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PRIORS COMPARISON IN BAYESIAN MEDIATION

FRAMEWORK WITH BINARY OUTCOME

J.M. GALHARRET AND A. PHILIPPE

Abstract. In human sciences, mediation designates a particular causal phe-

nomenon where the effect of a variable X on another variable Y passes (par-
tially or entirely) through a third variable M . The parameters of interest in

mediation models are the direct effect of X on Y and the indirect effect of X

on Y through M . We use a Bayesian framework to estimate these parameters
and we compare different construction of prior distribution. The results show

that providing information improves the quality of the estimation. We also

propose a Bayesian procedure to test the absence of direct and indirect effect.
Results of simulations show that this procedure works as well as the usual

frequentist test for the direct effect and better than the usual bootstrapping

test for the indirect effect. Finally, we apply our approach to real data from a
longitudinal study on the well-being of children in school.

Keywords : mediation analysis, Bayesian estimation, direct and indirect
effect

1. Introduction

Studying a simple mediation model (X,M, Y ) consist of analysing the effect of X
on Y ( see VanderWeele [17], Hayes [6] for general presentation). In the mediation
analysis, this effect is subdivided into the direct influencing of X on Y (direct
effect) and the influence of X on Y through the mediator variable M (indirect
effect). In many situations the mediation model is applied with X as a binary
variable, M a continuous variable, and where Y is a binary outcome. For instance,
in nutrition, Fisher et al. [2] investigated the effect of duration of breast-feeding
on caloric intake of the toddlers mediated by their maternal control of feeding. In
management, Wieder and Ossimitz [18] studied the direct and indirect effects of
Business Intelligence Management on the quality of managerial decision through
Data Quality and Information Quality.

To understand the causal relationship between X and Y , Robins and Greenland
[14], Pearl [12] defined the counterfactual approach. For each individual, ideally, we
would like to observe the outcome Y under both exposure X = 1 and X = 0, but it
is not possible. The two fictitious variables are named the counterfactual variables
and denoted by Yx when X = x (x = 0, 1). From the counterfactual context, the
causal effect of X on Y is defined from:

ψ = E(Y1 − Y0)

This causal effect can be broken down into the natural direct effect (NDE) and
the natural indirect effect (NIE). Under a set of hypothesis (see Imai et al. [7],
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VanderWeele [17], for details) we have for x ∈ {0, 1}:

NDE(x) =

∫
M

[
E(Y |X = 1,M = m)− E(Y |X = 0,M = m)

]
dFM |X=x(m)

NIE(x) =

∫
M

E(Y |X = x,M = m)
[
dFM |X=1(m)− dFM |X=0(m)

]
where FM |X=x denotes the conditional distribution of M given X = x. We obtain
the following decomposition of the causal effect:

(1) ψ = NDE(0) + NIE(1)

The causal effect can be also written as ψ = NDE(1) + NIE(0)
Remark: The first mediation model was introduced by Baron and Kenny [1] in a
regression framework (with Y as a continuous variable). The causal effect ψ of X
on Y was defined by the equation:

Y = a0 + ψX + ε0Y

where ε0Y ∼ N (0, σ2
0) For natural direct effect and the natural indirect effect,

NDE(0) = NDE(1) = γ and NIE(0) = NIE(1) = αβ with (α, β, γ) with:

Y = β0 + βM + γX + εY

M = α0 + αX + εM

where εY ∼ N (0, σ2) and εM ∼ N (0, τ2).

Bayesian mediation model. Let (X,M, Y ) the model studied with X,Y binary
variables and M continuous. The aim of the study is to estimate ψ. The esti-
mation of ψ is based on (1). The definition of the natural direct and indirect
effects requires E(Y |X = x,M = m) and FM |X=x. The most common chosen for
E(Y |X = x,M = m) is the logistic model and for FM |X=x the normal distribution.
Thus we consider the model defined by the two linear equations and described in
the Figure 1:

M = α0 + αX + εM(2)

logit(E(Y |X,M)) = β0 + βM + γX(3)

where εM ∼ N (0, σ2) . Hereafter, we refer to the model defined by (2), (3) as
BM (Bayesian Mediation).

