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Abstract

Infections of stratified epithelia contribute to a large group of common diseases, such as

dermatological conditions and sexually transmitted diseases. To investigate how epithelial

structure affects infection dynamics, we develop a general ecology-inspired model for strati-

fied epithelia. Our model allows us to simulate infections, explore new hypotheses and esti-

mate parameters that are difficult to measure with tissue cell cultures. We focus on two

contrasting pathogens: Chlamydia trachomatis and Human papillomaviruses (HPV). Using

cervicovaginal parameter estimates, we find that key infection symptoms can be explained

by differential interactions with the layers, while clearance and pathogen burden appear to

be bottom-up processes. Cell protective responses to infections (e.g. mucus trapping) gen-

erally lowered pathogen load but there were specific effects based on infection strategies.

Our modeling approach opens new perspectives for 3D tissue culture experimental systems

of infections and, more generally, for developing and testing hypotheses related to infections

of stratified epithelia.

Author summary

Many epithelia are stratified in layers of cells and their infection can result in many

pathologies, from rashes to cancer. It is important to understand to what extent the epi-

thelial structure determines infection dynamics and outcomes. To aid experimental and

clinical studies, we develop a mathematical model that recreates epithelial and infection

dynamics. By applying it to a virus, human papillomavirus (HPV), and a bacteria, chla-

mydia, we show that considering stratification improves our general understanding

of disease patterns. For instance, the duration of infection can be driven by the rate at

which the stem cells of the epithelium divide. Having a general model also allows us to

investigate and compare hypotheses. This ecological framework can be modified to study

specific pathogens or to estimate parameters from data generated in 3D skin cell culture

experiments.
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Introduction

Stratified epithelia cover most of the human body’s exterior and line the inner cavities, such as

the mouth and vagina. Localized (non-systemic) infections of these epithelia can cause a wide

range of conditions that collectively represent a major burden on global public health systems.

For instance, skin conditions are ranked 4th in global years lost due to disability (YLDs) and

are in the top 10 most prevalent diseases globally [1]. Infections (viral, fungal, bacterial, etc.)

are either the etiological agents or are secondary opportunistic infections (e.g. scabies, eczema)

of many skin conditions and thus play a major role in their burden and outcomes. While strat-

ified epithelia are often the first line of defense against infections [2], their cells are the primary

target for many viruses or bacteria. This is why understanding epithelial life-cycles, signaling,

and dynamics is an active line of research [3].

Epithelial infections are very heterogeneous in their outcomes, ranging from short sub-clin-

ical acute infections to chronic pathologies [1]. Our hypothesis is that the stratified structure is

one of the keys to understanding these patterns. Though experimental and clinical methods

used for studying these infections are increasingly quantitative (e.g. flow cytometry or -omics

technologies), theoretical frameworks for understanding infection properties and dynamics in

stratified epithelia are lacking since most models consider infections of monolayers or blood.

Here, we build on the analogy between a host and an ecological system [4, 5] to investigate

how the stratification of the epithelium drives infection dynamics. We focus on keratinocyte

epithelia as an example as it is a well-studied stratified system with important public health

implications.

Localized infections of stratified epithelia such as the cervicovaginal mucosa are involved in

a range of health concerns, such as decreasing fertility [6–9] or carcinogenesis [10]. Studying

the cervical epithelium has greatly helped improve women’s health [11] and histological stud-

ies of cervical infections have characterized both healthy and diseased cells. The ectocervix is a

non-keratinized stratified epithelium that acts as an important barrier to prevent infections

from entering the upper part of the female genital tract and affecting fertility. The tight packing

of the epithelial cells and their migration to the surface are believed to prevent bacteria and

viruses from reaching the dermis [12]. Furthermore, the continual production of surface

mucus is thought to aid in trapping and removing invaders [13]. Studying these processes

using tractable experimental systems has been a challenge given the complexity of recreating

stratified epithelia with realistic features, but this is changing rapidly [14]. Mathematical

modeling can aid this experimental work by helping to estimate parameters such as changes in

cell migration or mucus production rate.

