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A symbolic approach to voltage stability and power sharing in
time-varying DC microgrids

Daniele Zonetti, Adnane Saoud, Antoine Girard and Laurent Fribourg

Abstract— In this paper we address the problem of voltage
stability and power sharing in DC microgrids with time-varying
power demand. By exploiting the monotonicity property en-
joyed by the system, and under the assumption of full observ-
ability of the bus voltages, we design a centralized, abstraction-
based symbolic controller that, once refined into a controller
for the original system, ensures the required specifications.
Whereas load voltages cannot be measured, we propose an
appropriate decomposition of the system, such that the control
problem can be reformulated in terms of assume-guarantee
contracts to be satisfied by the observable and unobservable
components. A constructive procedure to determine suitable
contracts is further investigated and the obtained results are
validated with two numerical examples.

I. INTRODUCTION

Direct-current (DC) microgrids have been recognized as
a promising choice for the redesign of distribution systems,
which are undergoing relevant changes due to the increased
penetration of photovoltaic modules, batteries and DC
loads [1]. A microgrid is an electrical network gathering a
combination of generation units, loads and energy storage
elements—in the sequel referred as power units. With the
exception of passive loads, all units are interfaced to the
DC network through power converters, which are internally
controlled to guarantee appropriate power profiles under
fast current and voltage perturbations. Some of the units are
further equipped with an additional layer of control—termed
primary control—which operates at a slower time-scale
and guarantees robust and safe operation in presence of
large disturbances [2]. From the point of view of the grid
then, the individual power units exhibit a highly nonlinear
behavior, as they are operated to maintain appropriate
power profiles irrespectively from perturbations. The control
design is usually addressed by splitting the main control
problem in two subproblems. First, establish upper and
lower bounds on the power profiles of the individual units
that ensure existence of an equilibrium point. Second,
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design a controller that guarantees that such equilibrium
voltage is kept sufficiently near the grid nominal value,
while achieving an appropriate distribution of power among
the units. Both problems received great attention in recent
years, see for example [3]–[5] and [6]–[9]. However, the
majority of these works assume that power units behave
exactly as constant power devices (CPDs) and that the
system stability must be inferred by the existence of an
asympotically stable equilibrium point of the closed-loop
system. Moreover, the control designs do not provide
transient guarantees and are usually realized by prioritizing
either the verification of the power sharing [6], [7], either
the regulation of the voltages near the nominal value [9].
As a result, the fulfillment of both properties can be only
guaranteed by the verification of some extra conditions or
by the use of additional controllers.
The use of symbolic control techniques has been an ongoing
research area in recent years. In such approaches, a symbolic
model—a system with a finite number of states and inputs—
is constructed starting from the original system. When the
concrete (original) and abstract (symbolic) systems are
linked by some behavioral relation such as simulation,
alternating simulation or their approximate versions, a
symbolic controller synthesized for the abstraction can be
refined into a controller for the original system [10], [11].
As opposed to traditional control theory, which usually
focuses on properties such as stability, controllability and
tracking of trajectories, symbolic control leverages the
use of automata theoretic techniques for the synthesis of
controllers that enforce a wide range of specifications such
as safety, reachability or more complex objectives such as
those expressed in linear temporal logic [12].

In this work, starting from a nonlinear, time-varying
model of a DC microgrid, we derive suitable abstractions
of the system by exploiting monotonicity and next design
symbolic controllers that, once refined into a controller
for the original system, ensure the required specifications.
We consider two different scenarios. First, we assume
that all voltages are measurable. In this case we can
construct a monolithic abstraction of the whole system,
for which we synthesize a centralized symbolic controller
that fulfills the control objectives. Then a sampled-data
controller preserving the same features is derived. To deal
with the partial information case, we employ a contract-
based approach: the DC microgrid is decomposed into
two subsystems, each subsystem is assigned an assume-
guarantee contract, then a compositionality result ensures