Let θ := (α0, α, σ
2, β0, β, γ) the vector of unknown parameters in the model

BM. Let NDEθ denotes the parameter NDE(0), and NIEθ denotes the parameter
NIE(1).

NDEθ =
1

σ
√

2π

∫ (
1

1 + e−(β0+βm+γ)
− 1

1 + e−(β0+βm)

)
e−

1
2 (m−α0

σ )
2

dm(4a)

NIEθ =
1

σ
√

2π

∫
1

1 + e−(β0+βm+γ)

(
e
− 1

2

(
m−(α0+α)

σ

)2

− e−
1
2 (m−α0

σ )
2
)

dm(4b)

From the two relations, we deduce the posterior distribution of our interest
parameters NDEθ,NIEθ from the one of parameter θ. To complete the definition of
the model BM, we have to choose the prior distribution on θ. For the applications
in psychology, the information required to construct the prior distribution may come
from previous measures on the same population (e.g. longitudinal study) or from
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Figure 1. DAG (Directed Acyclic Graph) of mediation model BM

an independent study conducted under the same conditions. One of the objectives
of this paper is to discuss on the choice of the prior distribution and to show the
interest to consider prior information. We illustrate through some simulations that
the interest of including information in the construction of the prior distribution.
We evaluate the impact of the prior using frequentist criteria.

The paper is organized as follow. In Section 2, we describe the Bayesian model,
and the different prior distributions on the parameter θ: an informative prior in-
troduced by Launay et al. [9], a weakly informative prior introduced by Gelman
et al. [4] and a noninformative G-prior introducted by Zellner [19]. In Section 3 the
simulations show that the informative approach based on historical informations
allow reduction of the statistical bias and variability of the estimators. In Section
4 we propose a Bayesian test for the absence of the direct effect and the absence of
the indirect effect. An application to schoolchildren’s well-being is given Section 5.

2. Description of Bayesian models

Bayesian estimation. We propose Bayesian estimations for NDEθ and NIEθ. The
likelihood of the model BM defined in (2) is:

Lθ(Y ,M,X) =

N∏
i=1

e−(1−yi)(β0+βmi+γxi)

1 + e−(β0+βmi+γxi)
× 1√

2πσ
e−

1
2 (mi−α0−αxi

σ )
2

where for instance Y denotes the vector = (y1, y2, . . . , yN ) of the N independent
observations for the variable Y . The posterior distribution of θ = (α0, α, σ, β0, β, γ)
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is

π(θ|Y ,M,X) ∝ Lθ(Y ,M,X)π(θ).

The parameters of interest NDEθ and NIEθ are non explicit function of θ defined
in 1. The Bayes estimate of these two quantities are respectively:

E(NDEθ|Y ,M,X) =

∫
Θ

NDEθ π(θ|Y ,M,X)dθ

E(NIEθ|Y ,M,X) =

∫
Θ

NIEθ π(θ|Y ,M,X)dθ

We consider now different strategies to construct the prior distributions according
to the approaches proposed in Launay et al. [9], Gelman et al. [4], Zellner [19].
Prior distribution for variance parameter σ2. : For all models, the scale parameter
σ2 in equation (2) had an improper prior on non-negative real numbers. This prior
is acceptable since it leads to proper posterior for the parameters of the model (see
Gelman [3] for discussion on this choice).
Model 1: The first model comes from Launay et al. [9]. In this case, the prior distri-
bution of θ is based on historical informations. On an historical dataset, we calculate
the mean M and the covariance V of the posterior distribution (α0, α, β0, β, γ)

M = E ((α0, α, β0, β, γ)|historical data)

V = cov ((α0, α, β0, β, γ)|historical data)

For this historical sample we choose the prior distribution described in Model 3.
Assuming that both samples come from similar studies, we take as prior distribution
on (α0, α, β0, β, γ) the distribution defined by:

(α0, α, β0, β, γ) ∼ N5(µ, V )

where µ =

 k1

. . .

k5

M and kj ∼ N (1, 5) The hyper-parameters k1, ..., k5

allow that the parameter (α0, α, β0, β, γ) varies slightly between the two studies. As
for the structure of dependence between the variables, we impose a priori that it is
unchanged. For example, if a first study shows that the Business Intelligence Man-
agement has a positive effect on the quality of managerial decision, we can expect
that this effect will also be positive in a futur study. What may change from one
study to another is the importance of the relationship between these two variables.
In a longitudinal study, we are interested by the evolution of the characteristics
of the participants. These characteristics should evolve over time, but not their
correlations.