The vast majority of mathematical models of within-host dynamics focus on virulent viruses

causing systemic infections, such as HIV (for a review, see [15]), but some investigate patho-

gens that only (or mainly) target epithelia such as Chlamydia [16–20], HPV [21–24], Epstein-

Barr Virus (EBV) [25, 26] or HSV [27]. A common feature of these models is that they focus on

the pathogen and the associated immune response, while largely overlooking the epithelium

itself. As a consequence, with few exceptions (e.g. [23]), they assume that the population of cells

infected by the pathogen is homogeneous and not structured. We take an ecological approach

to model the stratified epithelium to investigate the effect of the structure of the life cycle of

the host cells on infection dynamics. The analogy between ecological systems and within-host

interactions is not new (e.g. [4]), but it is becoming increasingly common and has underlaid

successful quantitative tools for understanding viral kinetics [15, 28] and drug resistance [29].

From an ecological perspective, the stratified epithelial structure can be viewed as having

stages or age structure (herein called ‘stage-structure’), meaning the full life-cycle of an individ-

ual cell is divided up into stages (or ages). Therefore, populations of one stage give rise to
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another in a successive fashion. Ecological populations with stage-structure have been shown

to have rich dynamics [30]. If resource populations (species low in a food chain) are stage-

structured, then the resulting dynamics can impact the entire ecological system [30–32]. Gen-

erally, oversimplifying (e.g. not considering the stage-structure of the resource) or not consid-

ering the resources is known to potentially lead to incorrect predictions about the behavior of

the system [33]. Similar importance has been shown in host-pathogen systems. For instance,

by combining mathematical models with experimental data Mideo et al. showed that differ-

ences between Plasmodium chabaudi strains could be most parsimoniously explained by their

different affinity for erythrocytes of different ages, as well as differences in erythropoiesis, i.e.

in how red blood cells are made [34]. Target cell heterogeneity has also been put forward to

explain the HIV co-receptor switch [35]. While we pursue this analogy, we insist that stratified

epithelia exhibit features that differ from traditional populations. For instance, differentiated

keratinocytes (or ‘adults’) do not reproduce to make stem cells (or ‘juveniles’) the way free-liv-

ing species do. Additionally, the epithelium self-regulates its dynamics as a means to maintain

homeostasis, which involves the maintenance of constant numbers of cells by physiological

processes, such as states of dormancy, proliferation and signaling [3]. Together, this calls for a

system-specific approach.

Having a framework for epithelial dynamics allows us to simulate infections. For this, we

chose two prevalent stratified epithelium infections with very different biological features:

Human papillomaviruses (HPVs) and Chlamydia trachomatis bacteria. In the United States

alone, more than 1.5 million cases of C. trachomatis were reported to the Center for Disease

Control (CDC) in 2017 and HPVs are the most common sexually transmitted infection in the

country [36]. Most HPVs are, in fact, not sexually transmitted and are part of a large family of

viruses that infect stratified epithelia throughout the body (of the mucosal and or cutaneous tis-

sues) and are considered part of our virome [37, 38]. While both Chlamydia and HPVs replicate

intra-cellularly, these two infections exhibit contrasting strategies for infecting the squamous

epithelium: HPVs cause non-lytic basal-up infections, whereas chlamydia infections are from

the surface-down and are lytic. As mentioned, there are some previous mathematical models of

both HPV and chlamydia [16–24] and, importantly, the biology of these two pathogens have

been considerably studied, with well characterized life-histories (HPVs [37] and Chlamydia
[39]). Consequently, this provided us with peer-reviewed parameter estimates, biologically

grounded assumptions and previous results from mathematical models without epithelium

stage-structure with which to compare our results. Finally, to maintain focus on the epithelium,

we used a simple model for the immune response, as in earlier studies (e.g. on HSV, [27]).

We address to what extent epithelium dynamics affect infection dynamics and as a result

determine infection outcomes. First, we introduce a general epithelium model, which we cali-

brate using existing data, as well as original cell culture data from a spontaneously immortal-

ized human cell line (NIKS) [40]. With this data we infer parameters that are difficult to

measure, such as the fraction of symmetric cell divisions. We then ‘infect’ this epithelial model

with chlamydia, wart-associated HPVs and oncogenic (high-risk, HR) HPVs to investigate

how protective measures by the epithelium affect infection load and duration, while identify-

ing the parameters that control key infection traits. We find that epithelium stratification plays

a key role in the dynamics and outcomes of these infections.