that if both components satisfy their own contract, the global
control specification is achieved. A constructive procedure
is further proposed for a systematical exploration of feasible
contracts. Although the aforementioned control objectives
usually require distributed methods, for simplicity we here
only focus on a centralized implementation—these to be
intended as a first step towards the development of a more
general theory that guarantees the fulfillment of the same
objectives in a distributed fashion.
The remainder of the paper is structured as follows. The
model of the DC microgrid is presented in Section II and
is instrumental to establish the control problem, which is
illustrated in Section III. In Section IV then, we show the
procedure to derive an abstraction and to design a sampled-
data controller that guarantees the control specifications in
case of full information. To deal with the partial information
case, the contract-based approach is developed in Section V.
Theoretical results are validated in Section VI on numerical
examples of a two-units and four-units DC microgrid. VI.
Conclusions and final remarks follows in Section VII.

Notation All vectors are column vectors. We use 0 to denote
matrices of zeros, 1 to denote the vector with all ones and
I to denote the identity matrix of appropriate dimensions.
x = col(xi) denotes a vector with entries xi ∈ R, diag{ai}
denotes a diagonal matrix with entries ai ∈ R. T is the set
of nonnegative reals. Element-wise (Hadamard) division of
matrices is denoted by �. Iδ(x) denotes the ball centered in
x ∈ Rn and of radius δ > 0. Given a system Σ described
by the continuous-time differential inclusion ẋ(t) ∈ f(x, u),
where x ∈ X is the state and u ∈ U is the input, we will use
Φ(t;x0, u) to denote the set of points reached at time t ∈ T
from the initial condition x0 under the input u : [0, t]→ U .

II. MODELING OF DC MICROGRIDS

Following the same approach used in [6], we represent
a microgrid as a directed graph G(N , E ,B), where: N is
the set of nodes, with cardinality n; E is the set of edges,
with cardinality t and B ∈ Rn×t is the incidence matrix
capturing the graph topology. The edges correspond to the
transmission lines, while the nodes correspond to the buses
where the power units are interfaced. We further define
NS as the subset of nodes associated to controllable power
units, i.e. the generation and energy storage units, with
cardinality m, and NL, as the subset of nodes associated to
non-controllable power units, i.e. the loads, with cardinality
n−m. Accordingly, the collection of voltages and currents
at the buses can be partitioned as V := col(VS , VL) ∈ Rn,
I := col(IS , IL) ∈ Rn, while the incidence matrix admits
the decomposition B = col(BS ,BL), with BS ∈ Rm×t,
BL ∈ R(n−m)×t. Since we focus our attention on dominantly
resistive transmission lines, it is assumed that each edge
associates a weight modeling the conductance Ge > 0 of
the line e ∈ E and that inductive dynamics are neglected.
The interconnection laws between power units are captured

by the generalized Ohm’s law:

I = LV (II.1)

where L ∈ Rn×n is the Laplacian matrix associated to the
graph, which is defined as:

L :=

[
BS
BL

]
G

[
BS
BL

]>
=

[
LS Lm
L>m LL

]
∈ Rn×n, (II.2)

with G := diag(Ge) ∈ Rt×t.
Using the aforementioned partition, we now characterize the
dynamics of the power units. With no loss of generality
we make the assumption that controllable power units only
inject, and not absorb, power and refer to them as sources.
Their dynamics is then characterized as follows:

Cj v̇j = −Gjvj +
uj
vj
− ij , j ∈ NS , (II.3)

with state vj ∈ R, input ij ∈ R, constant parameters
Cj , Gj ∈ R and a continuous signal uj : T → Pj ,
with Pj := [P j , P j ] ⊂ R. All parameters are positive.
These dynamics consist of a lossy capacitive dynamics, with
bounded (positive) power injection, interfaced to the grid via
a current sink. The term uj(t), denoting the power injection,
is usually determined by a primary controller u′j via

uj = Pj + u′j , j ∈ NS ,

with Pj ≥ 0 a nominal reference value. For simplicity, uj is
interpreted as a control input.
On the other hand, loads can be described by the dynamics:

Ckv̇k = −Gkvk +
pk
vk
− ik, k ∈ NL, (II.4)

with state vk ∈ R, input ik ∈ R, constant parameters
Ck, Gk and a continuous signal pk : T → Pk, with
Pk := [−P k,−P k] ⊂ R. All parameters are positive.
These dynamics consist of a lossy capacitive dynamics, with
bounded time-varying power demand, interfaced to the grid
via a current sink. The term pk(t), denoting the (negative)
power demand is an unknown signal and thus is interpreted
as a time-varying perturbation. Using (II.2), the stacked
dynamics of (II.3), (II.4) can be rewritten in compact form:[

CS V̇S
CLV̇L

]
=−

[
GS 0
0 GL

] [
VS
VL

]
+

[
u� VS
p� VL

]
−
[
IS
IL

]
,

(II.5)
where

- VS := col(vj) ∈ Rm, VL := col(vk) ∈ Rn−m are the
state voltages;

- IS := col(ij) ∈ Rm, IL := col(ik) ∈ Rn−m are the
input currents;

- u := col(uj) ∈ PS and p := col(Pk) ∈ PL are the
input and perturbation powers, with

PS := ΠPj ∈ Rm, PL := ΠPk ∈ Rn−m;

- CS := diag(Cj), GS := diag(Gj), CL := diag(Ck),
GL := diag(Gk) are matrices of appropriate dimen-
sions.



By replacing (II.1)-(II.2) into (II.5) and recalling that p ∈
PL, the system dynamics can be equivalently described via
the following differential inclusion:

V̇ ∈ f(V, u), (II.6)

with

f(V, u) := C−1

(
−(L+G)V +

[
u
PL

]
� V

)
,

where C := bdiag{CS , CL}, G := bdiag{GS , GL} are
matrices of appropriate dimensions. In the sequel we will
employ the following definition.

Definition 2.1: A DC microgrid is a continuous-time sys-
tem Στ := (V,V0,U ,Y, f, u, h) where
• V ⊂ Rn, V0 ⊂ V , U ⊂ Rp and Y ⊂ Rr, with
p ≤ n, are the set of state voltages, the set of initial state
voltages, controllable input currents and measurable
output voltages;

• f : V × U ⇒ V is the continuous-time map associated
to the dynamics (II.6);

• u : Y ⇒ U is a sampled-data controller with a clock of
period τ > 0.

• h : V → Y is the continuous-time map associated to the
measurable output voltages;

A trajectory of the system Στ is a signal V : T → V
where V is continuous, V (0) ∈ V0 and for all t > 0, V̇ ∈
f(V (t), uk), where uk ∈ u(V (kτ)) for t ∈ [kτ, (k + 1)τ).

A straightforward property of the DC microgrid is that
it is monotone—a fact that can be easily verified via
the Kamke-Muller conditions for continuously differentiable
vector fields, since we have:

∂fi
∂vj
≥ 0,

∂fi
∂pk
≥ 0 i, j ∈ N , k ∈ NL, j 6= i.

III. PROBLEM FORMULATION

As already mentioned, sources are usually equipped with a
primary control layer that ensures the robustness of the grid
in presence of sudden change and/or fluctuations in the load
profiles. In order to formulate properly the control problem,
we find convenient to define the following specification sets:
• the set of admissible state voltages

Vδ := Iδ(vnom1n) ⊂ Rn, vnom > 0, δ > 0;

• the set of admissible power injections US := PS
• the set of power sharing injections

UΓ := {u ∈ Rm : Γu = 1α},

with Γ = diag(γj) ∈ Rm×m, where γj > 0, α > 0.
The set Vδ specifies that the system’s trajectory must be

kept sufficiently near the nominal value vnom > 0. The sets
US and UΓ account for the limited power available at each
source and the verification of an appropriate power sharing.
We are now ready to define the control problem.