Remark: In Launay et al. [9], the hierarchical model is more complex, in par-
ticular, a scale parameter is added to consider the historical sample is very large
compared to the one of interest. In this model, V is replaced by λV , where λ is a
positive unknown parameter. This parameter λ plays an important role in terms
of robustness if the historical information is not relevant.
Model 2: Without historical data, a noninformative prior is proposed. We assume
that the prior distribution of (α0, α) in (2) is a Zellner’s G−prior Zellner [19]. Let φ
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the N × 2 matrix defined by φ =

 1 x1

...
...

1 xN

, the G−prior distribution of (α0, α)

is:

(α0, α)|σ ∼ N2(02, g0σ
2(φ′φ)−1)

We set g0 = N to ensure that the prior has the same weight as one observation of
the sample (see Marin and Robert [11] for details). For the logistic equation (3),
we use a weakly informative prior proposed by Gelman et al. [4]. As suggested, X
is centered and M is centered and scaled to attribute a value of 0.5 to the standard
deviation. The corresponding variables are denoted by •̃. Let (β̃0, β̃, γ̃) defined by:

logit(E(Y |X̃, M̃)) = β̃0 + β̃M̃ + γ̃X̃. The relation between (β̃0, β̃, γ̃) and (β0, β, γ)
is given by

γ = γ̃(5a)

β =
β̃

2 σM
(5b)

β0 = β̃0 − γX − βM(5c)

In Gelman et al. [4], the prior distributions of the parameters (β̃0, β̃, γ̃) are

β̃0 ∼ C(0, 10)

β̃ ∼ C(0, 2.5)

γ̃ ∼ C(0, 2.5)

where C(m, τ) denotes the Cauchy distribution with m the location parameter and
τ the scale parameter. The posterior distributions of the parameters (β0, β, γ) can

be deducted from the posterior distributions of the parameters (β̃0, β̃, γ̃) using (5).
Model 3. The third one is a non informative model. For the linear equation (2) we
keep the same prior distribution as the one for Model 2. For the logistic equation
(3), we choose a Zellner G−prior for (β0, β, γ)

(β0, γ, β) ∼ N3(b1, g1N
2(ψ′ψ)−1)

where ψ is the N × 3 matrix: ψ =

 1 x1 m1

...
...

...
1 xN mN

. The choice b1 = 03 and

g1 = 4 ensures that (β0, β, γ) has a flat prior distribution (for details see Marin and
Robert [11]).
Remark: Hanson et al. [5] introduced informative G−priors for logistic regression
where the hyperparameter b1, g1 is estimated from historical dataset. The construc-

tion is restricted to Gaussian design matrix i.e.

 x1 m1

...
...

xN mN

 has a multivariate

normal distribution. When X is a binary variable, the same strategy can not be
applied to bring prior information. In this case an explicit form of b1, g1 is not
available.
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Figure 2. Estimated posterior distribution of NDEθ,NIEθ in the
CASE 1 with N = 50.

Figure 3. MCMC samples of NDEθ,NIEθ under Model 1 in the
CASE 1 with N = 50

3. Numerical results:

Method. To compare the three prior distributions presented previously, we evaluate
the accuracy of Bayes estimates of NDE(0) and NIE(1) using frequentist criteria.
From Monte Carlo experimecitetnts, we calculate the bias, the root of mean square
error (RMSE) and the coverage probability of the credible interval. We also pro-
vide the length of credible interval, which evaluates the precision of the posterior
distributions.