Results

Uninfected epithelial dynamics

Our model abstracts the stratified epithelium into four phenotypically distinct populations, rel-

evant to clinical and experimental models of the epithelium: stem-like cells in the basal and
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parabasal layers, and differentiated cells in the mid and surface layers (Fig 1 and equation

system 1). These phenotypes can be identified experimentally using immunofluorescence tech-

niques that target genes or proteins expressed differentially as the cells mature and move up

the epithelial column. The model is sufficiently generic that it can represent any stratified squa-

mous epithelium, keratinized or not. We considered the cervicovaginal mucosa as an example

to parametrize and infect. The model includes 7 parameters, of which 4 are inferred from cer-

vical autoradiographic experiments done in 1970 [41] and one, Nb, is a scaling parameter

describing the surface of the basal monolayer considered. The two remaining capture the dif-

ference in symmetric divisions probabilities by the basal and parabasal cells (Δp is fixed at zero

and Δq is free and calibrated). All the parameters are listed in Table 1.

The parameters for which we have less information are related to the fraction of cells divid-

ing symmetrically (e.g. a parabasal cell produces two daughter parabasal cells or two differenti-

ated cells). Existing data suggests symmetric divisions are expected to be low [42, 43]. This is

further reinforced by our estimate of epithelium thickness. Histological studies calculate 26 to

28 cell layers in the vaginal epithelium depending on the stage of the menstrual cycle [44] and

in vivo studies of the cervical epithelium count 16 to 17 layers [45]. To achieve comparable val-

ues, and assuming that the ranges of the other parameters are biologically plausible, we find

that symmetric divisions must be rare. Calibrating Δq� −0.012 gives an epithelium ‘thickness’

of 17 layers, i.e. 17Nb. Analytical results shown in S1 Text revealed the need for some degree

Fig 1. Dynamics in the stratified epithelium. A) Basal and parabasal cells can divide either asymmetrically (1 − p1 − p2 and 1 − q1 − q2 respectively) or

symmetrically, which result in two daughter cells of either the same (p1 or q1) or different phenotype as the mother cell (p2 or q2). B) The squamous epithelium

is abstracted into a basal, a parabasal, a mid-upper and a surface layer. Proliferation (ρ) and maturation (ν) rates determine the movement of cells up the layers.

Cells die and are shed (μ). Chlamydia trachomatis (in green) infects the most superficial live cells underneath the mucus and surface dying cells. Once inside a

cell, the elementary bodies (EB) change into reticulate bodies, which go through several rounds of replication, and then change back into EBs that are released

upon cell death. Human papillomaviruses (in purple) must infect basal cells to establish an infection, thus usually requiring a microabrasion. The virus is non-

lytic and replicates in host cells as they follow their natural life-cycle up the epithelium column. Progeny virions are released once the cell dies at the surface.

Immune cells (in blue) enter the epithelium from the basal layer.

https://doi.org/10.1371/journal.pcbi.1006646.g001
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of symmetric division biased towards producing differentiated cells (Δq< 0). Furthermore, if

we assume each layer of parabasal cells has the same number of basal cells and that the differ-

entiated cells are half the number of cells per layer (because they are twice the size [46]), then

17Nb corresponds to 26 layers. Finally, we found that the mid layers, that is the differentiated,

Ud, and parabasal layers, Up, are larger than the basal and superficial, Us, layers. To obtain

experimentally relevant parameter estimates, we used our model and the known parameters as

priors to estimate values using original data from raft cultures of NIKS (Normal Immortal Ker-

atinocytes) cells. The NIKS cell-line grows into a 3D epithelium structure and is commonly

used as a model of cervicovaginal tissue and HPV infections, though they are known to differ

from in vivo tissue [40]. Fig 2A and 2B show an example of NIKS cell growth into stratified

form. Fig 2C shows the dynamics of the number of basal and suprabasal (non-keratinized and

keratinized) cells, along with the inferred dynamics from the model. From this data (of growth

from single layer to stratified) the symmetric divisions were inferred to be negligible in the

basal layer but important in the parabasal layers (Table 1). This implies then that the constant

basal layer assumption, and thus model 1, is appropriate for fitting organotypic culture data-

sets. The data constrained the replication rate of the parabasal cells, ρp, to be low and the Δq
was estimated to be close to −1, suggesting that while the replication rate is low, nearly all para-

basal divisions produce two differentiated cells which move up the column (Table 1). This,

along with the higher than in vivo estimates for the basal replication rate, ρb, is consistent with

a growth phase of an epithelium growing up to homeostasis.

