

Método de descomposición de dominios no invasivo para el estudio de la delaminación de materiales compuestos

XVII Jornada de Mecánica Computacional

Michèle Brehier¹, Paul Oumaziz², Karin Saavedra³

¹ ENS Cachan / Université Paris-Saclay
 ² Núcleo Científico Multidisciplinario-DI, Universidad de Talca
 ³ Dpto. de Ing. y Gestión de la Construcción, Universidad de Talca

4 de octubre 2018, Punta Arenas

Diferentes modos de degradación

(a) Decohesión fibro/matriz¹

Delaminación:

🏺 Fenómeno non lineal

🏺 Fenómeno a pequeña longitud de onda

²DCB test-ENSAM Bordeaux, 2014.

(b) Delaminación entre láminas²

¹Naylor y col., "Mesures de champs de déformations par corrélations d'images pour l'identification de modèles mécaniques microscopiques de composites à matrice polymère", 2017.

Diferentes modos de degradación

(a) Modelo de zona coheziva

Delaminación:

- 🏺 Fenómeno non lineal
- 🏺 Fenómeno a pequeña longitud de onda

Diferentes modos de degradación

(a) Modelo de zona coheziva

Delaminación:

- 🏺 Fenómeno non lineal
 - Algoritmo de resoluciones non lineales (Newton, Crisfield², Latin³)

Fenómeno a pequeña longitud de onda

¹O. Allix, Lévêque y Perret, "Identification and forecast of delamination in composite laminates by an interlaminar interface model", 1998.
²Crisfield, "A fast incremental/iterative solution procedure that handles "snap-through"", 1981.

³Ladevèze, Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation, 1999.

Diferentes modos de degradación

(a) Modelo de zona coheziva

Delaminación:

- 🖗 Fenómeno non lineal
- 🏺 Fenómeno a pequeña longitud de onda
 - Discretización fina de las interfaces : Muchos grados de libertad
 - Métodos de descomposición de dominios (BDD¹, FETI², método mixto³)

³Gander, "Optimized Schwarz Methods", 2006.

(b) Ejemplo de discretización al interfaz

¹Mandel, "Balancing domain decomposition", 1993.

²Farhat y Roux, "A method of finite element tearing and interconnecting and its parallel solution algorithm", 1991.

Plan

Un método de descomposición de domino mixto : el existente

Gestión de la etapa local : interfaces de delaminación

3 Simulación de un ensay DCB

Plan

Un método de descomposición de domino mixto : el existente

2 Gestión de la etapa local : interfaces de delaminación

3 Simulación de un ensay DCB

El método Latin Principio del método Latin⁴

No incremental y solver no lineal

Distinción subdominios / interfaces:

⁴Ladevèze, Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation, 1999.

El método Latin Ilustración del principio

El método Latin Ilustración del principio

Michèle Brehier, Paul Oumaziz, Karin Saavedra

El método Latin Ilustración del principio

6

El método Latin Ilustración del principio

El método Latin Ilustración del principio

T Universidad de Talca

=

6

El método Latin Implementación

🐨 Universidad de Talca

7

El método Latin Ilustración

Una viga en tracción

El método Latin Algunas implementaciones del método

- Para la descomposición de dominios
 - Contacto⁵
 - Extensible⁶
 - $\frac{9}{2}$ Delaminación y pandeo⁷
 - No invasivo y contacto⁸

⁵Blanze y col., "A modular approach to structure assembly computations: application to contact problems", 1996; Blanzé, Champaney y Vedrine, "Contact problems in the design of a superconducting quadrupole prototype", 2000.

⁶Dureisseix, "Une Approche Multi-échelles pour des Calculs de Structures sur Ordinateurs à Architecture Parallèle", 1997; Loiseau, "Une stratégie de calcul multiéchelle pour les structures hétérogènes", 2001.

Plan

Un método de descomposición de domino mixto : el existente

Gestión de la etapa local : interfaces de delaminación

Simulación de un ensay DCB

Etapa local de delaminación : el problema a resolver

Sistema de 3 ecuaciones :

$$\begin{aligned} \mathbf{A}\widehat{\mathbf{F}} &= \mathbf{0} \\ \widehat{\mathbf{F}} &= \mathbf{B}^{\mathcal{T}} \mathbb{K} \left(\mathbf{B} \widehat{\mathbf{W}} \right) \mathbf{B} \widehat{\mathbf{W}} \\ \widehat{\mathbf{F}} &- \mathbf{F} - \mathbf{k} \left(\widehat{\mathbf{W}} - \mathbf{W} \right) = \mathbf{0} \end{aligned}$$

Equilibrio de la interfaz

Comportamiento de la interfaz

Dirección de búsqueda

Que valor eligir para el parámetro k ?

	k = ∞	k < ∞
Dirección de búsqueda	$\widehat{\mathbf{W}} = \mathbf{W}$	$\widehat{\mathbf{F}} - \mathbf{F} - \mathbf{k} \left(\widehat{\mathbf{W}} - \mathbf{W} \right) = 0$
Resolución	explicita	no lineal
Tiempo de resolución	+	-
Numero de iteraciones	-	+

(1)

Etapa local de delaminación Dirección de búsqueda normal

Problema a resolver:

$$\left(\mathbf{B}\mathbf{k}^{-1}\mathbb{K}\left(\mathbf{B}\widehat{\mathbf{W}}\right)+\mathbf{I}\right)\mathbf{B}\widehat{\mathbf{W}}=\mathbf{B}\mathbf{W}-\mathbf{B}\mathbf{k}^{-1}\mathbf{F}$$
(2)

Problema no lineal de tipo :
$$\mathbf{K}(u)u = f$$

 $\stackrel{ wedge}{=}$ Depende de la rigidez inicial de la interfaz \mathbb{K}_0

Pequeña rigidez:

Método de Newton

Larga rigidez:

Método de continuación

Etapa local de delaminación Comparación entre las 2 implentaciones

Michèle Brehier, Paul Oumaziz, Karin Saavedra

Etapa local de delaminación Comparación entre las 2 implentaciones

Comparación del numero de iteraciones

Dirección infinita menos eficiente que la dirección normal (2 a 3× más lento)

Michèle Brehier, Paul Oumaziz, Karin Saavedra

Etapa local de delaminación Comparación entre las 2 implentaciones

Comparación del tiempo de resolución

No linealidad muy baja, solo una o dos iteraciones de Newton

Plan

Un método de descomposición de domino mixto : el existente

2) Gestión de la etapa local : interfaces de delaminación

3 Simulación de un ensay DCB

Ensayo DCB

Ensayo simplificado de delaminación

- 🏺 Modelo de esfuerzo plano
- 🖗 8 subdominios
- 🖗 62000 grados de libertad
- 🏺 60 paso de carga

Ensayo DCB

👅 Universidad de Talca

Ensayo DCB

Ensayo simplificado de delaminación

Conclusión

Simulación de la delaminación en materiales compuestos

- 🏺 Validación de la implementación en 2D
- 🖣 Dirección de búsqueda más eficiente que el existente
- Método completamente non incremental

Algunas limitaciones:

- 🏺 No es completamente no invasivo para el 3D
- Aplicación a problemas más complejos
- 🍹 Verificación de la independencia a la malla