To approximate the posterior distributions, Markov Chain Monte Carlo (MCMC)
method is required. We use Hamiltonian algorithm implemented in Stan application
(R Core Team [13], Stan Development Team [15]). Let (θt)1≤t≤T be the resulting
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sampling generated from the posterior distribution of θ. From (θt)1≤t≤T , we de-
duce a MCMC sample from the posterior distribution of both parameters of interest
NDE(0) and NIE(1). For each θt, we take NDEθt , NIEθt defined in (4a) and (4b).
Note that this step requires a numerical approximation of integrals in (4a), (4b).

We also add to the comparison the estimate implemented in the R package
mediation (see Tingley et al. [16]). In the function mediate a quasi-Bayesian
Monte Carlo method based on normal approximation is implemented to estimate
NDE(0) and NIE(1) (see Imai et al. [8] for details).
Simulated dataset. We generate historical and current data from three distinct
situations. In all cases, the standard deviation of the linear model (2) is set to
σ = 0.75 for both datasets. For the historical sample we choose the parameters
α0 = 1, α = −2, β0 = −0.5, β = 1, γ = 1.5 for the three different scenarios. The cur-
rent sample is simulated with the following values of the parameters (α0, α, β0, β, γ):

case 1 the same values as the historical data.
case 2 the values increased by 10% .
case 3 only the direction of the relationships between the variables (X,M, Y ) does

not change. We set α0 = 1, α = −3, β0 = −1, β = 0.75, γ = 2. It is the
worst of the three cases for Model 1. The historical dataset bring misleading
informations in the prior distribution.

These three situations make sense in real studies. For instance, in a longitudinal
study, one might think that the relationships between the variables could be compa-
rable over time. To assess the quality criteria, we generate N = 1000 independent
copies. Figure 2 compares the posterior distributions of NDE(0),NIE(1) calculated
on one of the samples simulated in the case 1.

From the posterior distributions of NDE(0), we clearly show the interest of in-
cluding historical information in the prior distribution. Indeed, the accuracy and
the precision of posterior distribution of NDE(0) are better with informative prior
(Model 1). The same improvement is not observed as clearly for NIE(1). Figure 3
assesses graphically the convergence of the Markov chains for the mixing proper-
ties. We observed the same behavior for all the other models, independently of the
values of the parameters.
Results. All the numerical results are summarized in Table 1. For all the situa-
tions, the informative model (Model 1) performed better than the others for all the
statistical properties.

In the case 1 and 2, the historical informations reduced by half the bias of the
estimation for the two parameters of interest NDE(0),NIE(1). Even in the worst
case (case 3), the performances are lower, but the historical information still reduced
the bias.

For the RMSE, the informative model’s gain was about 20% relative to the
others. The credible intervals of the estimations in Model 1,3 and the mediate
function have correct confidence level, approximatively 95% for all sample size N .
But, Model 1 provide a shorter credible than the others.

Model 2 based on weakly informative priors and introduced by Gelman et al.
[4] had the worst statistical properties in all case. Note that we apply this prior
distribution to the logistic part of a mediation model which is not the context
studied in Gelman et al. [4]. Model 3 based on the G−priors and the mediate
function have similar statistical properties.
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Table 1. m denotes the mediate function, 1,2,3 the number of the
precedent models. CL denotes the confidence level of the credible
interval and L its length.

NIE(1) NDE(0)
N prior bias %bias rmse %rmse CL L bias %bias rmse %rmse CL L

CASE 1: Time-invariant parameters

30

m 0.075 -20.81 0.162 45.19 0.946 0.63 -0.059 -23.79 0.195 77.90 0.968 0.76
1 0.031 -8.49 0.133 37.08 0.941 0.51 -0.020 -7.83 0.152 60.63 0.943 0.58
2 0.115 -32.09 0.173 48.11 0.893 0.57 -0.119 -47.46 0.203 81.09 0.926 0.71
3 0.072 -20.03 0.160 44.64 0.940 0.57 -0.046 -18.39 0.199 79.40 0.934 0.72

