,
z€R? O€(—5,8)
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where | - | denotes the canonical Hermitian norm of C%.

Remark 1.2. Most of our results require that f¢? € &(R?) and v — go(k,v) € &(RY).
This assumption is probably not optimal but the space & (RY) contains most of
the usual functions used in Vlasov-Poisson simulations. For example Maxwellian
functions belong to this space. Appendix provides many examples and details
about this space.

Remark 1.3. Assuming that f°¢ € &(R?) and v — go(k,v) € &(R?), Dy and Ny,
are entire functions and for all A € R, the number of zeros of Dy, with an imaginary
part larger than A is finite (proof will be given in Corollary and Proposition
[3-9). Appendix [6.3] provides an algorithm to computate the zeros of Dy.

Definition 1.4. Ifk € TAd, Nk.w denotes the multiplicity of w as zero of Dy, i.e.
Nk = max{m € N | V¢ < m, D,(f)(w) = 0}.

Most of the result of this paper will require that gg is supported on a finite
number of spatial modes whose set is denoted K C T4\ {0}. More precisely, they
require the following assumtion
Assumption 1.5. There exists K, a finite part of Tq \ {0} such that

Va € Ta, go(z,v) = Y ¥ gy (k,v), with v go(k,v) € ERY).
keK

This assumption seems clearly not optimal but it is general enough to exhibit the
relevant phenomena and it corresponds to the usual initial data used for numerical
simulations. Furthermore, it simplifies most of the proof avoiding several problems
of convergences.

We can now state the main result of this paper: the following theorem proves the
existence of smooth solutions of (VPL)) and (VPL2) and describes their asymptotic
behavior.

Theorem 1.6. Let f¢¢ € &(RY) and gy be a function satisfying Assumption .
Then there exist two C* functions v, pn : R%. xTgq — R and two continuous functions
g, h: Ry x Ty xRY =R, C™ on R% x Ty x R, such that (g,v, h, ) is solution of

(VPL|) and (VPL2).

Furthermore, if A € R, ¥ is a linear combination of functions of the two types
J(t,x) = etk e—wt) g R(t,x) = r(t)ei(k'zfi)‘t)
where k € K, Di(w) =0, Sw > X and 0 < m < ng,, and r is a bounded analytic

function on R .
Similarly, p is a linear combination of functions of the four types

J(t,x) = tmeilhemwd) I(t,z) = tleilka—(witwa)t)
B(t,x) = tpei(k-z—%wlt)dﬁi R(t,z) = r(t)ei(kw—i)\t)
where k = ki + ko, v is a bounded analytic function on R and ki,ky € K satisfy
Dy (w) = Dy, (w1) = Di,(w2) =0
kky #0 and (d’,jf £0 < Iy e (0,1), k:7k1>
Sw > A\ and (%wl + QSwe > A or I%%wl > A)

m < Ngws £ < Nigy oy + Mgy — 1+ gkiks < Nhywr + 14 vhke

w1 ,w2? wi,w2?
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; ki,ka o k1,ko S .
with o g2, vl 2 some non negative integers equal to zero in the non degenerate

cases (see Remark[1.9 for details).

Remark 1.7. We have e~ ! = ¢3(@!=R(@)! g0 that all the terms of the sum except
maybe the remainder R are of the form e P(t)er+¥t with P(t) € C[t]. If one
of this term satisfies A < ), it can be put in the remainder term R.

Remark 1.8. Taking A decreasing to —oo makes the sum larger, but it always remain
finite, for a fixed A, since K, K + K are finite together with the zeros (see Remark
1.3]). We warn the reader that, a priori, the expansion does not converge as A goes
to to —oo.

Remark 1.9. Tt may exist some degenerate cases for which the four types of functions
introduced in the second part of Theorem [I.0] are non distinct. In such a case, the

numbers o¥1-%2 and v*1:*2 do not vanish and we have
1,W2 w1,w2
ki,ka _
Owiwe = (nk7w1+w2 - 1)1Dk(w1+"~’2)=0 +2: 1d:2 #0 and w1+w2:%&m
a1 ;
and
ke

=Mm, w —1)1 :
s = (et = Dlp, (e

where 1p denotes the characteristic function of the property P.

Remark 1.10. In the case where dﬁf # 0, which we will call resonant case, where
the Best frequency, that is the term B appears, p can a priori be > 1. For the J
and I terms, the multiplicity can be equal to one, corresponding to m = ¢ = 0.

The fifth section of this paper is devoted to some numerical experiments. They
principally aim at highlighting the Best’s waves because most of the other phe-
nomena associated with second order terms have been studied numerically in the
proceedings [2]. Unlike the linear case, it seems that there is no elementary way
to determine a priori the coefficients associated with the asymptotic expansion of
w. Indeed, they depend non trivially on the solution of (and not only on its
asymptotic expansion). Consequently, we use here least squares procedures, which
permit to have a simple and quick way to find these coefficients.

There are some difficulty arising of these computations because, as we compare
the solution of the second order expansion to the solution of , this gives a
constraint on ¢ and the final time that should be small enough. As we have seen,
the final time should also not be too small in order to be in the asymptotic regime,
and this is also true for £ (which is here put to the square, as we consider second
order expansion) due to the limits imposed by machine precision.

We admit that for the numerical checking of codes, second order terms have not
gained much popularity, maybe as the linear terms generally already give the main
phenomena. We emphasize that we are here able to identify the contributions of
the different frequencies, and thus do an effective comparison with, as already told,
multidimensional and nonlinear features.

Some remarks about the notations. In order to keep proofs as readable as possible,
we do some classical abuses of notation for integral transforms. For example, the
Fourier transform on R? is always associated with the variable v, it means that if
u € LY*(RY) then F[u] and F[u(v)] denotes the same functions. Similarly, if u is a
function of ¢, z, v then Z[u|(t, x, &) denotes F[v — u(t,z,v)](t, x,€). Similarly, ¢ is
associated with £, z with £7', € with .Z ™!, 2 with u +— @ and k with (u — @)
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Outline of the work. In Section [2| we derive some integral equations (called disper-
sion relations) satisfied by solutions ¢, u of (VPL)) and (VPL2). Then we prove
that it is enough to solve these dispersion relations to get solutions for and
(VPL2)). The next two sections are devoted to the resolution of these dispersion
relations and to the asymptotic expansions of their solutions: Section [3]is for the
first order expansion and Section [4] is for the second order expansion. Finally in
Section [5 we give some numerical results.

2. DERIVATION OF THE DISPERSION RELATIONS

2.1. Dispersion relations for first and second order.

In the following propositions, we give the dispersion relations, that are obtained
through Fourier and Laplace transforms. Note that we have an expression for both
the electric potentials v resp. p and the distribution function g resp. h of the first
resp. second order dispersion relations.

Proposition 2.1. Assume f°7 € &(RY) and go satisfies Assumption|1.5 Assume
there exists a C*° function on R X Tq, denoted +, and there exists Ao > 0 such that

e~ %) (t, x) is bounded on RY. x Tq. Furthermore, assume that, for all k € ﬂ\{O},
L [@(uk)} (2) is a solution of

(10) c[@ﬁ(t,k)] (2)Dp(z) = —— / olkv)

_W Re Uk —z
for Sz > Ag.
If we define g by

t
(1) glt,zw) =3 FEIG(kv) + i / e == s, k)k -V, 29 (v) ds,
0

keK

then g is a C* function on R x T4 x RY, continuous on Ry x Ty x R and (g, 1)

is a solution of (VPL).

Proposition 2.2. Assume ¢ € &(R?) and gy satisfies Assumption . Assume
there exists a solution of (VPL)) as in Proposition (2.1)). Assume there ezists a C™°
function on R x Tq, denoted p, and there exists Ay > 2Xg such that e~ Mt(t) s

bounded on R% x Tq4. Furthermore, assume that, for all k € Ta \ {0}, L[a(t, k)] (2)
is a solution of

(12) Lp(t, k)} (2)Dr(2) = dv.

for Sz > Aq.
If we define h by

. / £V Vgt k,0)] (2)
Rd

kP2 v-k—2z

t
h(t,zv)= > i / etk @=vt=N7(s k)k -V, f(v)ds
kek+K 70

t
+/ V- va(s,k,v)eik'(“’w(t*s))ds,
0

then h is a C* function on R x Tq x R, continuous on Ry x Tg x R® and (h, )

is a solution of (VPL2).
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2.2. A general linearized Vlasov-Poisson equation.

In order to prove Propositions and as (VPL) and (VPL2) share the same

structure, we focus on a general linearized Vlasov Poisson equation

Og(t, z,v) +v - Vag(t,z,v) — Vau(t,z) - V, f(v) = (¢, z,v),
(VPLG) Agu(t,z) + [g(t,z,v)dv =0,

9(0,z,v) = go(z,v).
In the following proposition, we derive a general dispersion relation satisfied by .
We first do not consider the coupling with the Poisson equation.

Proposition 2.3. Assume go € C'(Tq x R?), f9 € C?(RY) and &(t,z,v) €
CY(Ry x Tyq x RY) and there exist Ao > 0, @ € C°(R?) N L*(R?) satisfying
Wt k,v) € R x Ty x R, e MS(t &, 0)| + |go(k, v)| + [V f(v)] < 3(v).

Assume there exists u € C'(R%. x Tg) such that e=*tu(t) is bounded on R% x Tq.
Assume there ezists a continuous function g € C1(R%. x Ty x RY), continuous on

Ry x Tgq x R? such that g is solution of the Viasov equation
(13)

v(t x ’U) c R:XTdXRd { atG(tazvv) +ov- vzg(t7wav) - qu(ty'lf) . vvfeq(v) = 6(t,$,1}),

9(0,z,v) = go(z,v).
If A > Ao then for all k € ﬂ, there exists C > 0,
(14) Yo € R, sup |e Mg(t, k,v)| < Co(v).

teR

Furthermore, for all z € C with 3(z) > Ao we have
(15)
10 . eq
c [/ ﬁ(t,k:,v)dv] (2) :—i/ 8 (k,v) dv—l—E[ﬁ(t,k)](z)/ ke Vo)
Rd R

av-k—2z2 Re V- k—2z
c [@(t, k,v)] (2)
P
Rd v-k—z

Proof. First, applying a space Fourier transform to , we get for all (¢,k,v) €
R% x Ty x R?