Problem 3.1: Consider a DC microgrid Στ , with V = Vδ ,
U = US ∩ UΓ and let Y ⊂ R a set of measurable outputs.

Determine a sampled-data controller u : Y ⇒ U , with a
clock period τ > 0, and a non-empty set V? ⊆ V such that
the closed-loop trajectories of the DC microgrid satisfy

V (0) ∈ V? ⇒ V (t) ∈ V?, t > 0.

The solution of the problem consists thus in determining
an (output-based) safety controller that guarantees that the
trajectories (V (t), u(t)) originating in the set V?×U remain
there for any future time.

Remark 3.2: An important theoretical question is to
determine an optimal (according to some cost function) tuple
(V?,PS ,PL) so that V? is invariant. This formulation scales
to the traditional power flow optimization problem whenever
we restrict the sets to be singletons.

IV. SYMBOLIC CONTROL

We now illustrate how symbolic control techniques can be
used to achieve the control objectives defined in Problem 3.1.
For this purpose, we determine a symbolic model—termed
abstraction—that is linked to the original system Στ via an
appropriate alternating simulation relation [10].

A. Construction of an abstraction of the system

An abstraction Σa for the DC microgrid Στ is a tuple
Σa := (Va,Ua,∆), where Va and Ua are finite (symbolic)
sets of states and control inputs respectively, while ∆ : Va×
Ua ⇒ Va is a nondeterministic transition relation. For the
construction of the symbolic sets we proceed as follows. We
discretize the state-space V of the original system into N ≥ 1
intervals qi using a finite and uniform partition

Va :=
{
qi| i = 1, . . . , N

}
and define the quantizer Q : V → Va, so that Q(V ) = q if
and only if V ∈ q. Moreover, we discretize the set of inputs
U into M ≥ 2 values ch, with the discrete input set given
by

Ua :=
{
ch| h = 1, . . . ,M

}
.

In order to characterize the transition relation, we recall that
the reachable set of a DC microgrid Στ at time t > 0, from
a set of states Vx ⊆ V , with a constant control input u ∈ U ,
is given by:

Rt(Vx, u) :=
{

Φ(t;V0, u) : |V0 ∈ Vx, u ∈ U
}

Hence, under the same conditions, the reachable set over
[0, T ] reads R[0,T ] :=

⋃
t∈[0,T ]

Rt.

Recalling that the primary controller to be designed is
implemented by a microprocessor with a clock of period
τ > 0, the transition relation ∆ : Va × Ua ⇒ Va can be
defined as follows. For any q, q′ ∈ Va, c ∈ Ua, q′ ∈ ∆(q, c)
if and only if :

R[0,τ ](q, c) ⊆ V, q′ ∩Rτ (q, c) 6= ∅. (IV.1)

The problem of computing reachable sets has been largely
investigated in literature—see for example [13], [14] and
[15]. For the system under study, the monotonicity property



established in Section II can be exploited for the construction
of tight systems abstractions [16], [17].

B. Controller synthesis

Using the aforementioned construction, we next show that
we can guarantee some suitable equivalence between the
abstraction Σa and the original system Στ . We first introduce
the following notation. For a state q ∈ Va of the abstraction,
we denote the set of enabled inputs by enaba(q) = {c ∈
Ua| ∆(q, c) 6= ∅} and denote the set of non-blocking states
by nba = {q ∈ Va| enaba(q) 6= ∅}. We are now ready to
present the following proposition. The proof, which is the
same reported in [18], is here omitted for sake of brevity.