50

m 0.057 -15.96 0.122 33.92 0.948 0.48 -0.043 -17.27 0.151 60.33 0.957 0.59
1 0.026 -7.33 0.099 27.45 0.950 0.40 -0.011 -4.32 0.116 46.47 0.931 0.46
2 0.089 -24.64 0.135 37.61 0.907 0.46 -0.088 -35.35 0.162 64.70 0.924 0.58
3 0.054 -14.98 0.120 33.25 0.948 0.45 -0.033 -13.35 0.151 60.48 0.943 0.57

100

m 0.029 -7.96 0.080 22.37 0.944 0.33 -0.020 -8.01 0.101 40.29 0.959 0.41
1 0.013 -3.52 0.070 19.44 0.956 0.29 -0.002 -0.70 0.080 32.20 0.950 0.34
2 0.049 -13.50 0.089 24.82 0.920 0.32 -0.049 -19.60 0.109 43.56 0.947 0.41
3 0.026 -7.30 0.079 22.01 0.944 0.31 -0.014 -5.77 0.101 40.22 0.944 0.40

CASE 2: Parameters grow of 10%

30

m 0.082 -20.02 0.167 40.59 0.953 0.65 -0.064 -26.06 0.186 75.17 0.976 0.77
1 0.042 -10.10 0.135 32.74 0.946 0.52 -0.035 -14.14 0.149 60.23 0.942 0.56
2 0.128 -31.07 0.183 44.44 0.897 0.59 -0.132 -53.22 0.203 81.98 0.919 0.72
3 0.080 -19.42 0.164 39.90 0.939 0.58 -0.051 -20.83 0.189 76.60 0.957 0.72

50

m 0.052 -12.65 0.124 30.13 0.949 0.50 -0.040 -16.16 0.142 57.27 0.968 0.58
1 0.023 -5.67 0.103 25.10 0.945 0.41 -0.016 -6.32 0.110 44.70 0.944 0.44
2 0.087 -21.21 0.139 33.88 0.900 0.47 -0.090 -36.58 0.158 64.03 0.932 0.57
3 0.050 -12.04 0.121 29.49 0.945 0.46 -0.030 -12.14 0.142 57.48 0.949 0.56

100

m 0.030 -7.23 0.082 19.95 0.951 0.33 -0.024 -9.90 0.099 40.00 0.960 0.40
1 0.014 -3.33 0.071 17.26 0.958 0.29 -0.009 -3.47 0.077 31.32 0.953 0.32
2 0.051 -12.42 0.092 22.40 0.926 0.33 -0.056 -22.50 0.110 44.67 0.937 0.40
3 0.028 -6.77 0.081 19.59 0.952 0.31 -0.019 -7.67 0.098 39.76 0.954 0.38

CASE 3: Invariant direction in the relationship

30

m 0.124 -27.34 0.230 50.74 0.949 0.82 -0.125 -31.45 0.254 64.08 0.966 0.93
1 0.064 -14.15 0.178 39.39 0.961 0.68 -0.089 -22.48 0.199 50.30 0.941 0.73
2 0.213 -47.03 0.264 58.27 0.862 0.75 -0.228 -57.63 0.291 73.48 0.890 0.88
3 0.123 -27.20 0.227 50.13 0.941 0.74 -0.110 -27.75 0.255 64.40 0.950 0.88

50

m 0.077 -16.90 0.169 37.27 0.966 0.66 -0.075 -18.96 0.193 48.65 0.965 0.75
1 0.040 -8.78 0.132 29.08 0.955 0.54 -0.060 -15.25 0.157 39.65 0.923 0.59
2 0.154 -34.01 0.206 45.38 0.898 0.64 -0.165 -41.61 0.231 58.31 0.921 0.74
3 0.073 -16.17 0.166 36.54 0.958 0.62 -0.063 -15.85 0.191 48.11 0.960 0.72

100

m 0.058 -12.81 0.131 28.81 0.958 0.48 -0.056 -14.00 0.152 38.23 0.951 0.55
1 0.040 -8.78 0.104 23.01 0.955 0.41 -0.049 -12.23 0.124 31.33 0.920 0.46
2 0.109 -24.00 0.158 34.78 0.901 0.49 -0.114 -28.82 0.179 45.02 0.909 0.57
3 0.055 -12.14 0.129 28.37 0.950 0.46 -0.048 -12.16 0.150 37.93 0.943 0.54
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To summarize the numerical results, the performance of the estimate of the
informative prior are similar to others calculated on twice as many observations.