We performed a sensitivity analysis to explore the general behavior of the model and iden-

tify the parameters that have the largest effect on homeostasis, i.e. at a dynamic equilibrium

without infection (Table 2). This showed that the total number of cells in the layers above the

basal layer is mostly governed by the basal cell proliferation rate, ρb. Additionally, the time for

the system to reach homeostasis (which is important for repairing damaged tissues) depends

on the proliferation rate of the parabasal cells (ρp; S1 Text). Indeed, homeostasis is reached

Table 1. Parameter descriptions for epithelial model, default values, biologically realistic ranges and estimated values. Literature estimates (a) are for cervicovaginal

epithelia, while data-derived estimates (b) are for NIKS cell cultures, which are a common cell-line used to model these systems, but are not identical to in vivo cells in the

cervicovaginal squamous epithelium (for example the latter cannot form keratinized layers). Thus, estimates are not expected to be identical. Additionally, (a) parameters

are measured from systems already at homeostasis, while in (b) the cultures grow-up from a single layer. Parameter values that were chosen for the results to be biologically

consistent are labelled as ‘calibrated’. The values ‘fixed�’ and ‘estimated�’ were derived using data (see S1 Text).

Default Range Ref

a. in vivo estimates (literature)
Nb Total number of basal cells 103 [102; 105] fixed

ρb Basal cell replication rate (day−1) 0.03 [0.03; 0.07] [41]

ρp Parabasal cell replication rate (day−1) 0.39 [0.2; 1] [41]

Δp Difference of symmetric divisions (basal to parabasal) 0 [−; −] fixed

Δq Difference of symmetric divisions (parabasal to differentiated) -0.012 [−1; 1] calibrated

ν Keratinocyte migration rate (mid/upper to surface layer, day−1) 0.4 [0.2; 1] [41]

μ Keratinocyte natural death rate (cell−1� day−1) 0.67 [0.2; 1] [41]

b. culture estimates (data-derived)
Nb Basal cell carrying capacity per FOV 47 [-; -] fixed�

ρb Basal cell replication rate (day−1) 0.061 [0.060; 0.062] estimated

ρp Parabasal cell replication rate (day−1) 0.0082 [-; -] estimated�

Δp Difference of symmetric divisions (basal to parabasal) � 0 [-0.02; 0] estimated

Δq Difference of symmetric divisions (parabasal to differentiated) −0.99 [-1; -0.96] estimated

ν Keratinocyte migration rate (mid/upper to surface layer, day−1) 0.18 [0.15; 0.21] estimated

μ Keratinocyte natural death rate (cell−1� day−1) � 0 [0; 0.01] estimated

https://doi.org/10.1371/journal.pcbi.1006646.t001
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faster when the replication rate, ρp, or the symmetric divisions of the parabasal cells, Δq, are

significantly higher, as found from fitting the data and the model simulations (Table 1 and not

shown).

Having generated and calibrated a model for epithelial dynamics, we could then simulate

infections to investigate how stratification affects important properties of the infection.

Symptoms during infection: Disruption of homeostasis

Epithelial infections by both chlamydia and HPVs are heterogeneous in their clinical manifes-

tations. Chlamydia infections can be asymptomatic or with clinical manifestations such as

cervicitis [47]. The lytic nature of chlamydia infections reduces the epithelium to lower cell

numbers than homeostasis, therefore affecting the integrity of the layers (Fig 3). This is consis-

tent with the cervical erosion observed in chlamydia-driven cervicitis or in infections by other

lytic pathogens such as HSV [48].

Fig 2. Epithelial cell growth in 3D raft cultures. A) NIKS grown from a single layer over a period of three weeks. Dark pink layer in week 3 consist of cornified cells

that accumulate on the surface. B) Immunoflourescence staining: DAPI (blue) is nuclear staining for cell counting and BrdU (pink) is for identifying cells undergoing

division; white dots are added to delineate basal lines. C) Data of NIKS growth over time with model fitting. Shading corresponds to 95% prediction interval,

assuming the data follows a Poisson distribution.

https://doi.org/10.1371/journal.pcbi.1006646.g002
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Several HPVs have been found to be associated in wart-like lesions, which are substantive

cell overgrowth above homeostasis levels. Among the mucosal α-genus HPVs, HPV6 and

HPV11 often (though not always) generate papillary lesions or warts. In cutaneous stratified

squamous epithelia several HPVs are associated to warts (e.g. species 2 and 4 of the α-genus

and the types of the μ- and ν-papillomaviruses) in various locations, such as the feet and hands