(16) 09(t, k,v) +iv -k gt, k,v) —au(t,k)k -V, f(v) = &(t, k,v).
Consequently, applying Duhamel formula, we get for all (¢, k,v) € Ry X '/I'; x R4

t
(17) §(t.k,v) = e ™' go(k,v) + Z/ e MU N(s, k)k - V 4 (v)ds
0
t
+/ efik'”(tfs)G(s,k,v)ds.
0
So, we deduce, there exist M, C > 0 such that, if A > Xy then

t t
Btk 0)] < |Gk, 0)] + / 0 MIK||V, £ (v) s + / P05¢09|& (s, k, v)ds,
0 0

< (v) + tert (1 + [k|M)d(v),
< CeMo(v).
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We deduce of this last estimation, that for any fixed v € R? and for any A > A,
e~ Mg(t, k,v) is continuous and bounded on R,. Consequently, we can apply a
Laplace transform on and get for all z € C such that Sz > \g and v € R?,

— iz L[g(t,k, v)](2) = go(k, v) +iv - k L[g(t, k, 0)](2) — i L[u(t, k)] (2)k - Vo f“(v)
-y [@(t, k, v)} (2).
Since 3z > 0, this relation can be divided by i(v - k — 2) to get for all v € R?

=k ~ Vo) L8k )| (2)
Lk, 0)(2) = i 0 L k) B VS [ } .

v-k—z v-k—z v-k—z

Finally we conclude this proof integrating with respect to v and applying Fubini
Theorem (with the control (14)) to get for all z € C with Sz > g

c { /R d ﬁ(ukz,v)dv} ()= [ £k ).

If we want to get a closed equation on u, we have to use Poisson equation

(18) Aju(t,z) = _/Rd g(t, z,v)dv.

Formally, applying a space Fourier transform and a Laplace transform we would
get

k| L[u(t, k)] =L URd ﬁ(t,k,v)dv} .

Consequently, applying , we should get the following dispersion relation

~

(19) LR (IDu(E) =~ [ B, /‘[G(t’“ﬂ“d

_W RaV-k—z _W v-k—z
where Dy, is defined by .
Proposition 2.4. Assume go € CY(T4 x RY), f4 € C*RY) and &(t,x,v) €
CY(R% x Tq x RY) and there exist A\g > 0, 0 € C°(RY) N L*(R?) satisfying
V(t, k,v) € RE x Ta x R, e 2US(t, k,v)| + |go(k, v)| + [V, f(0)| < d(v).
Assume there ezists u € C' (R x Tg) such that e=**u(t) is bounded on R x Tq4.

Furthermore, assume that, for all k € '/I';\ {0}, Lu(t, k)] (2) is a solution of
for Sz > Ag. Assume there exists a finite set & C Ty such that

VteR Yo eRY, ke T\ & = golk,v) =&(t,k,v) =1(t, k) = 0.
If we define g by

t
(20) g(t,z,v) Zzeik'(”_”t)ﬁ)(k,v)Jri/ eh o35 k)k - V£ (v)ds
ker 0

t
+ / eik'(x_”(t_s))é(s, k,v)ds,
0

then g € C'(R%. x Ty x R%) is continuous on Ry x Tg x R® and (g,u) is a solution

of (VPLQ).
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Proof. By construction of g through Duhamel formula , g is obviously a con-
tinuous function on Ry x Ty x R? and C! on R% x Ty x R?. Furthermore, we may
verify by a straightforward calculation that g is solution of the Vlasov equation
(13). Consequently, we just have to prove that g,u is solution of Poisson equation

(18).

However u and g satisfy assumptions of Proposition [2.3] so we can apply it.
Consequently, we know that if A > Ao then e J8(t, k,v)dv is continuous and
bounded and that its Laplace transform satisfies (I5)). But since L[u(t, k)] is a
solution of the dispersion relation , we deduce that for all z € C such that
Sz > Ag we have

k[2 L[ R)] () = £ UR i, k,v)dv] ().

But it is well known that Laplace transform is injective on continuous functions
with an exponential order (i.e. bounded by an exponential function), see Theorem
1.7.3 in [I]. Consequently, we have for all ¢ > 0

e [25(t, k) = /

a(t, k,v)dw.
Rd

Since space Fourier transform is also injective on regular functions, we have proven
that u, g is a solution of Poisson equation (18)). O

2.3. Proof of Propositions and
We now apply Proposition [2.4] for the proof of Propositions [2.1] and

Proof of Proposition[2.] First, observe that if k € ﬂ\ ({K}U{0}) then for any
t > 0, we have gZ(t,k) = 0. Indeed, since £ [@(t,k)} (z) is a solution of (10)), we
have

Di(2) £ [t )] () = 0.
But, we have proven in Lemma that Dy(z) # 0 if Sz is large enough. Con-
sequently, £ [zZ(t,k:)} (z) = 0 if Sz is large enough. So we deduce by a classical
criterion about Laplace transform (see Theorem 1.7.3 in [1]) that (¢, k) = 0.

We observe on that g is clearly a C'°° function on R} x T4 X R?. Finally, we
just need to apply Proposition to prove that (g,) is a solution of . O
Proof of Proposition[2.4 Let & be defined by

S(t,z,v) = Vao(t, z) - Vog(t, z,v).

By construction, it is a C*° function on R} x T4 X R?. Since, space Fourier transform
of v is supported by K (see proof of Proposition , its space Fourier transform
is supported by K + K. Furthermore, since A\; > 2)g, we can construct, by a
straightforward estimation, a continuous function 0 € C°(R%) N L}(R?) such that

Yo € RY, e MY S(L, k,v)| < o(v).

In particular, this estimation proves that the right member of is well defined
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Now, as in Proposition 2.1} we can first prove that space Fourier transform of x
is supported by (K + K)U{0}, then observe that h is a C*° function and conclude

that (h, u) is a solution of (VPL)) by Proposition O

3. RESOLUTION AND EXPANSION OF THE LINEARIZED EQUATION

3.1. Introduction and statement of the result.

In Proposition 2.1 we have proved that it is enough to solve dispersion relation
to get a solution (g, ) to linearized Vlasov-Poisson equation . So the aim
of this section is to solve this dispersion relation introducing most of the theoretical
tools useful in the resolution of the second order relation . In particular, many
of them deal with analytic function defined on open sectors, denoted Y, with
a € (0,7), and defined by

Yo ={re®? | —a<f <aandr>0}.
The result we are going to establish in this section is the following.

Proposition 3.1. Assume £ € &(R?) and go satisfies Assumption . For all
A €R, forall k € K, for all zero point w of Dy, there exists a polynomial, denoted
Py, whose degree is strictly smaller than the multiplicity of w, a € (0,%) and
there exists v x an analytic and bounded function on X, such that the following
expansion defines a solution of the dispersion relation

VtERL VT €Ty, ¥(ta) =D Y Peu(t)e'®eD 4 el redty (¢).
k€K Dy (w)=0
Sw>A

This proposition will be proven at the end of this section. First, we introduce
some notations and many useful theoretical tools.

3.2. Definition of N, and theoretical tools.
The right member of the dispersion relation is very important in our study.
We denote it Ni(z). More precisely, it is an analytic function defined, when Sz > 0

by
i [ golk,v)

In the first part of this proof we study the regularity and the behavior of Dy and
Nj.. However, we need to introduce some classical results on Laplace transform.

First, consider the following Theorem that is very useful to invert Laplace trans-
forms and to control it.

Theorem 3.2. (Analytic representation,)

Let o € (0,5), Ao € R and q : i(Xo,00) — C. The following assertions are
equivalent:

(i) There exists a holomorphic function f : X, — C such that

V0 < B < a, sup e % f(2)| < 0o and YA > No, q(iX) = L[f](i)).
2625

(i) The function q has a holomorphic extension q : i\g + iXa+z — C such that

Y0 < v < a sup |(z —iXo)q(2)| < 0.
ZEi)\o-‘r’iZ,\H_%
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Proof. See Theorem 2.6.1 in [I] page 87. d

Remark 3.3. Note that if e=*0! f(¢) is bounded on R* then for A > X, e M f(t) €
L'(Ry) and so L[f] is well defined for S(z) > Ao, which is the set iAo +i¥z.

There is a direct corollary of the proof of Theorem [3.2] that is useful in our study.

Corollary 3.4. Assume that conclusion of Theorem holds. Then for all 0 <
v < B < «, we have

. ~ —Xoz
sup z—1X0)q(2)| < ——— sup |e” "% f(2)].
el I( )a(z)| (3 =) zezﬁ| (2)]

Then, we observe that D; and Nj are defined through a integral operator whose

kernel is Wl,z The following lemma links this operator to more classical ones.

Lemma 3.5. Let f € L'(RY) and k € R?\ {0} then for all z € C with Sz > 0

/Rd kfﬂd“ = i LIZ[f](k)] (2)-

U —Z

Proof. First, remark that since f € L*(RY), t — Z[f](kt) = [za f(v)e " dv is a
continuous and bounded function, so its Laplace transform is well defined if Sz > 0.
Now, consider the following function

F(t) — /R &e—i(km—z)tdv.

ak-v—2z

Since f € L*(RY), it is a regular function and we have
F(t)y=—i | fo)e " ®Fv2do = —i F[f](kt)e'.
Rd

But, since 3z > 0 we observe that F'(t) goes to 0 when ¢ goes to +0o. Consequently,
we get

F(0) = — /0 T Pat = i /O T Ukt = i £ [Z (k)] (2).