Proposition 4.1: Consider a continuous-time DC micro-
grid Στ := (V,U ,Y, f, u, h) and the correspondent abstrac-
tion Σa := (Va,Ua,∆) constructed as above. Let V ∈ q,
c ∈ enaba(q), with q ∈ nba. Then, for any reached point
x ∈ Φ(τ ;V, c), there exists q′ ∈ ∆(q, c) such that x ∈ q′ .

The abstraction Σa is then related to the uncontrolled
dynamics of Στ (i.e. with u(y) = U for all y ∈ Y), via
an alternating simulation relation at sampling instants. We
are now ready for the synthesis of a controller that solves
Problem 3.1. For illustrative purposes, we first consider the
centralized full information case (i.e. with Y = Vδ). The
problem of partial information case is instead postponed to
Section V.
Using a safety game [10], we thus synthesize a symbolic
controller c : Va ⇒ Ua for the abstraction that guarantees
that all trajectories of the abstraction originating in some
Va? ⊆ Va, remain there for any future time. Therefore, the
formal relation between the original system Σ and its abstrac-
tion Σa can be used to refine the symbolic controller into a
sampled-data controller u : Vδ ⇒ U for the original system.
More precisely, recalling the definition of the quantizer we
have u(V ) = c(Q(V )). Since any enabled control input
belongs to U = US∩UΓ by construction, the controller u(V )
ensures that the control objectives defined in Problem 3.1 are
achieved at all sampling instants. Guarantees on the inter-
sample behaviour are, on the other hand, provided by the
way the abstraction has been constructed. More precisely,
by condition (IV.1) that ensures that all trajectories of the
system remains in Vδ between consecutive sampling instants.

V. CONTRACT-BASED DESIGN

In general, loads may be not equipped with measurement
units that broadcast information on the local voltages to
the controller. Hence, we here consider the Problem 3.1 by
assuming that the voltages associated to the sources are the
only available measurements. Despite this limitation, sources
are allowed to communicate and the controller is referred as
centralized under partial information.

A. System decomposition

Given this scenario, we find convenient to decompose the
DC microgrid Στ into two components, a source system ΣτS
and a load system ΣL, which are defined as follows.

A source subsystem of a DC microgrid Στ is a system
ΣτS := (VS ,V0

S ,U ,WS , fS , u) where:
• VS ⊂ Rm,V0

S ⊂ VS , U ⊂ Rp and WS ⊂ Rn−m are the
set of measurable state voltages, initial state voltages,
controllable power inputs and voltage perturbations re-
spectively;

• fS : VS × U ×WS ⇒ VS is the continuous-time map:

fS := C−1
S [−(GS + LS)VS − LmwS + u� VS ]

• u : VS ⇒ U is a sampled-data controller with a clock
of period τ > 0 (to be designed).

A trajectory of the subsystem ΣτS is a tuple (VS , wS) :
T → VS ×WS where VS and wS are continuous, VS(0) ∈
V0
S and for all t > 0, V̇S = fS(VS(t), wS(t), uk), where
uk ∈ u(VS(kτ)) for t ∈ [kτ, (k + 1)τ).

A load subsystem of a DC microgrid Στ is a system ΣL :=
(VL,V0

L,WL, fL) where:
• VL ⊂ Rm, V0

L ⊂ VL and WL ⊂ Rn−m are the
set of state voltages, initial state voltages and voltage
perturbations respectively;

• fL : VL ×WL ⇒ VL is the continuous-time map:

fL := C−1
L

[
−(GL + LL)VL − L>mwL + PL � VL

]
.

A trajectory of the subsystem ΣL is a tuple (VL, wL) :
T→ VL×WL where VL and wL are continuous, VL(0) ∈ V0

L

and for all t > 0, V̇L = fL(VL(t), wL(t)).
Since measurements are available only at the source

subsystem, the Problem 3.1 must be now solved for the
case Y = VS and abstractions for both subsystems can be
constructed as detailed in the previous section.

Remark 5.1: It is immediate to see that the composition of
the systems ΣS , ΣL via the interconnection laws wS = VL,
wL = VS allows to recover the system Στ .