[49]. Conversely, HR-HPV types cause flat lesions (yet with a thickening of the epithelium)

[37]. How differences between HPV types translate into this observed diversity of clinical

Table 2. Sensitivity analyses of key infection properties. For each pathogen, we show the three most important

parameters with the associated partial rank correlation coefficient (PRCC) and its 95% confidence interval. Notations

for parameter values are in Tables 1 and 3. Peak of infected cells is a measure of the size of the infection, peak of free-

virion (or elementary bodies, EBs) load is how much progeny is released for re-seeding the infection or transmission,

and day of peak is a measure for how quickly the infection grows. For effects on protection by epithelial parameters we

tested: ν, μ, ρb, ρp, z, and zu.

Uninfected Epithelium

Total number of cells ρb: 0.72 [0.68, 0.74] Δq: 0.66 [0.61, 0.70] ν: -0.45 [-0.50, -0.39]

Time to homeostasis Δq: 0.62 [0.58, 0.67] ρp: -0.60 [-0.66, -0.55] ν: -0.41 [-0.45, -0.35]

wart-associated HPV

effects of epithelial parameters
Peak of infected cells ρb: 0.98 [0.98, 0.99] ν: -0.94 [-0.95, -0.93] μ: -0.73 [-0.77, -0.69]

Peak of free-virion load z: -0.96 [-0.97, -0.96] ρb: 0.94 [0.94, 0.95] ν: -0.85 [-0.87, -0.83]

Duration of infection z: 0.96 [0.95, 0.97] ρb: -0.93 [-0.94, -0.92] ρp: -0.85 [-0.87, -0.82]

Day of peak z: 0.95 [0.95, 0.96] ρb: -0.93 [-0.94, -0.92] ρp: -0.88 [-0.90, -0.86]

effects of infection parameters
Peak of infected cells ρa: 1.00 [0.99, 1.00] κ: -0.84 [-0.85, -0.83] θ: -0.02 [-0.09, 0.05]

Peak of free-virion load θ: 0.92 [0.91, 0.93] ρa: 0.88 [0.87, 0.90] β: 0.05 [-0.002, 0.11]

Duration of infection κ: -0.96 [-0.97, -0.96] β: 0.71 [0.67, 0.73] θ: 0.71 [0.68, 0.75]

Day of peak κ: -0.99 [-1.00, -0.99] β: -0.49 [-0.55, -0.42] θ: -0.49 [-0.55, -0.41]

HR-HPV

effects of epithelial parameters
Peak of infected cells ρb: 0.98 [0.97, 0.98] ν: -0.94 [-0.94, -0.93] z: -0.91 [-0.92, -0.89]

Peak of free-virion load z: -0.97 [-0.97, -0.97] ρb: 0.95 [0.95, 0.96] ν: -0.87 [-0.86, -0.85]

Duration of infection z: 0.97 [0.96, 0.97] ρb: -0.95 [-0.96, -0.94] νp: 0.86 [0.84, 0.88]

Day of peak z: 0.97 [0.96, 0.97] ρb: -0.95 [-0.96, -0.94] νp: 0.86 [0.84, 0.88]

effects of infection parameters
Peak of infected cells ab: 0.93 [0.92, 0.94] ρa: 0.91 [0.90, 0.92] ap: 0.24 [0.17, 0.31]

Peak of free-virion load θ: 0.87 [0.86, 0.89] ρa: 0.80 [0.78, 0.83] ab: 0.77 [0.75, 0.81]

Duration of infection κ: -0.95 [-0.95, -0.94] θ: 0.68 [0.64, 0.71] β: 0.66 [0.62, 0.70]

Day of peak ap: -0.99 [-0.99, -0.99] κ: -0.94 [-0.95, -0.94] ρa: -0.15 [-0.22, -0.09]

Chlamydia

effects of epithelial parameters
Peak of infected cells ρp: 0.95 [0.94, 0.96] ν: -0.94 [-0.94, -0.93] zu: -0.91 [-0.92, -0.90]

Peak of EBs zu: -0.97 [-0.97, -0.96] ρp: 0.91 [0.90, 0.92] ν: -0.89 [-0.91, -0.87]

Duration of infection zu: -0.94 [-0.95, -0.93] ρb: 0.92 [0.91, 0.93] ν: -0.87 [-0.89, -0.86]