4. Testing the absence of effect:

Investigators may be interested by the absence of direct effect or indirect ef-
fect. When X is a binary variable, it amounts to test NDE(0) = 0, NDE(1) = 0,
NIE(0) = 0 or NIE(1) = 0.

Proposition 4.1. Let (X,M, Y ) a mediation model with a binary outcome Y . Let
suppose M = α0 + αX + εM with N (0, σ2) and:

logit(E(Y |X,M)) = β0 + βM + γX (logistic model)

or

log(E(Y |X,M)) = β0 + βM + γX (Poisson model)

The following statements are equivalents:

NDE(0) = 0⇐⇒ NDE(1) = 0⇐⇒ γ = 0

NIE(0) = 0⇐⇒ NIE(1) = 0⇐⇒ αβ = 0

Proof. We consider the logistic model. For the natural direct effect, we have:

NDE(x) =
1

σ
√

2π

∫ (
1

1 + e−(β0+bm+γ)
− 1

1 + e−(β0+bm)

)
e
− 1

2

(
m−(α0+ax)

σ

)2

dm

Let fγ the function defined for all m by

fγ(m) =
1

1 + e−(β0+bm+γ)
− 1

1 + e−(β0+βm)

The sign of fγ is the same as γ, thus NDE is the integral of a non-negative (or
negative) function. NDE(x) = 0 is obviously equivalent to fγ(m) = 0 for all m,
which is in turn equivalent to γ = 0.

For the indirect effect, by the method of substitution, a straight forward calculus
leads to:

NIE(x) =
1

σ
√

2π

∫ (
1

1 + e−(β0+β(m+α0)+γx)
− 1

1 + e−(β0+β(m+α0+α)+γx)

)
e−

1
2σ2

m2

dm

The function f(α,β) defined by f(α,β)(m) =
1

1 + e−(β0+β(m+α0)+γx)
− 1

1 + e−(β0+β(m+α0+α)γx)

had the same sign as αβ.
The previous arguments are valid for the Poisson model and the proof is similar.

�

Testing the absence of the direct or the indirect effect is one of the major issues
of the mediation analysis. Let αc be the significance level of the test. We can
perform standard tests based on the parameters α, β, γ:

• For the absence of direct effect (γ = 0), in logistic model, we can use a
likelihood ratio test (LR test) or a Wald test.
• For the absence of indirect effect (αβ = 0), MacKinnon [10] proposed a

bootstrapping procedure. The (1−αc) BCa (bias-corrected and accelerated)
bootstrapping confidence interval for the parameter αβ is computed. The
decision rule is to reject the absence of indirect effect when 0 is not in the
confidence interval.
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Procedure testing for the absence of effects: Thank to the results of Proposition
4.1, the hypothesis can be expressed using the parameters NDE(x) and NIE(x)
(x ∈ {0, 1}). Let us consider the hypothesis of absence of direct effect defined
by H0 : NDE(x) = 0. We propose decision rules based on our Bayesian analysis.
The main idea is to construct the critical region of the test from the (1 − αc)
credible interval Iαc of the parameter NDE(x). The decision rule is to reject the
null hypothesis when the credible interval Iαc does not contain 0. The asymptotic
properties of the posterior distribution ensure that the significance level of this
procedure is αc

The same procedure can be implementing for testing:

• the absence of indirect effect defined by H0 : NIE(x) = 0
• the absence of causal effect defined by H0 : ψ = 0 where ψ = NDE(x) +

NIE(1− x).

Numerical comparison: We compare our testing procedure to the LR test (respec-
tively bootstrapping procedure) for the absence of direct (respectively indirect)
effect. For this comparison , we generate B = 1000 sample from the following
model: for all i ∈ {1, . . . , N}, the triple (Xi,Mi, Yi) is i.i.d. from

Xi ∼ B(0.4),

Mi ∼ N (1 + αXi, 0.752),

Yi ∼ B(pi),

pi =
1

1 + e−(−2+βMi+γXi)
.(6)

We set the significant level αc = .05 and we compare the empirical probability to
reject the null hypothesis.