B. Compositional reasoning
In order to deal with safety synthesis under partial in-

formation, we use the notion of continuous-time assume
guarantee contracts [19].

Definition 5.2: . Let Σ = (V,V0,U ,W, f), be a
continuous-time system where V ⊂ Rn is the set of states,
V0 ⊆ V is the set of initial states, U ⊂ Rm is the set of
control inputs, W ⊂ Rp is the set of perturbations and
f is a locally Lipschitz continuous-time map associated to
the dynamics V̇ ∈ f(V,W, u). A continuous-time assume-
guarantee contract for the system Σ is a pair C = (A,G)
where:
• A ⊆ W is the set of assumptions;
• G ⊆ V , is a nonempty set of guarantees where G is

closed.
We say that Σ satisfies a contract C = (A,G), denoted

Σ |= C, if for any initial condition V (0) ∈ G and any
trajectory (V,w) : T→ V ×W of the system Σ originating
in V (0), the following logical implication is satisfied:

for all T ∈ R, such that for all t ∈ [0, T ], w(t) ∈ A, we
have the existence of ε > 0, such that for all t ∈ [0, T + ε],
V (t) ∈ G.



We can now use the results on compositional reasoning
of assume-guarantee contracts of [19, Th. 1-2] to obtain the
following proposition.

Proposition 5.3 ( [19]): Let Ci = (Ai, Gi) be continuous-
time assume-guarantee contracts for the systems Σi, i ∈
{S,L} and assume that ΣS |= CS , ΣL |= CL. Then, if
(i) GL ×GS ⊆ AS ×AL;

(ii) GS ×GL ⊆ VS × VL
the control objective defined in Problem 3.1 is achieved

with V? = GS ×GL.
To ensure that a component satisfies its contract, we can

rely on symbolic methods, similarly to [18]. For systems with
no control input, as the load subsystem, the same approach
can be used to verify whether the contract is naturally satis-
fied or not. Nevertheless, the choice of appropriate contracts
is not trivial. In fact, Proposition 5.3 merely states that if
we are able to construct suitable contracts CS and CL for the
subsystems ΣS and ΣL, then Problem 3.1 is solved for some
V? ⊆ V . However, no constructive procedure is provided for
the derivation of such contracts.

C. Parametric contracts synthesis

In order to explore systematically the space of feasible
contracts for a system Σ, we here consider families of con-
tracts C(α, γ) as assumption-guarantee pairs parameterized
by the parameters (α, γ) ∈ Ra×Rg , where a, g are positive
integers. The use of parametric assume-guarantee contracts
has been already suggested in the context of vehicular
traffic networks [20]. For an appropriate formalization, we
introduce the following definition.

Definition 5.4: Consider a family of continuous-time
assume-guarantee contracts C(α, γ) = (A(α), G(γ)) for the
system Σ, parametrized by A : Ra → 2W , G : Rg → 2V ,
with a, g positive integers. Then C(α, γ) is said to be satisfied
by Σ on F ⊆ 2W × 2V if it is satisfied by Σ for any
(α, γ) ∈ F. The maximal region where C(α, γ) is satisfied
by Σ is called the feasibility region of Σ with respect to C.

The set F determines, on the space of parameters, a family
of contracts that are satisfied by the system. For the general
case the computation of the feasibility region is far from
being obvious. However, for the present case, monotonicity
of the contracts can be exploited for an efficient calculation
of a lower approximation of the feasibility region F. This is
illustrated in the following result.

Proposition 5.5: Consider a family of assume-guarantee
contracts C(α, γ) for the system Σ, where (α, γ) ∈ 2W×2V .
If, for any α, α′ ∈ 2W , γ, γ′ ∈ 2V , the following logical
implications are satisfied:

α ≤ α′ ⇒ A(α) ⊆ A(α′), γ ≤ γ′ ⇒ G(γ) ⊆ G(γ′),
(V.1)

then the following property holds:

((α, γ) ∈ F) ∧ (α′ ≤ α) ∧ (γ′ ≥ γ))⇒ ((α′, γ′) ∈ F).