3.3. Estimations for D; and Ny.

With Lemma [3.5 we can write Dy, and Ny, as Laplace transforms. So, in the fol-
lowing proposition, we can prove their analyticity using the analytic representation
theorem (Theorem [3.2)). In particular, we prove and extend Remark

Proposition 3.6. If {7 € &(R?) then

e for all k € R¥\ {0}, Dy is an entire function,
e there exists o € (0,5) such that for all 0 <y < « and for all \g € R there
exists C > 0 satisfying

C

vk e RO\ {0},Vz € ilk|ho + Xz, |Dip(z) -1 < —— .
\{} z Z| | o+t Y+3 | k(z) |— |k||Z—Z‘k|>\Q|
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Proof. Since f € .#(R%), we have k- V,f° € L*(R?). Consequently, Dy, is well
defined as an analytic function on {z € C | Sz > 0}. Furthermore, we can apply
Lemma [3.5] to get for Sz > 0

1

LIF k- Vo [ (k)] (2).

Then we define e, = % and we get by the change of variable t' = |k|t
LIF [k Vo, f(kt)] (2)

N / Z (|klex - Vo £7) (|Klext)e' 1M
0

= /00 F ler - Vo) (ext))e' Tt dt’ |
so that i
(21) Du(z) =1 i £1F e Var 0] (7).
Now, using Theorem we are going to prove this Laplace transform defines an

entire function and we are going to control it.

Since ¢ € &(R?), it extends to an analytic function and there exists a € (0, %)
such that for all 8 € (0, ) and for all A € R, there exist C' > 0 such that

Vz € BgRY, | Z[f°1)(2)] < Cle™|.
Consequently, we get
Vz € B, | F len - Vo] (exz)| = liz F[f(2)] < Clzle™ .

Finally, we have proven that for all A\g € R, there exists a constant M > 0
(independent of ej) such that

V2 € B, |7 [en - Vo f) (ex2)] < Mle%).

Applying Theorem[3.2]and its corollary, we have proven that L[.Z [e), - V, 9] (ejt)]
is an entire function and that for all v € (0, «) and all Ay € R, there exists M > 0
(associated to 8 = 222) such that
M 1

sin(25%) |z —ido|

Vz € ido+ iS4z, [L1F [er - Vol (ext)] (2)] <

Finally, we deduce directly the result from formula (2I)):
1 z
D) 11 = | €17 e Vs ] ()
M 1 M 1

< . — : )
= [k?sin(%57) |ﬁ*1>\0| k| sin(252) |z — i[k[ Ao

O

Corollary 3.7. If f*1 € &(R?) then there exists o € (0, %) such that for all \g € R

and v € (0, ), there exists ¢ > 0 such that for all k € R%\ {0} we have

c

{z€C| Dy(2) =0} Cilk|A\o — <D(O, 7 umg_w) .
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Proof. Indeed, we have either z € ilk|\o + ¥,y x, so that 1 = [Dy(2) — 1] <
m and thus z € i|k|Ao—D(0, ‘%) Otherwise, we have z € C\{i|k|A\o + iZ%L%},
that is 2 = i|k|\o+ire®, 6 € [Z+7,2r—Z —1], and thus 71— 6 € [T +~, —y+ Z],
which leads to z = i|k|\g — ire™®, withd =7 — & € [-Z + 7, —7 + Z]. O

Corollary 3.8. If f¢¢ € &(R%) then for all k € Ta \ {0}, Dy, is an entire function
and for all X € R, {w € C | Dy(w) =0 and Sw > A} is a finite set.

Proof. In Proposition we have proved that Dy is an entire function and it can
be directly deduced from its Corollary 3.7 that {z € C | Dy(2) = 0 and Sw > A} is
bounded. Consequently, since zero points of Dy are isolated, it is a finite set. [

It is very natural to adapt this result to Ni. More precisely, we deduce the
following proposition.

Proposition 3.9. For all k € T, \ {0}, Ny is an entire function and there exists
a € (0, %) such that for all \g € R and for all § € (0, @), we have

"2
sup [Ne(2)]]z — ido| < oo.
2€iNo+iTsy g

3.4. A theoretical tool for the control of L[N} /Dy].
Now, we introduce a general criterion to invert Laplace transform and get an
asymptotic expansion.

Lemma 3.10. Let R € H(C) be an entire function and N be a meromorphic

function defined on C. If there exists o € (0, 5) such that
3C >0, sup [|zR(2)[+ [2N(z)| < C,

zE at T

then for any A € R, there exist § € (0,a) and a function r € H(Xg) analytic and
bounded on X such that if 3z is large enough then

N(z)

— =L P, (t)e @t 4 eMp(t) | (2),
1— R(z) Q;Z
Sw>A
. N(z)
where Z is the set of poles of T—R(s)’
ne—1 .
P, = Lz: ak+1,w]i'—l)k+lxk
k=0 ’

is the polynomial whose coefficients are defined by the expansion of % mz=uw

N(z) o @
— = —= 4+ 0O(1).
1— R(2) z—)w; (z —w)d

Remark 3.11. In the application, for the proof of Proposition N will be entire
(thus meromorphic), but for the second order case, in the next section, we will

really need that N is meromorphic.



16 JOACKIM BERNIER AND MICHEL MEHRENBERGER

Proof of Lemma[3.10, Many geometrical objects are going to be introduced in this
proof. The reader can refer to Figure [1| to an illustration of these constructions.
First observe that to prove the lemma, we can assume that A is negative enough.
In particular we assume that A < —2C.

By construction, if |z| > 2C and 2 € i¥44 7 then [1 — R(z)| > 1 — |R(z)| > 1 —
% > % Consequently, all zero points of (1 — R) belong to D(0,2C) U —iX=z _,

(note that —i¥z _,\{0} = (i2a+%)c). Since the poles of N lie on —i¥z_,, the

poles of 11_\[1(%’2()2) lie on D(0,2C) U —i¥z_,. In particular, the set of its poles with

an imaginary part larger than or equal to A is finite (see Figure [1).
Now consider the following rational fraction

_ SRR
Q)= Y Z G_wy
weZ j=1
Sw>A
We introduce r1 > 0 such that we have
D(0,2C)U ({z € C| Sz > A} N—i¥z_q) C D(iA, ).

Now, we observe that there exists 8 € (0,«) such that % — @ is a continuous

function on A +iXgyz. Indeed, it is a meromorphic function whose poles lie on
{z € C[ 3z < A}N—i¥z_, and are isolated, and thus we can choose such 3 (small
enough). Consequently, there exists M > 0 such that

N(z Mr
1(1~z()z)_Q(Z) <M< —o
Furthermore since zN(z) is bounded on X, z, there exists M; > 0 such that

My
|z — )|

Indeed, we distinguish the case z € ¥4z ND(0, 2|A|), for which there exists C' > 0
such that

Vz € D(iA,r1) N (iIA+i%p41),

Vz € Z'/\-‘r’iZBJr%, IN(2)] <

C C |z—1i) C  3|) M,

— < " < B — < . )

Tz =iz Tz =N 2IN T |z —dA

and the case z € (i)\+i25+g) N ((iZaJr%)c UD(0,2|A])) which is a bounded set
ensuring

NG < 1

|2 — AN (2)| < My,
Consequently, by construction of r1, we get |1 — R(2)| > %, when |z| > 2C and
z € i¥ayz [so, in particular when z € i¥q 1z N DC(iA,r1) N (iA+iXp4z)] and
|1 — R(z)| > ¢, with ¢ > 0, when 2z € (iZaJr%)cﬂ (X + iEBJr%) (which is a bounded
set) [so, in particular when z € (iEaJr%)c ND(iX,71) N (i + X312z )] and thus
N(z) < max(2,1/¢) M,
1—R(z) |z —iA
Finally, since @ is a rational fraction whose poles lie on D(i),r;) and vanishing as

z goes to 0o, the function z — (z —i\)Q(z) is bounded on D¢(i\, 1) and thus there
exists Ms > 0 such that

Vz € (iX+iXgyz) NDO(iA, ),

My
|z — i\

Vz € (iA+i¥gz) ND(iA, ), |Q(z)| <
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X X
20

D(0,20) U —iZ5 _qo
N
x poles of =5

1

e e N+ R

FIGURE 1. An illustration of the geometrical constructions intro-
duced in the proof of Lemma

Then we get a constant M3 > 0 such that
N(z)
1— R(2)

Applying Theorem to % — @, we get an analytic and bounded function
t — e MeMr(t) = r(t) on ¥, (with y = £), such that
N(z)

To conclude the proof of Lemma we just need to determine the invert Laplace
transform of Q. But we get, by straightforward calculation,

M3

L [e)‘tr(t)] (z) =

Q(z) =L | Y Pu(t)e ™| (2).

weZ
Sw>A
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3.5. Proof of Proposition [3.1
Finally we can prove the result stated at the beginning of this section.

Proof of Proposition[3.4 In Proposition [3.6] and we have proven that we can
apply Lemma [3.10] with D, = 1 — R and N = Ny, taking Ao = 0. But the result of
this lemma is exactly the expansion of Proposition [3.1 d

Remark 3.12. As we use only A\g = 0 in Proposition and for the proof
of Proposition [3.1] we may wonder of we could use a weaker assumption on f¢
for getting the estimate on Dj for example. Indeed, that estimate derives from
Theorem for A\g = 0 and so the weaker assumption could be the hypothesis of
(i) in Theorem for Ao = 0. However, we also need to have that Dy is entire,
and there we have used Theorem for all Ao € R.