Table 2 gives the results for testing the absence of direct effect. The value γ = 0
corresponds to the empirical size of tests, and γ > 0 to the empirical power. The
two approaches have the same performances in terms of empirical size. As expected,
the empirical power of the different tests increases with γ and N , with the same
rate of convergence.

Table 3 gives the results for testing the absence of indirect effect. The perfor-
mances of the test depend on the product αβ, but also the values of each parameters
α, β. That’s why α is fixed and we illustrate the convergence rate of the power as
a function of αβ. Let’s remember that the value αβ = 0 corresponds to the em-
pirical size of tests, and αβ > 0 to the empirical power. Both Bayesian procedures
have an empirical size closer to the nominal level αc = 0.05 than the bootstrapping
procedure. As expected, the empirical power of the different tests increases with
αβ and N , but the Bayesian procedure are uniformly more powerful. In addition,
Bayesian procedure is less expensive in term of computation time.

5. Application to schoolchildren’s Well-Being:

The data come from a longitudinal study of schoolchildren aged 6 to 9 years.
Their academic performance was assessed three times at 6-month intervals. The
researchers would like to prove that the schoolchildren’s academic performance at
time t+ 1 depends directly on their academic performance at time t and indirectly
through their Self Efficacy Feeling (see Figure 4). The higher the academic per-
formances, the greater the Self Efficacy Feeling, which in turn generates higher
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Table 2. The empirical probability to reject the absence of direct
effect using our Bayesian decision rule and using the LR test. We
set the significant level and αc = .05 α = β = 2 in the model
defined in (6)

NDE(0) NDE(1) LR test

γ = 0
N = 30 0.04 0.04 0.05
N = 50 0.03 0.03 0.05
N = 100 0.05 0.05 0.07

γ = 1
N = 30 0.09 0.09 0.10
N = 50 0.11 0.11 0.12
N = 100 0.21 0.21 0.21

γ = 2
N = 30 0.23 0.23 0.24
N = 50 0.36 0.36 0.37
N = 100 0.64 0.64 0.63

γ = 3
N = 30 0.41 0.41 0.39
N = 50 0.78 0.78 0.77
N = 100 0.97 0.97 0.96

AP1

SEF2

AP2

SEF3

AP3

Figure 4. Structural model. AP : Academic Performance, SEF : Self
Efficacy Feeling.

academic performances. Teachers evaluate academic performance as above fol-
lows: AP = 1 if the schoolchildren’s results reach (or exceed) the expected level
and AP = 0 otherwise. The Self-Efficacy Feeling is a 11-item questionnaire scale.
Schoolchildren responded to the item on a scale ranging from 1 (not agree at all)
to 6 (totally agree).

The structural model was tested controlling the gender (W ). To include the
categorial covariate W on a mediation model (X,M, Y ), VanderWeele [17] define
the natural direct effect by:

NDE(x) =
∑
w

NDEw(x)P(W = w)

where

NDEw(x) :=

∫
M

[
E(Y |X = 1,M = m,W = w)−E(Y |X = 0,M = m,W = w)

]
dFM |X=x,W=w(m).
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Table 3. The empirical probability to reject the absence of indi-
rect effect using our Bayesian decision rule and the bootstrapping
procedure. We set αc = .05, γ = 2, α = 2 in the model defined in
(6). The indicated values of the product αβ correspond to β ∈
{0, 0.05, ....}