The proposition implies that the boundary of the feasibility
region F has the structure of a Pareto front and can therefore

be approximated arbitrarily close, from inside and outside,
adapting efficient multidimensional binary search algorithms
used in multi-objective optimization [21], [22]. A similar
approach for the computation of the feasibility region was
applied to timing contracts in [23].
We are now ready to write a corollary of Proposition 5.3
that extends the result to all possible contracts defined on
the space of parameters. The result is straightforward and
then stated without proof.

Corollary 5.6: Let Ci(αi, γi) = (Ai(αi), Gi(γi)) be a
family of continuous-time assume-guarantee contracts for Σi,
where (αi, γi) ∈ 2Wi × 2Vi , i ∈ {S,L} and defined as
follows:

VS =
⋃

αL∈2WS

AL(αL) =
⋃

γS∈2VS

GS(γS)

VL =
⋃

αS∈2WL

AS(αS) =
⋃

γL∈2VL

GL(γL).

Assume that there exist non-empty sets FS , FL such
that ΣS |= CS(αS , γS) on FS and ΣL |= CL(αL, γL)
on FL. Then, for any (αS , γS) ∈ FS , (αL, γL) ∈ FL
such that GL(γL) × GS(γS) ⊆ AS(αS) × AL(αL), the
control objective defined in Problem 3.1 is achieved with
V?(γS , γL) = GS(γS)×GL(γL).

VI. NUMERICAL EXAMPLES

In this section, we show the practicality of our approach
with the following two examples.

A. Two-units case

We consider a two-units source-load DC microgrid with
the following parameters: CS = 2.2 mF, CL = 1.8 mF
the units capacitances; GS = GL = 0.025 Ω−1 the units
conductances; GT = 6.65 Ω−1 the line conductance. The
system is supposed to operate within a region Vδ , with grid
nominal voltage vnom = 450 V and δ = 0.01 · vnom, which
corresponds to a maximal 1% deviation from the grid nom-
inal value. Following the approach presented in Section V,
the DC microgrid is decomposed into a source subsystem
ΣS and a load subsystem ΣL and two families of assume-
guarantee contracts Ci(αi, γi) are considered, i = {S,L}.
Such families are locally constructed over the same space
[−2δ, 0]12, in a way that the assumptions and guarantees
sets read respectively:

Ai(αi) = [vnom − δ − αi,1, vnom + δ + αi,2],

Gi(γi) = [vnom − δ − γi,1, vnom + δ + γi,2].

Assumptions parameters can be then combined with guar-
antee parameters via the sources-loads interconnection law,
see also Remark 5.1, by taking αS,1 = γL,1, αS,2 = γL,2.
It can be easily checked then that the proposed families
of contract verify conditions (V.1) of Proposition 5.5 and
then the feasibility regions Fi have the structure of Pareto
fronts. Hence, the global feasible region can be obtained by
intersecting such regions. For illustrative purposes, we select
αS,2 = γS,2 = αL,2 = γL,2 = 0, which allows for the rep-
resentation of the space of parameters on a two-dimensional
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Fig. 1: Global feasibility region (medium gray) obtained as
the intersection of the source (light gray) and load (dark gray)
feasibility regions.

plane, as shown in Fig. 1. To compute the feasibility regions,
we used a symbolic approach, with sampling period for the
abstractions τ = 0.1 ms, which corresponds to the clock of
the sampled-data controller to be designed. Discretization
parameters are N = 10, denoting the dimension of the
(symbolic) state-space, and M = 20 denoting the number
of discrete inputs. The region FL associated to the load
subsystem can be computed by checking the satisfaction
of the correspondent contract CL(αL, γL), while for the
source subsystem we take advantage of the additional degree
of freedom provided by the control input to construct a
sampled-data controller u : Y ⇒ U that enforces the
satisfaction of the contract CS(αS , γS). For the design, we
select thus a feasible assume-guarantee pair that maximize
the domain of the controller. Responses to different, bounded,
time-varying power demands are illustrated in Fig. 2.