4. RESOLUTION AND EXPANSION OF THE SECOND ORDER EQUATION

4.1. Introduction and statement of the result. In Proposition [2.2] we have
proven that it is enough to solve dispersion relation (12)) to get a solution (h, u) to
second order linearized Vlasov-Poisson equation . So this section is devoted
to the resolution of this second order dispersion relation, following the strategy
established for the first order dispersion relation in the previous section, by proving
the following proposition, which permits to complete the proof of our main result,
Theorem [L.6

Proposition 4.1. Assume f¢¢ € &(RY) and gy satisfies Assumption|1.5. Consider
the solution (g,v) of (VPL|) given by Proposition and Proposition (2.1l Then

there exists a solution u of the dispersion relation (12) whose expansion is detailed
in Theorem [L.4

4.2. Definition of NV}! and N? (the right hand side).

We will first look for the right hand side of the second order dispersion relation,
that was Nj in the first order case.

Let k € (K + K) \ {0}. By looking at the second order dispersion relation (12)),
we can assume, without loss of generality, that there exist ki,ks € K such that
kl + k‘g =k and

Vath - Vgt kyv) = id(t, ka )by - Vog(t, ko, v).

Consequently, we can determine more precisely the right member of . However,
to be rigorous we need to prove that our integrals are convergent. Indeed, as in
Proposition [2.2] there exists A\g € R such that for any A > X\, we can construct a
continuous and integrable function @ € C°(R?) N L!(R?) such that

V(t,v) € RL x RY, [ih(t, ky)|e ™ + e Mk - Vog(t, ko, v)| < 0(v).

Consequently, if 3z > 2)\g, we can apply Lemma to prove that
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dv

| it kks - Vgt ko, v)] (2)
R4

v-k—z

i [y [g [i@(t,kl)kl : v@(t,kz,v)] (z)} (kt)} (2)

i / / / ih(t, k1) ky - Vog(t, ko, v)etdt e dy 27 dr
0 R4 JO

= fi/ / Ot k) (ky - k)T F Gt ko, kr) €270 dt dr
0 0

- 'L(/fl . k) /OOO /OS q’p\(t’ kl)(S - t) gzb\(t, k-Q’ k(S _ t))dt eizsds

t
= —i(k1-k) L [/ V(T k1)t — 7) F g1, ko, k(t — 7))dT| (2),
0
where we have used the change of variable 7 4+ ¢ + s and the notation

g‘\/g\(t,k‘,g) = 33@(15,14:,11)](5)

Furthermore, using definition of g (see (L1)), we can precise .7 g(, ko, k(t — 7)).
Indeed, we start from

9(t k) = e * g (k) + i /Ot e M=)y (s, k)k -V, f9(v)ds,
so that we have
T g(t, k2, €) = Zgo(ka, v)](€ + kat) +z‘/0t Vs, k2) F [k V o f9) (€ + kot — 5))ds.
Consequently, we get
F Gk, k(t — 7)) = Z[go(ka, v)] (kt + (k2 — k)7)
- i/OT Bls, k) F Tk Vo 7] (k(t — 7) + ka(r — 8))ds.

So we have two numerators to study for this dispersion relation. On the one
hand, we have

(22) N (z) = —’“k|’“ C[F (1] (o),

with
Fl(t) = /0 12)\(7'7 k)t — 1) Flgo(ks,v)](kt + (ko — k)7)dT.

On the other hand, we have

ki-k

(23) NEE) = i £ [F2(0) (2)

with

F2(t) = /0 12(7', k)(t—T) /OT 121\(87 ko) F [ka - Vo f) (k(t — 7) + ka7 — s))ds dr.
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So with these notations,the dispersion relation (4.1)) may be written as, for all z
such that &z > 2\,

(24) L[a(t, k)] (2)Di(2) = Nip(2) + N (2).

4.3. Estimates for AN} and N?.

We are going to apply the same strategy as for the resolution of the first order
dispersion relation. It will be solve using Lemma [3.10] The denominator has been
studied in Proposition [3.6} The following lemma describes the regularity and the
behavior of the numerators A}l and N?.

Lemma 4.2. The function N}, N? have a meromorphic continuation and there
exist A € R and 8 € (0, ) such that
sup |z — )| [V (2)| + N2 (2)]] < o0
Zei)\+i213+%

o If there exists v € (0,1) such ko = —vk1 then the poles of Ni' are the points

w € C such that w = wl% where Dy, (w1) = 0 and its multiplicity is smaller than

or equal to Ny, ., + 1. N,f has two kinds of poles. On the one hand, there are
the points w € C such that w = wy + we where D, (w1) = Dg,(w2) = 0. On the
other hand, there are the points w € C such that w = wl% where Dy, (w1) = 0.
The multiplicity of a pole belonging to the two families is smaller than or equal to
Ny ,wi T Nhyw, + 1. Flse the multiplicity of a pole of the first kind is smaller than
or equal to Ny, w, + Nky.w, — 1 and the multiplicity of a pole of the second kind is
smaller than or equal to ny, o, + 1.

e Else N} is an entire function and the poles ofj\fk2 are the points w € C such that
w = wy + wy where Dy, (w1) = Dy, (w2) = 0 and its multiplicity is smaller than or
equal 1o Ny, wy + Ny s — 1.

Now, we focus on proving Lemma 4.2, However, using analytic representation
Theorem [3.2} it is directly deduced of the two following lemmas (Lemma and
Lemma [4.4) involving properties of F{} and F?.

Lemma 4.3. For all A € R there exist 3 € (0,5) and an analytic and bounded
Junction on g denoted r such that
o if ko = —vk1, v € (0,1), then for allt >0

(25) Flty= 3 Ru (e ™ W1t 4 eMpp),

Dkl (wl):()
Swi >\

with R, a polynomial of degree smaller than or equal to ng, ., ,
e clse, for allt >0

(26) EL(t) = eMr(t).

Lemma 4.4. For all A € R there exist 3 € (0,5) and an analytic and bounded
Junction on ¥g denoted v such that
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o if ko = —vky, v € (0,1), then for allt >0
(27)

FE = 3 [Rel, 00 e STl et | oMo,
Dy (w1)=0 Dy (w2)=0
%wl Z}\ C\\S:WQZA
with Qf,ﬁ:’frz a polynomial of degree smaller than or equal to Ny, w, + Nkyw, — 2 and
R‘,;’ll’kz a polynomial of degree smaller than or equal to ny, o, (if there exist wy,ws

such that wi + wy = wl% the maximal possible degree of Q’j}l”’jg

Ny wy T Nhoyws )
e clse, for allt >0

(28) Fity= > 3 @bk (nemiatet L i),

Dkl (wl):O Dk,2 (WQ)—
Swlz)\ (\\fWQZ)\

and R,Cl Ky 1S

with Qfﬁ:’sz a polynomial of degree smaller than or equal to M, w, + Ny 0w, — 2.

Remark 4.5. In Lemma we need that the inequality is true for a given A,
in order to apply Lemma |3.10} However, applying Theorem we deduce from
Lemmae and 4 . 4] that the 1nequahty is true for all A eR. On the other hand,
we have needed that Lemma [4.3] and [£.4] are true for all A € R, in order to prove
that N}} and N? are meromorphic.

We are going to prove these lemmas distinguishing the non resonant case from
the resonant case (when there exists v € (0,1) such that ks = —vk;). In order
to get proofs as clear as possible we do not prove that the remainder term can be
extended on complex cones and we only control them on R% . Indeed, there are no
real issues to extend them and the arguments to control them on X, or R are
the same. Furthermore, the notations induced for the complex extensions are quite
heavy and so do not help to understand the ideas. However, in the first proof, to
give an example, we prove the analytic extension and we really estimate it.

4.4. Proof of Lemma [4.3] in the non-resonant case.
Since we are studying the non-resonant case, there exists § > 0 such that
Vo € (0,1), 6 <|[(1—0)k+ Oks|.

Indeed, in the resonant case there exists v € (0, 1) such that ko = —vk1 = y(k2—k),
so that (1 — ~)ks + vk = 0. We have proven in Proposition that there exists
a € (0, §) such that 12)\(25, k1) extends to an analytic function on X, and that there
exists Ag € R and M > 0 such that

Vz € Sa, [0(2, k)| < Me o™z,

Furthermore, since v — go(k2,v) € &(R?), its Fourier transform extends to an
entire function on C? and we can assume (choosing a small enough) that for all
A2 € R there exists C, > 0 such that

(29) Vz € BoRY, | .Z [Go(ka2,v)] (2)] < O, et
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Now observe that by a change of variable, F}!(¢) can be written as

Fww=#%jl—@&w$nﬁMMMwmuu—mk+%gma

Consequently, Fk1 (t) naturally extends to an analytic function on ¥,,. Now, we have
to control Fk1 (2)e™** on ¥, for any A € R. Indeed, we have, for z € ¥, as we can
assume Ay < 0,

1 ~
|[Fp(z)e™] < IZ\26*WZ/0 (02, k1)[(1 = 0) | F[go(k2, v)](2 (1 — O)k + Ok2))| dO

1
< C,\2M|Z|2/ e(/\oa—)\)%z(l _ 9)€A2%z|(1—9)k+9k2|d9
0

S C>\2M|Z|2€(‘>‘0‘7)‘+6>‘2)%Z

( Rz )2 (1Mol =A4+Xx2)R
< Ch\,M ellno 2)N2

Cos &

So this quantity is bounded uniformly with respect to z € ¥, if As < w.

4.5. Proof of Lemma [4.3] in the resonant case.
As explained before, from now, we do not pay attention to the analytic extension
anymore. First, we use the resonance to give a more adapted expression of F}!