Day of peak zu: 0.94 [0.93, 0.95] ν: 0.93 [0.92, 0.94] ρp: -0.91 [-0.92, -0.89]

effects of infection parameters
Peak of infected cells βu: 0.68 [0.64, 0.71] βp: 0.53 [0.50, 0.58] βb: 0.28 [0.22, 0.36]

Peak of EBs βu: 0.79 [0.76, 0.81] ηu: -0.68 [-0.73, -0.65] βp: -0.61 [-0.66, -0.57]

Duration of infection βp: 0.85 [0.84, 0.87] f: -0.65 [-0.69, -0.61] ηu: 0.37 [0.32, 0.42]

Day of peak βu: -0.82 [-0.84, -0.80] βp: -0.79 [-0.82, -0.77] ηu: -0.33 [-0.40, -0.26]

https://doi.org/10.1371/journal.pcbi.1006646.t002
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manifestations in the epithelium is not always clear. What is clear is that HR-HPVs have stron-

ger cell transforming properties than low-risk (LR) and wart-associated HPVs [37]. The epi-

thelium model allowed us to identify conditions that lead to wart-like manifestations. When

assuming that there can be rare events of new virions entering the basal layer (e.g. due to

immunosuppression and cytokines loosening epithelial junctions) and that wart-associated

types do not drive cell proliferation in lower layers [37], we find that they must either have

higher burst sizes (produce more virions per cell) than HR-HPV types or be better at driving

differentiated cells back into S-phase in the upper layers (ρa and θ control the peak of infected

cells in Table 2). Burst size, θ, also controls how quickly the number of infected cells increases,

as does the infection rate, β. This explains why simulations of wart-associated HPVs with

higher burst sizes are more effective at reaching basal cells, as illustrated by the differences in

shading of basal layers between Fig 4A and 4B. Epidemiological studies that directly compare

viral loads of LR vs. HR genital HPVs are needed, however, wart-associated HPVs (mucosal or

cutaneous) have higher viral loads in warts than other HPVs [49].

HR-HPVs have enhanced E6 and E7 oncoprotein effects in the lower layers [37]. In spite of

this increase in epithelial cell division rate their infections are flat, slow growing, and are often

clinically indistinguishable from a normal epithelium for many months. For this to occur, we

find that the extra proliferation in the basal, ab, and upper layers, ρa, and the type’s burst size,

θ, must be kept low (Table 2 and Fig 4B). This implies HR-HPVs would be less ‘productive’

(shed less virions) than wart-associated HPV during an infection of the same duration (Fig

4C). If HR-HPVs were to have low burst sizes but high oncoprotein-driven proliferation in the

lower layers, then their infections would be wart-like (S1 Text, S2 Fig). Thus, to maintain flat

Fig 3. Simulated population dynamics of epithelial cells, immune effectors and bacteria in chlamydia infections. In A, the immune cell proliferation is

rapid, which leads to an acute infection. In B and C, immune cells do not proliferate fast enough to clear the bacteria and the acute phase is followed by

oscillations and the establishment of a chronic phase (plateau of EB density). The infection is lytic reducing the thickness of the epithelium (A, B and C) but only

chronic infections manage to infect the lower layers (B and C). Parameter values are default (Table 3 and literature values in Table 1) except in A where βb =

8.0 × 10−7 cell−1� EB−1� day−1, βp = 4.0 × 10−6 cell−1� EB−1� day−1, βu = 2.0 × 10−5 cell−1� EB−1� day−1, and φ = 0.0015 day−1. In C, all four epithelial protective

measures happen together, i.e. zu, ρb, μ, and ν all rise logistically to a threshold above default after infection to mimic the protective epithelial response (see

section A.3 S1 Text, eqn 7a with θ = 1). Thresholds used in C: zumax ¼ 6 day� 1
, rbmax ¼ 0:3 day� 1

, μmax = 0.9 cell−1� day−1, and νmax = 0.8 day−1.

https://doi.org/10.1371/journal.pcbi.1006646.g003
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lesions the strong HR oncogenes need to be down-regulated. A simulated representation of

silent, productive HR-HPV infection is shown in Fig 4B.

For an infection to be sufficiently disruptive to generate a visible manifestation, both the

size of inoculum (number of cells infected initially) and how quickly the microabrasion closes

from repair appear to matter. For instance, the wart-like overgrowth of cells in Fig 4A can be

created either by a small inoculum with slow repair or by a large inoculum and fast repair.