B. Four-units case

We consider a four-terminal DC microgrid as the one
depicted in Fig. 3. We assume that two units, namely Unit
2 and 3, are equipped with a primary control layer, while
the remaining two units, Unit 1 and Unit 4 correspond to
loads with demand varying steadily around a constant power
reference. Bus and network parameters are provided in Table
I and Table II respectively.

TABLE I: Bus parameters.

1 2 3 4
Ci(mF) 2.2 1.9 1.5 1.7

TABLE II: Network parameters in Ω−1.

G12 5.215 G13 4.615 G14 4.515
G24 6.015 G34 5.615

The system is supposed to operate within a region Vδ , with
grid nominal voltage vnom = 450 V and δ = 0.005. The DC
microgrid is then decomposed into two-dimensional source

0 200 400 600 800 1000

time (ms)

445

445.5

446

446.5

447

447.5

vo
lta

ge
 (

V
)

source
load

0 200 400 600 800 1000

time (ms)

1000

2000

3000

4000

5000

po
w

er
 (

W
)

injection
demand

Fig. 2: Voltage and power responses to different power
demands, using the proposed sampled-data controller.
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Fig. 3: The four-units architecture used for the simulations.
Circles correspond to units, with sources denoted by double
circles. Solid lines denote the transmission lines and dashed
blue arrows represent the communication between units.

and load subsystems ΣS and ΣL. Symbolic abstractions
are thus constructed using the same discretization and two
families of assume-guarantee contracts Ci(αi, γi) are con-
sidered, i = {S,L}. To validate our controller, we assume
that the load power demands for Unit 1 and Unit 4 are as
follows. Unit 1 is demanding 1 kW from 0 to 250 ms,
immediately after stepping up to 5 kW. Unit 4 on the other
hand is supposed to be characterized by a constant demand of
0.5 kW from 0 to 750 ms, then stepping up to 4.5 kW. Both
demands are affected by small noise. Source power injections
are both limited at 12 kW. The controller is implemented via
a microprocessor of clock period τ = 0.1 ms and verifies



the power sharing property with ratio Γ = I2 (equal power
distribution) by construction. Among the feasible controllers,
the one that minimizes the quadratic injection is selected.
Power injections and voltage responses are illustrated in Fig.
4. As expected, the controller guarantees that voltages are
kept sufficiently near the nominal value and that the power
injection is shared in accordance with the assigned ratio.
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Fig. 4: Voltage and power responses to different power
demands, using the proposed sampled-data controller.

VII. CONCLUSIONS

In this work we addressed the problem of designing
centralized primary controllers for nonlinear time-varying
DC microgrids using symbolic methods, considering both
the full information and partial information case. In the
former, a traditional approach is employed to construct
the system’s abstraction, from which a safety controller is
easily derived and then refined into a sampled-data controller
for the original system. For the partial information case
instead, we defined an appropriate system’s decomposition,
for each of the components an abstraction is derived and
a family of locally satisfied, assume-guarantee contracts is
constructed. Therefore, locally feasible contracts are com-
bined to establish families of contracts satisfied by the overall
system, which are then used for the design of the controllers,
similarly to the full information case.
These contributions should be intended as a preliminary
step towards the development of a more general theory
for contract-based design of symbolic controllers for DC
microgrids. Further investigation will focus on the use of
parametric contracts in two main directions. First, establish
a procedure for optimal selection of performance-guranteed
controllers. Second, extend the design to the case of dis-
tributed and decentralized communication.
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