Fe(t) = /O DT k) (= 7) Zgo(ka, 0)] (k1 (1 =)t = 7))dr

1=yt __
=/ DL =)t — 5, k) (7t + 8) F Go (ko Ky s)ds,

—t
making the change of variable s « (1 —~)t — 7. We want to expand ¥, so we intro-
duce the dependency of F}! with respect to t — (¢, k1) by denoting F[1 (¢, k1)](t).
Consequently, using the expansion of ¢ of Proposition for any A\; € R, we get

FHo(t k)0 = Y FHPryw (e () + FL M e o, (D](8),

Dy (w1)=0
Swi>A1

where 7y, x, is a bounded function on R% .
First, we are going to control the remainder term Fjl[e*?ry, », (¢)](t). Using the

same control of the Fourier transform as previously (see (29))), we have, as we can
assume A, Ay <0,

e MR [eM ey 2 (D](1)]

(1=t
< 17k a ll oo 6’“/ ANl (0t 4 5) | F [Go (K2, v)](K15)| ds

(1=v)t
< ||7’k17)\1||LooCA267)\t/ 6)\1[(177)1575](7154,5)6)\2|k1HS|d5
< Hrkl)\lHLOCCAQG[(l_’Y))\l_)\]t/('Yt‘f'5)6()\2“61‘_)\1)'8‘(13-
R

So this quantity is bounded uniformly with respect to t € R if (1 —y)A\; < A and
)\2‘k1| < M.
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Now, we are going to study one leading term of the type F}[t"e~"!](t). So, we
are doing a new expansion.

. ) 1=yt ,
Fl{tme () = e 0=t / (L= )t — )" (7t + 5) Z[Go (k. v)] (krs)ds
— vt
ntl (1=t o
= Z btd e~ (1=t / s"HTIelns (g0 (ky, v))(kys)ds,
=0 —
where by, ...,b,41 are real numbers. Here we recognise the leading terms of

since, by construction, 1 — v = %

Then, observe that since the right integral is convergent (see (29))), there exists
A € C such that for any ¢t € R’ , we have

(1—~)t o .
/ 8n+1—]ezwls f[ng(kg,v)](k‘ls)ds —A— / sn—i-l—Jezwls g[g\o(kg,’u)}(lﬁs)ds

-t —00
+oo
- / s"TTdeins Z(a (ky, v)](kys)ds.
(1=t
The complex number A is the leading term of this integral whereas the other ones
are remainder terms. So we just have to control them. Indeed, we have

. . ’y . .
e Ml (1=t / s"Tmdeins gy (ky,v)](kys)ds

— 00

oo
—_ 5O — — 4 ¥
< Cy,e Abgd eSwi(l W)t/ g1 gSwisghalkils g g
~yt

VA

) J
< C>\2 / 67)\% () e%wl(lf'y)%8n+1—j€§?wlsekg|k1|sd8,
0 v

as we can assume A < 0 and since t < % Consequently, it is bounded uniformly
with respect to t if |k1|yA2 < A — Swy. The estimation of the third integral can be
realized with the same ideas.

As we have a term in t"T!, we see that R, is of degree < ng, ., since Py, o, is
of degree < ng, o, — 1.

4.6. Proof of Lemma [4.4] in the non resonant case.
First, operating the change of variable 7/ =t — 7, s’ =t — s, we can write F]f as

Fl?(t) = _/0< r< gl <t 'l//;(t—T/, kl){b\(t_slv kQ)TI F [kQ : vaeq] (kT/+k2(S/_TI))dS/dTI7

since, if 0 < s <7 <tweget 0 <t—7<t—sandt—7<t—s <t that is
0 <7’ <& <t. Inorder to get notations general enough but compact, we denote
u =7 [ka.V, f¢9). Since u € &(R?), for all A3 € R there exists a constant Cy, > 0
such that

(30) V¢ € R VE> 0, [u(té)] < Oy etlél.

We define, for continuous functions ¢1, ¢o with an exponential order, a bilinear
operator ¢ by

q[é1, d2)(t) = q[p1(t), Pp2(D)] () = / o1 (t—T7)pa(t—s)Tu(kT+ko(s—7))ds dr.

0<7<s<t
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With these notations, we have
FR(t) = qlib(t, k) (8, ko)) (8).

Consequently, using the expansions of zz;(t, k1) and zz;(t, ko) established in Propo-
sition we getf| for A1, A2 € R,

B F= Y > dlPuwe " Pawe 4 gl i, B(t k)
Dkl(wl)ZODk2(w2):0
Swi>A1 Swa>A2

+ q[’(z}\(tk1>7 ekztrkn,)\g] - q[eklt/rkl,/\l ’ e)\Qtrkg,)\z]

where 74, », and 7y, », are respectively bounded by constants C), and C},.

Furthermore, we can also assume that there exists A\g € R and M > 0 such that

Yt >0, [t k1)| + [1h(t k)| < Meot,

Finally, since we are treating the non-resonant case, we may assume that there
exists § > 0 such that

(32) Vo<1 <s, ds < |tk + (s —7)ka|.

So first, we are going to control the remainder terms of . For example, we
consider g[eMiry, ,,(t, k2)]. So, if t > 0, A3 < 0, A\; < 0, we have

ei/\t |Q[e>\1trk1,)\1 ) {/;(ta kQ)] (t)|

S C)\lMO)\ae()\l+)\07/\)t / ef}\le)\()STe)\g,‘kT+k2(57T)|deT
0<7<s<t

< C,\IMC)\3€(>\1+)\O_>\)t/ C_AlT_)\OSJr)\g(SSTdeT
0<7<s<t

< C)\IMCASth(Al-i-AO—A)t/ e—)\ls—/\os-i-/\gésds.
s>0
So, this quantity is bounded uniformly with respect to ¢ > 0 if Ay < A — Ay and
Az < @ < %. Similarly, we could prove that if Ay is chosen negative enough

/\Qtrkz)\z](t)e_/\

~

then we could control g[¢(t, k1), e ¢ uniformly with respect to ¢, and

also qleMtry, x,, €2 rr, 2]
Now, we consider a generic leading terms of (31]) of the type g[t"1e =1t ¢n2e=iwat],
So first, we can expand it

q[tn1 e—iUJ1t7 tnge—int] (t)

:/ (t— T)"le_iwl(t_T)(t — s)"ze_i"“(t_s)Tu(kT + kao(s — 7))dsdr
0<r<s<t

ny no
= Z Z bjl,jze_i(‘”l"'“?)tt"l_j1+”2_j2 / Tj1+18j2eiwl7'+iw23u(k7- + ko(s — 7))dsdr,

§1=0 jo=0 0<7<s<t

3Realizing a decomposition of the form

qlar + b1, a2 + b2] = qla1, az] + q[b1, az + b2] + gla1 + b1, ba] — q[b1, b2].
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where b € RIOn1Ix[0.72] ar6 some real coefficients.

We observe that this last integral converge when ¢ goes to +00. Indeed, we have

< C/\3 Sj1+j2+2€(|w1 \+|w2|)8€)\358

S
/ piitlglz gienTHiwasy (br 4 ko (s —7))dT
0
€ Ll(R+), if 63 < —|UJ1| — |w2|.

Consequently, there exists a complex constant A € C such that

/ rirtlgizgiwnTHiwasy (br 4 ko (s — 7))dsdr
0<r<s<t

A _ J1+1 oj2 Jiwi THiwes _
=A %STSS T/ T gl2e u(kT + ka(s — 7))dsdr.
t<s
This complex number A generates the term of frequency w; + we in . So we
just need to prove that the other term is a remainder term controlling it. Indeed,
we have

=M e—i(w1+w2)ttn1—j1+n2—j2 /

0<7<s
t<s

riitlgizgiwrmiwvasy (br 4 ko (s — 7))dsdr

SCASG /\te\r(W1+w2)ttn1 Jit+na—j2 A< § glitiztl  —SwiT ‘mzse/\i“;sdsdT
STSS
t<s
SC’)\Sei/\teg(Wlerz)ttnl7j1+n27j2/ sj1+j2+2€|%w1IngwQSe/\gé-Sds
t<s

< _ < _x
SCA3 / e|\r(w1+w2)\s )\ssn1+2+n26|\sw1\s \m)gz,‘e)\gzssds7
>0

as A can be supposed < 0, and this last quantity is finite if A3 is negative enough
(}\3 < )\7‘%(0.}1*%&12)‘7'3&)”4’%&)2)
< .

Concerning the degree, we see that it is < ng, o, — 1 + Mgy w, — 1, since ng <
Nk, w, — 1 and ng < nyg, o, — 1, which corresponds to what is expected.

4.7. Proof of Lemma [4.4] in the resonant case.

We consider now the last case, which is the most complex. We keep the nota-
tions of the previous subsection but we need a new expression of ¢ adapted to the
resonance:

(1, ¢2)(t) = /O< e ¢1(t — 7)pa(t — s)Tu(ks [(1 —7)7 — v(s — 7)])dsd,
= / /S d1(t — 7)pa(t — s)Tu(ky [T — ys])drds,

(1- v)s
/ / 1t =7 —v8)pa(t — ) (7 + ys)u(ky7)d7rds.
The term 7 + s is quite heavy for our estimations, so we introduce a last notation
(1—’v)€
o1, ga(t / / 1t =T —y8)do(t — s)7's™u(ky7)drds.