αβ N NIE(0) NIE(1) boot

αβ = 0
30 0.07 0.07 0.01
50 0.06 0.06 0.04
100 0.06 0.06 0.04

αβ = 0.1
30 0.06 0.06 0.01
50 0.08 0.08 0.04
100 0.04 0.04 0.03

αβ = 0.5
30 0.07 0.07 0.02
50 0.10 0.10 0.06
100 0.10 0.10 0.07

αβ = 1.00
30 0.13 0.13 0.03
50 0.20 0.20 0.12
100 0.28 0.28 0.21

αβ = 1.50
30 0.20 0.20 0.05
50 0.30 0.30 0.22
100 0.57 0.57 0.46

αβ = 2.00
30 0.35 0.35 0.24
50 0.30 0.30 0.23
100 0.78 0.78 0.73

αβ = 3.00
30 0.60 0.60 0.42
50 0.59 0.59 0.47
100 0.98 0.98 0.97

αβ = 4.00
30 0.81 0.81 0.51
50 0.82 0.82 0.73
100 1.00 1.00 1.00

Similarly, we can define the natural indirect effect NIE with a categorial covariate
W . The Bayesian model with a covariate W is defined by:

M = α0 + αX + cW + εM

logit(E(Y |X,M)) = β0 + βM + γX + dW

We do not propose longitudinal modeling, but we apply the mediation model to the
two measurement times independently. For the first time measurement, the dataset
is (Y,X,M) = (AP2, AP1, SEF2). We apply only Model 3 since no historical
information is available to construct Model 1. For the second time measurement,
(Y,X,M) = (AP3, AP2, SEF3), both models can be implemented. For Model 1, the
prior distribution is constructed taking (Y,X,M) = (AP2, AP1, SEF2) as historical
sample. Note that AP2 can be used to construct the informative prior because the
mediation model is defined conditionally to (X,W ).

In Figure 5, we see that Model 1 and Model 3 give similar posterior distribution
for NDE(x). The use of historical data in Model 1 does not improve the estimation
compared to Model 3. This result is not amazing when we compare the posterior
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Figure 5. Posterior distribution of the parameters of interest
NDE(x), NIE(x) (x ∈ {0, 1}) calculated on the data of the sec-
ond measurement time. The density in pink (denoted by historical)
represents the prior information (used in Model 1) and corresponds
to the posterior distribution obtained at the first measurement
time.

Table 4. 95 %-Credible Interval for NDE(x), NIE(x) (x ∈ {0, 1})
parameters at the second time measurement

Direct Effect NDE Indirect Effect NIE
Model 1 Model 3 Model 1 Model 3

X = 0 [0.236 ; 0.376] [0.251 ; 0.378] [0.009 ; 0.106] [0.014 ; 0.115]
X = 1 [0.220 ; 0.384] [0.232 ; 0.383] [0.008 ; 0.096] [0.014 ; 0.103]

distribution obtained by Model 3 at the two time measurements. Indeed, both
density are very far away, so the information coming from historical sample is not
relevant

For the parameter NDE(x), the situation is very different since we notice that
the estimations at the measurement times are similar. This context is favorable to
Model 1, and this is confirmed by the more precise estimates.

Table 4 provides 95% credible intervals for the same parameter as Figure 5. These
numerical values confirmed our previous conclusions. In addition, the application
of our decision rule based on the credible interval (see section 4) allows us to test
the significance of these parameters. The conclusion of testing procedure are the
following:

• the past academic performances have a significant direct effect for the two
groups (AP =1 and AP=0)
• the direct effect varies over time while the indirect effect does not.
• the direct and indirect effects for the two groups (AP = 0 and AP = 1) are

significant at the second time measurement.
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6. Discussion and conclusion

The Bayesian approach introduced by Launay et al. [9] provides informative
prior based on the knowledge of historical sample. The key idea is to learn the
correlation between the parameters from the historical sample. As shown in the
numerical results, the improvement brought upon non or weak informative prior
is more particularly important when there are weak variation on the parameters.
This situation seems to be realistic in a longitudinal study. Its application to
schoolchildren’s Well-Being confirms this fact. We obtain estimation of direct and
indirect effects more precise than the standard method implemented in R package
mediation (see Tingley et al. [16]). We propose also a Bayesian decision rule for
testing the absence of a direct effect or an indirect effect. For the direct effect we
can see numerically that the Bayesian rule performs similarly than the classical
Student’s t-test. For the indirect effect, there is no exact test but a bootstrapping
test is typically used. The comparison with this test is in favor of our Bayesian
rule.
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