Consequently, we can expand ¢[¢1, 2] as follow

qlé1, d2] = a?[¢1, d2] + Va5 (01, B2)-
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We also introduaﬁ a new expansion of FZ more adapted to the resonance

2 —iwit —iwat
Fy = Z Z q[Pry i€, Pry wpe” 9%
Dkl (wl):O Dkz(wg):o
Swi>A1 Sw2>A2
2 : —iwit Aot A1t o
+ q[Pkrl,wle e , € 2 Tszz} + Q[e ! Tk:hkuw(ta kQ)]
Dkl (wl):O
Swi>A1

Now, we are going to study each one of the terms of this expansion.
Last term. R

First, we control the last remainder term, g[e‘ry, \,,(t, k2)]. Indeed, if t > 0
we have

7)\t|q [ Altrkh)\l,w t, kQ ( )|

(1=7)
<Cy\ MCye Att“rm/ / T Al =] Ao t—) halka 17| g s

¢
<Cx, MCj, (/ e_’\17+’\3|k17|d7> thtme(=A+AotA)t </ 6_75’\1_)‘05ds>
R 0

SC)\lMC)\S (/ 6)\1T+)\3|k}17'|d7_> tl+m+16(7)\+/\0+)\1)t€7’yt)\17)\0t
R

<O\, MCi, ( / e(’“HS'kl')"'dT) grmtle(=AM(1-m)t
R

So this last quantity is bounded uniformly with respect to ¢ if A\; and A3 are chosen
negative enough. More precisely, we need (1 —y)A; < A and Az|k1| < A1.
Second term.
Now, we study the behavior of the second kind of term in the expansion of F7.
Expanding Py, o, (t—7—7s), we can write q[ Py, », e~ 1%, e*2try, 3, ](¢) as a linear
combination of term of the type

tjq}il[e_iwlt )\Ztrkz Az](t) and tjqszrl[e_iwlt? 6>\2t7ﬂk2,)\2](t)’

with j +1+m < deg Py, o, -
Let t > 0, then we have

qim [e—zwlt Aot

rk27)\2

(1—7)s
— —zwlt/ / uul‘r m)l’ys )\g(t S)Tkg,/\z(t—S)T s U(le)deS

So, using ([30] ,We introduce

R_(s) = / e rly(ky7)dr and Ry (s) = /( e rly(kyT)dr

o] 1-7)s

and

oo
(33) A= /Rei“”Tlu(k‘lT)dT and By, :/0 e s PRty (s5)ds,

4Realizing a decomposition of the form: glai + b1, az +b2] = qla1, a2] +qla1, b2] +q[b1, a2 +b2].
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where B, , is well defined if Ao is negative enough (ie. Ay < —7|Ag]). Conse-

quently, we get (since 1 —y = %)

qlm [e_iu“t >\2t7qk27/\2} (t)

t
:Aefiwlt/ eiwwssme/\ﬂhs)rk%)\z(t*S)ds
0
t
N / elrrsera(t=s) gmp, (1 — ) (R_(s) + Ry (s)) ds
0
o, [P
=Ae T / eIt — )™ ey, 5, (5)ds
0
t .
N / 12 gmy o (t— 5) (R_(s) + Ry (s)) ds
0

L
- - t
CPt™ PAB,, ye ' Thl

NE

I
=)

p
m

LTI Sl
+ E CPtm P Ae iy / e gPeA2sy o (s)ds
t

p=0
t
n / ewr1rseret=s)gmp,  (t— ) (R_(s) + Ry(s))ds
0

where C? = (7;) is a binomial coefficient. Here there are three kinds of terms. The
first one is one of expected leading term. The two others are remainder terms. So
we have to control them.

First, we control the second kind of term. If ¢ > 0 then

) k| o .
— —iwy 7t —
e Me TR / e s gPeA2syy o (s)ds
t

L] o
— t X,
< Cy,e M S TR / eSW1Y8gP A28 (g
¢
o
< C’)\Q/ sPellSwiltM+Azls gperas g
>0

So this last quantity is finite if A9 is negative enough.

Then we control the last kind of term. If ¢ > 0 then

t
e_kt/ s My o (= s)R-(s)ds
0

t oo
_ —<x _ __C¥,
SC)\QC)\:;G )\t/ e \xwl'yse)\z(t S)Sm/ e leTTle)\SIkl‘TdeS
0 s

. g [ES1]
< C)\ZCABtme(Az—A—H%wl\'y)t/ Tle(kd‘kll Swi+- )TdT.
7>0

So this last quantity is bounded uniformly with respect to ¢ if Ao < A — |Swy|y and
Aslkr| < Swy) — 22l
M) in a similar Way

. Of course, we could control the other remainder term (with
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Concerning the degree, it is smaller or equal than the degree of Py, ., that is
< Mgy — 1, as j+m < deg Py, ,. This is for the moment one degree less than
what is expected in the Lemma

Remark 4.6. Note the term B, , in (33) is not explicit, as it relies on a remainder
term of the first order dispersion relation. It is worth mentioning that this term
contributes to the second order expansion, and not as a remainder term.

First term.

Finally we study the first kind of terms in the expansion of F, ,f . These terms
are of the type q[Py, w, €™, Py, w,e” 2. By a straightforward calculation, as in
the previous case, it can be extended as a linear combination of terms of the type
g, [emrt trei2t] and g T e~ tne 2] with j+ [+ m = deg Pk, ., and
n < deg Py, w, -

In order to pursue the proof for this first kind of terms, in the following ele-
mentary lemma, we introduce a useful algebraic decomposition. It is proven in

Appendix

Lemma 4.7. For all n,m € N, for all w € C, there exists Qmnw; Rmmnw € CX]
such that

t
vt >0, / eiwssm(t —s)"ds = Qm,nvw(t)ei“’t + Ronw(t).
0

If w # 0 then deg Qmmw =m and deg Ry nw = n. If w =0 then Qum pnw =0 and
deg Ry nw =m+n+ 1.

Remark 4.8. The fact that the degree of R,, ., can change contains the discussion
on the multiplicity. Indeed, it will be applied for w = yw; 4+ we which is equal to

zero when wy + wg = ”:I‘Wl, since |‘kk|‘ Ikbjl’l“?' =(1—7).

Furthermore, using the previous constructions, we introduce

B(t) = />0 eseiwzs (t g™ (R _(s) + Ry (s))ds € Cplt].

Now, if ¢ > 0, we have

m[e twit tn —zwzt](t)

(1-v)s )
// _Ml(t_T_'Vs)e_l”(t_s)(t )" rlsmu(kyT)drds
:A/ e—iwl(t—ws)e—iwg(t—s)(t_S)nsmdS
0

t
N / emiwr(t=79) gmiwa (=) (4 _ gymgm (R_(s) + R, (s)) ds

0
:Ae—i(w1+wz)t [Qm,n,'yon +ws (t)ei(’wl_‘—wz)t + Rm,n,’yw1+w2 (t)

0o
+ B(t)e—i(wl—i-wQ)t _ / e—iw1(t—’ys)e—iwz(t—s)sm (D‘L (S) + m+(8)) ds
t
1 —iw ELIN
=(ARm n, w1 +ws T B(t))e_l(m+w)t + AQmnw, +w, (B)e TR !

oo
- / e inltmr9)eminlt=s) (f — g)" g™ (R_(s) + R (s)) ds
t
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Finally we just have to prove that this last integral is a remainder term. Indeed,
we have

67)\7: / efiun (tfws)efiwz(tfs) (t _ S)nsm%_ (s)ds
t

oo S)
SCA3tne(—A+%w1+%w2)t / —('y%wl—&-Swz)ssm/ e%wl‘r,rle/\g\klhd,rds

Ys

n+l+m A+ Sw;+Sws|+[7S &
N Swq+Swa|+|7Swy +Swa
<Ci, / / ellHswrt g kDT rds
t vs

n+m

n+l+m
e ~ | =24Sw14+Swa|+[vSwi+Swa|
<C\, e %ds (St g HalkiDrqr
3 n+m
>0 ™0

So this last quantity is finite if A3 is negative enough.

Concerning the degree, we consider first the case yw; + ws # 0. As B is of
degree < n and Ry, n yw;+w, 15 of degree < n. So we get, as j < deg Py, «, and
n < deg Pr, u,, that QF*2 is of degree < ng, ., — 1 + ngyw, — 1, which is the
expected value. Now, as we can have a ¢ m+1 term, leading to Qum+1,n,vwi+ws
which is of degree < m + 1 and as m can be chosen < deg P, «,, Rkl’k2 is of

degree < ny, «,, which is now the expected value. We consider finally the case
|

. i JEL
Ywy +we = 0, so that the terms e—iwitw2)t and ¢ I TT? are the same. The terms
of highest degree is then Ryu41,n,yw; +w, Which is here of degree < m+mn+ 2, that is
< Ngywy — 14+ Mgy wp — 1+ 2. All the values found are thus those that are expected.

4.8. Proof of Proposition

Proof of Proposition[{.1. Tn Proposition [3.6) and [£.2] we have proven that we can
apply Lemmavvlth 1—R(2) = Di(z+iA) and N(z) = N} (z—l—z)\) +N2(z+z)\)
taking Ao = )\/|k| in Proposition E we get from Proposition and Lemma

Vz €iXyyz, |2R(2) sup |zN(z)| < 00.

ST Loup

But the result of this lemma is that for all A € R, we have

_NE) Y Pue ™+ eMr(t)|(2),
w pole of %
Sw>A

with a function r € H(X ;) analytic and bounded on X3, for Sz large enough, with
some f3 satisfying 0 < 3 <~ < 8 and P, is the polynomial such that

= L[P,(t)e ™' + O(1).
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Thus, we have

Ni@) ARG _ o[y

= et 4 Ay Z— i\
L) R (0] (2~ )

N
1-R

~w pole of
Sw>A

o[ T R ) )

~w pole of %

Sw>A
=Ll X Bsle™+ e“wr(t)} (2)

_w pole of %’;N”?

S(w)>A+A
So, defining u by
alt, k) = P, 5t 4 eV (h),
D(w)=1
F(w)ZA+X

we get , which is . We finally have the expansion of Theorem Concern-
ing the multiplicity, if one pole is common to A}t + N2 and D; ! we have to sum up
the multiplicity, leading to add 7w, +w, — 1 to the range for £ and n L, —Lto

k1]

the range for p. The other concerns about the multiplicity follow from Lemmae
and [£:4] and the condition & - ky # 0 directly follows from the factor & - k1 in front
of and . Note also that R% C 25’ so that r is bounded on R’ as stated in
Theorem [L6l O

5. NUMERICAL RESULTS

Simulations have already been performed for multi-dimensional and multi-species
simulations in [2], highlighting the relevance of second order expansion. We focus
here more specifically on exhibiting a case where the Best frequency, that corre-
sponds to the terms B in Theorem appears.

5.1. First example.

We consider the one dimensional case (d = 1 and Ly = 27) and solve numerically
(VP)) with a Semi-Lagrangian scheme and an adapted 6-th order splitting [3]. 1D
periodic centered Lagrange interpolation of degree 17 is used in both z and v
directions and the periodic Poisson solver is solved with fast Fourier transform.

Initial condition is fo(z,v) = f°%(v) 4+ ego(x,v), with

fv) = 671}2/2, go(z,v) = cos(2x)e*”2/(2”§) + cos(3x)e*”2/(2"§)

and o9 = 2'/4, 03 = \/7/2 and € = 0.001.

We take v € [—VUmax, Umax], With Umax = 10. Numerical parameters are: the
number of uniform cells in z (resp. v) that are N, (resp. N,) and the time step
At € R, leading to a grid which will be referred as N, x IV,, x At grid.

The first Fourier mode El,num(t) of the electric field E := —V® is computed
from the simulation at each time step t = t, = nAt, using a discrete Fourier
transform.
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We first compute the zeros of Dy, = D_j, (see Remark , for |k| = 1,2,3 with
greatest imaginary part that are
wi + ~ £2.511728081 — 0.47969664101,
wo + =~ £3.734976684 — 2.0874609441,
w3, + =~ +4.866872949 — 4.113005968:.

The second frequency of the mode 1 is w{”) ~ £3.498058625 — 2.374303389i. Such
zeros can be computing with a symbolic calculus software. An example using
Maple is provided in the Appendix. Here the modes that are initialized are k1, ko €
{£2,+£3}. The main term is for k = ky + ko = £1, with k; = F2 and ky = +£3,
as wy1 has the greatest imaginary part among the wy, y,, with k1, ko € {£2, £3}.
For having ko = —vky, with v € (0,1), we have to take ks = +2 and k1 = F3, so
that the Best frequencies wy, 4+ of greatest imaginary part are defined by

|k1+k2‘w L= w3+
L sy = .
K| 3

In order to see such term, we have to remove the main part coming from w4;. The
procedure is detailed as follows. From Theorem [I.6] we look here for

&E(Elmm)(t) ~ R (ze*i“’lt + (21 + t22)e*i“bt) ,with z, 21, 20 € C,

Wh,+ =

with wq = wy 4 or w; = w; _, as it leads to the same value, and similarly for w.
We estimate z by using a least square procedure: we first define

2 —iwit; 7 2
X (y) = Z <§R (ye ! ]) - §R(El,nu'rn)(tj)>
tmin <tj <tmax

and then define z by minimizing this quantity, that is, x*(z) = minyec x*(y), which
is explicitely given by as solution of
R(z)
S(2)
with A a matrix given by its 2 columns and b a vector, all the three vectors being
indexed by j that goes through all the values such that tpnin <t < tmax-

Once z is found, we estimate z; and 29 using again a least square procedure on
the remainder: defining this time

Py, y2) = Z (8? ((y1 + tjyo)e b)) — R (El,num(tj) — ze*iwlt)>2 |

tmin <tj <tmax

AT | B | = ATh A= e -0, 0= R 1)

z1 and 29 are obtained by minimizing this quantity, that is,
X*(21,22) = min_x*(y1,92).
y1,y2€C

Again the solution is explicitely given, the matrix A being here
A= [R(e78) 15 =S ) s R(tje ) 15 —S(tge ).

On Figure [2] we represent the time evolution of the real part of the first Fourier
mode |R(E1 num)(t)| in absolute value, together with [R(E1 pum)(t) — R (ze 1) |,
that is the quantity where we have removed the main part (it is a term J in Theorem
1.6); the latter is compared to |R ((z1 + tj22)e %) | that corresponds to the Best
term. The parameters tmin, tmax, tmin and fmax are chosen properly so that, in the
corresponding interval, the approximation is valid. Note that a too low value is not
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mode 1 - leading mode 1
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F mode 1 (ref)
20 mode 1 - leading mode 1 (ref)
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FIGURE 2. Time evolution of |[R(E1num)(t)| (mode 1),
|R (El,num(t)fze’i‘*’ltw (mode 1 - leading mode 1) and

IR ((21 + tjz2)e“»h) | (Best), for coarse 128 x 256 x 0.1 and
refined 2048 x 4096 x 0.00625 grids, the latter being referred as
(ref) in the legend. The parameters [tmin, tmax] = [17.5,35] and
[fmin, fmax] = [1.75,17.5] are used for the least square procedures.

good, as the expansion is only asymptotic and we consider only one term which is
the main term asymptotically. A too high value is also not good, as we have to face
with the round off or numerical error and the nonlinear behavior (note that we do
not solve here the second linearized equation but the full nonlinear equation). We
observe a well agreement, which is even better, by refining the grid, so that we can
claim that we have exhibited the Best frequency in the numerical results, which is
fully coherent with the theoretical results.

5.2. Another case where the Best frequency is almost dominant on a
spatial mode.

Now we consider again d = 1 (dimension 1), but we change the spatial length of
the domain L, = 20w, and take

fv) = 671}2/2, go(z,v) = cos(:z:)e*”rz/@"g) + cos(().lx)e*ﬁ/(%g)

and oy = 2'/4, 03 = \/7/2 and ¢ = 0.001. Now the modes that are initialized are
k1, ko € {£1,£0.1}. We now need to know (we already have the value of wy + from
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the previous subsection)

wo.1.+ = +1.592755970 + 3.218848582 - 10~ 5%,

wo.2,+ ~ £1.621955006 — 2.569883158 - 107124,
wo.9,4+ ~ £2.382548194 — 0.35948804841,
wi.1,4+ ~ £2.639613224 — 0.6100786528:.

The second frequency of the mode 0.9 is wé%ﬁi ~ £3.181466437 — 2.102684847:.
The possible values of k = k1 + ko are in the set {£0.2,+0.9,+1.1,+2}. The first
order expansion already gives a term that is not damped (the imaginary part is
almost equal to zero). We also have terms on the second order expansion that are
not damped (for & = £0.2). Nevertheless, if one consider the mode k = 0.9,
one can look at |8‘E(EO.9,num)(t)|. From Theorem we look thus here for an
approximation of 5’2%(37049,%7”)(1?) in the form

5(15’ Z) =R (Zlefiwo.gt + (th + 23)67i0.9w1t + Z4efi(w1+wo.1,7)t + Z5efi(w1+w0,1,+)t) ,

with z = (21, 29, 23, 24, 25) € C°, using again wy = wy 4 or wy = wy,_, for £ € R, as
it leads to the same result. In order to estimate z, we compute

R 2

. )\tj§R<gt, —e2p t))

;’Iellcré Z (6 ( ],y) £ O.9,num( ]) ;
tmin <tj <tmax

that is attained for y = z, by using the least square method as previously. Note that
we add here the weight e, with A = 0.48 and then we look for all the coefficients in
one step. The choice of the value of A is coherent with the fact that from Theorem

the function e* (672%(E0.9,num)(t) — &(t, z)) should be bounded. Numerical

results are shown on Figure We use tmin = 0 and t.x = 30 for the coarse grid
and have increased tpyax to 35 for the fine grid (for the fine grid, we could even
increase this value, which was not possible for the coarse grid: the results were
worse, as the solution is not precise enough for the coarse grid on late times, as
shown on Figure|3]). For the fine grid, we could also not really increase further than
around tpyax = 50, as we are limited, with nonlinear effects, convergence and/or
machine precision; we have also preferred not to go until #,,x = 50, as it leads to a
worser matching, since the least square procedure tends to match for values around
50, where the matching is less good. We could also change the initial time, but it
has not so much impact, as it was the case for the previous subsection, since we have
added here a weight function in the least square procedure. We emphasize that we
can again exhibit the Best frequency and also the two other types of frequencies,
which are all in the same range, for this example. In order to get this results, we
note that we had to adapt he strategy concerning the least square method that
was presented for the first example; this is due to the fact the several modes are
in a similar range, and it was not easy to use the first procedure (used for the first
example) to catch the different frequencies.
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FI1GURE 3. Time evolution of
o [R(e"2E) pum) (t)] (simu) vs |z e~ 09| (approx1),
o [R (e 2E] um (t) — zre~ %09t ) | (simul)
vs |R (22t + 23)e0-911) | (approx2),
o |R (E_QE\Lnum(t) — z1e7 W09t — (2ot 4 z3)e10-9wnt
(simu2) vs R (zge"i@rFwon )t 4 ppemilwrtwon )t
prox3),

for coarse (top) 128 x 256 x 0.1 and refined (bottom) 2048 x 4096 x
0.00625 grids. The parameters for the least square procedure is
[tmin, tmax] = [0, 30] for the coarse grid and [tmin, tmax] = [0, 35] for
the refined grid.

(ap-
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The values of z are given here for coarse and fine mesh:

1. conrse ~ 1.2463 — 11.578i, 21 fine ~ 1.2183 — 11.5484,
Z9.conrse =~ 0.21502 + 0.28932i, Zo.fine ~ 0.23103 + 0.316524,
23 coarse ~ —4.2852 + 9.26151, 23.fine ~ —4.5484 + 8.90681,
Zi,conrse = 2.3853 + 1.21861, Z4.fine ~ 2.7369 + 1.1629i,
25.conrse ~ 1.5556 + 1.23851, 25 fine ~ 1.5611 + 1.1445.

5.3. A 2D case.

5.3.1. Looking for Best frequencies in 2D.
Finally, we focus on a 2D case. Here we can write k = k1 + ko with

2m 2m )
kj = (m]-Ll,nng> , g=1,2, mj,n; € Z.

Now if k = vk, with v € (0, 1), we get:
mp +mg = ymy, N1+ Ny = YNy,

which leads to
mo no
l-y=-2=-2,
miq niy
if m; # 0 and ny # 0. If m; or mg = 0, we get m; = my = 0, and similarly for
ny and ny. In order to have a "real” 2D case, we can suppose that m; # 0 and
ny # 0. We have

—ma —n2 p
=——=1-7y=-,pqeN, p<q, pAg=1.
mi n1 q

So we obtain —maq = pm1, and thus my = {q, { € Z* and —mg = {p together with
ny =g, £ € Z* and —ny = lp. Note that we then have k - k1 = v|k1|? # 0.

5.3.2. A 2D test case with Best frequency.

We choose here Ly = Lo = L, m1 =n1 =3, mg = ng = —2, so that

2 2w 2w

ki = —, ko =(-2,-2)—, k1 + ko= (1,1)—

1 (3’3)[/7 2 ( ) )La 1+ R (7)La
and 5 9 5
T s T

ki| =3v2—, |ko| = 2V2—, |k1 + ko| = V2—.
k1 \[L"2| \[L7\1+2| 17

We will write wy, instead of wy 4 or wy,—, when we can either use wy 4 or wp,_.
We will need for this subsection and the next one, the following values (note that
the values are here not the same as in the one dimensional case, since the dispersion
relation is not the same, as we have considered here a normalized Maxwellian):

W 5/10,+ = +1.030839024 — 6.410202539 - 10~%%,
Wy /3/10,+ = +1.140206800 — 0.007780445579,

Wy 310+ = +1.316627173 — 0.084673691484,
W5/10.+ = +1.081943401 — 0.00044852846144,

W, /15/10.+ = +1.234323666 — 0.04025247555:.

Also, the second frequency of the mode v/2/10 is w%/lo L +0.5196579915 —
0.2520173386:. ’
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The main frequencies that intervene on the spatial mode (1,1)2F are w NI

w 2m
and % (the last one is the Best frequency). In that case, we expect a similar

behavior as the test case of the first subsection.

We use here f(v) = ie—vf/2—v§/27 with ¢ = (21,22), v = (v1,v2), together

with

go(z,v) = (cos(0.3z1 + 0.3z2) + cos(0.2z1 4+ 0.229)) f¢I(v),
taking L = 20w. We solve again numerically with a Semi-Lagrangian scheme
and an adapted 6-th order splitting [3] (here d = 2). The parameter ¢ is always
fixed to e = 1073,

We take vy, vy € [—6, 6], 32 cells in x; and x5 directions, 64 cells in v; and vg di-
rections; time step is fixed to At = 0.1, leading to a 32 x 32 x 64 x 64 x 0.1 grid. The
diagnostics are here obtained form the charge density p(t,z1,22) = [z, fdv (com-
puted from trapezoidal rule): we define py, ¢, num(t) the Discrete Fourier Transform
of the charge density at time ¢ = t,, = nAt. Results are given on Figure ] The
least square procedure is here applied to minimize:

min Z (ekta‘% (E(tj, y) — 5_2ﬁ1)17num(t]‘)))2 ,

yeCs
tmin <tj <tmax

with
4 .
Elty) =N <yleizw‘/§/mt + (y2t + y3)67l§""3\/§/1ot) ,
and is attained for y; = z;, j = 1,2, 3, where the z; are given in Fig‘ure@ We clearly

w.

27
see on Figure that the Best frequency 3\/35 L- is needed: with the combination of

the main frequency w 5 2z the simulated mode pi 1 npum is accurately asymptotically

described. In that case, we see both frequencies are useful; the main frequency is
not enough as we can see it on Figure 4l Indeed both modes (main and Best) are
shown (they are shifted towards bottom of the Figure in order to see them better),
and we see that the combination of the modes is needed to describe the simulated
mode.

5.3.3. A 2D test case without Best frequency.

Now, if we change and take ny = 2, no = —1, we have no more Best frequency,
and the main frequencies that intervene on the same spatial mode (1, 1)%7r are
NI and w Vis2z + T Wse o (thesse frequencies were defined in the previous
subsection), as we have this time

2 2w 2w
kl - (3,2)f7 kQ - (72771)7, k'l +k'2 - (1, 1)7,

and

2 2 2
Iky| = \/13%, lka| = \/5% k1 + ko| = fg%

the initial data being changed to
go(z,v) = (cos(0.3z1 + 0.2z3) + cos(0.2z1 4+ 0.129)) f¢I(v),

and we have still L = 20xw. For the least square procedure, we consider the mini-
mization problem

;IGHCI}”’ Z (ektj% (S(tj, y) - E_Qﬁl,lmum(tj)))Q 3
tmin <tj <tmax
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FIGURE 4. A 2D-case with Best frequency: time evolution of
* [R(e7201,1.num) ()] (simu)
o |R (zle_w\@/wt + (22t + zg)e_i%%ﬁ/wt> | (approx)

o 1073R (2107210 ) | (main mode /1e3)
e 107°R ((22t+ zg)eii%%ﬂ/wt) | (Best mode /1e3)

The parameters A = 0.09 and [tmin, tmax] = [0, 60] are used for the least square
procedure to fit (simu) by (approx) and leads to z; ~ 0.036159 + 0.0426021,
29 ~ —0.0031761 — 0.00089598i and z3 ~ 0.010351 — 0.0463551.

with

E(t,y) =R (yle‘“ﬂ/wt + yge~ {@vano s teuTae )t | yge‘“‘““g/“*”wm“‘]’*)t) :

attained for y; = z;, j = 1,2,3, where the z; are given in Figure El We remark
here that we have some unexpected frequency at the beggining which might be in-
terpreted as a Best frequency (the simu-first approx curve), but such one is damped
and we get the right asymptotic behavior, which shows that we cannot get a Best
frequency in the asymptotic limit, which is fully consistant with Theorem

6. APPENDIX

6.1. Some remarks about space & (R?).
The aim of this subsection is to present some tools to construct explicit examples
of functions of &(R?) (characterized by (9)).
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FI1GURE 5. A 2D-case without Best frequency: time evolution of
o [R(e™2P1,1,mum) (t)] (simu)

o R (ze Va0 ) (first approx)

o |R
(approx2)
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The parameters A = 0.05 and [tmin, tmax] = [0, 240] are used for the least square
procedure leads to z; ~ 0.052836 + 0.049810¢, 25 ~ —0.032921 — 0.00106577 and
z3 ~ —0.013703 — 0.0050901z.

The Gelfand-Shilov spaces S?(R?) provide many useful examples of functions of
&(RY). Their usual definition is the following «, 3 > 0,

SERY) :={f e L (RY) | Je,C > 0,Yv,€ € R, |f(v)] < Ce™clvI

and | Z f(€)] < Ce~l€7 .

Many details about these spaces can be found in [8], in particular these spaces are
stable by multiplication by a polynomial or a trigonometric polynomial, derivation

and the natural action of the affine group of R?. Furthermore, we obviously have
Z SB(RY) = Sg‘(Rd).

Proposition 6.1. If v € (0,1), then S.7V(RY) C &(R?).
Proof. Tt is a direct corollary of Proposition 6.1.8 of [§]. O
Ezample 6.2.

o [v]2 cos(vy — vy)e Vim(v1tv2)* ¢ g

[N

(R?) c £(R?),
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o If k € N* then e=*™" € Sl_ﬁ(R) C &(R) (see [8]).

L
2k

To get some other example, we remark that &(R?) is clearly stable by multi-
plication by a trigonometric polynomial, derivation and the natural action of the
affine group of R, Furthermore, it enjoys the following tensor product property.

Proposition 6.3. If di,d> € N* then &(R%) @ &(R%) C &(RU1+d2),
Ezample 6.4. 8, e "1~ (1=3v2)* ¢ £(R2),

6.2. An algebraic decomposition.
The aim of this subsection is to prove Lemma [4.7

Proof of Lemma[f.7 If w = 0, we get the result by expanding the polynomial
(t —s)™. So we suppose now that w # 0. Since we recognize a convolution product,
we apply a Laplace transform. So we get

nlm!(—q)rm+2

(Z + w>m+lzn+l :

c [ /O s gm( s)"ds] (2) = L[] (= +w) L[] (2) =

We can apply a partial fraction decomposition to get some complex coefficients
(aj)j:07,__,n and (bj)j:(),_“’m such that

nlml(—i)" T2 I u b
Ty T = 2 5 T T
i=0 =0

Consequently, we have

; m

t L R b.gdtl
L {/ e“s™(t — s)”ds} (z)=L Z aﬂ. t+ Z 7];' et | (2),
0 .

|
j=0 J: j=0

Since the Laplace transform characterizes the continuous functions with an expo-
nential order (see Theorem 1.7.3 in [I]), we have proved the lemma. O

6.3. Computation of the zeros.
We have used the following Maple code to compute the zeros of Dy. We recall
from Lemma [3.5| that for $(z) >0

Dy =1 g [ a1 £ V0] )

=1 g £l () @60 (2) = 1+ L @) R0] (2

= 1+/ t F[f9(v)|(kt)e dt = 1+/ t/ fe9(v)e™ v dvet*tat.
0 0 Rd

We can write v = v +v_, with v the component of v along k and v, perpendicular
to k,(when d > 2), so that

Dy(2) =1 +/ t/ / feU o) +vr)dvy | e Uide et dt.
0 (R \Y(RY)L

Remark 6.5. Note that D_j(z) = Dy(z), if #[f°(v)] is an even function.
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with(inttrans):

with(RootFinding) :

Digits:=20:

feq:=exp(-((v)~2)/2);

#the space mode

k:=1.;

#Fourier transform of the equilibrium
Tfeq:=fourier(feq,v,t):

#the analytic function

Dk

:=1+int (t*subs (t=k*t,Tfeq) *exp (I*om*t) ,t=0..infinity):

#the time modes
1l:=sort([Analytic(Dk,om,re=-8..8,im=-8..8)], (a,b)->Im(a)>Im(b));

(1]

(2]
(3]

(10]

(11]
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