When microabrasions close quickly (within a few days) and only a small number of cells are

infected initially, both HR and wart-associated types do not cause any visible disruption to

Fig 4. Simulated population dynamics of epithelial cells, immune effectors and free viruses in the case of HPV infections. Wart-like epithelial dynamics in

a wart-associated HPV infection (A) and a slow growing high-risk (HR) HPV infection that spontaneously regresses (B). The black shading shows the

proportion of infected cells in each layer. (C) Dynamics of virus load (black) and the density of immune effectors (gray) for wart-associated HPV (dashed line)

and HR-HPV (full line) infections. Immune cells start to proliferate upon infection but their number remains below −2 log for several months. (D) Simulated

scenario where the infection is inoculated with few cells and the microabrasion repairs quickly: this results in both wart-associated and HR types causing

asymptomatic infections. Here, the model predicts that infections with HR types have more infected cells, due to their higher proliferative properties, but wart-

associated types produce more virions (i, ii, iii), and both infections can last for years, if stochasticity or the innate response do not clear them (i, ii). Parameter

values are default (Tables 1 and 3) and infection models are 3. Infection rates of both wart-associated and HR HPVs are identical (β = 10−10) and all infections

begin with 10 infected basal cells. In (D) the infection rate, β, decays to zero in 10 days (b = −0.5) to mimic tissue repair (see section A.3 in S1 Text for details).

https://doi.org/10.1371/journal.pcbi.1006646.g004
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homeostasis Fig 4D. Clinically, these infections would be asymptomatic with normal cytology

and would likely only be detectable using PCR methods.

Finally, we compared our HPV results with a non-stratified model of HPV infection (see S1

Text) and find that it is unable to reproduce the features associated with HR and non-HR HPV

infections if using the same biologically constrained parameter ranges (see S4 and S5 Figs).

Infection duration and persistence

For some parameter combinations the kinetics of chlamydia infections had an acute phase

only (Fig 3A), as have been observed in guinea pigs and other animal models [18]. We obtain

this qualitative pattern most readily when the infection rates are the same for all layers or when

the lower layers are difficult to infect (for instance due to the reduced permeability down the

epithelium column [12]) and the population of immune effectors grows rapidly. From the sen-

sitivity analysis, duration is longer when the EBs can infect the lower layers, ηu, and shortened

when the cell recovery rate is high (Table 2).

We also found an acute phase can be followed by a chronic phase, where a pathogen load

stabilizes to a set point value (Fig 3B). How quickly a chronic phase is reached depended on

chlamydia’s infection rates of the various layers. Generally, infection rates had to be low to

achieve the chronic phase (because if too high then the bacteria burn through the epithelium

and its population crashes). Additionally, if the layers are differentially infected by chlamydia

(i.e. βb< βp< βu), then the chronic phase is reached earlier (see S3 Fig).

In contrast, long-lasting wart-associated and HR HPV infections did not exhibit an acute

and a chronic phase in our model. Instead, they persisted by monotonically reaching an equi-

librium (e.g. Fig 4Di and 4Dii). Also, for both HPVs, the immunity killing rate, κ, was the

most important factor in determining infection duration (Table 2). With more antigen in the

lower layers to detect, the efficiency of immune killing (κ) becomes important for determining

duration of infection, speed of growth and size of infected cell accumulation (Table 2).

Finally, while Chlamydia and HPVs can cause either acute or chronic infections [51], our

model showed that a clinically detected chronic state is achieved through different underlying

dynamic patterns for each pathogen.

Protective effect of epithelial dynamics against infection

Upon infection, epithelia exhibit defense mechanisms such as increasing mucus flow, tighten-

ing the packing of cells, migration to the surface [52] and increasing proliferation (promoted

by Interleukin-22 cytokines [53–55]). We varied epithelial parameters from their homeostasis

value to investigate in detail the effect of such mechanisms on various measures of infection

using our infection models for HPV and chlamydia (models 3, 4 and sensitivity analyses in

Table 2).

We found some mechanisms had similar effect on both HPVs and chlamydia. First, increas-

ing upward migration of epithelial cells, ν, reduced the maximum pathogen load reached dur-

ing the infection (Table 2). Second, mucus trapping, z, delayed the peak and the duration

(although it played a bigger role in decreasing the peak of infection for chlamydia than for

HPV). And finally, for all infections, increasing basal or parabasal cell proliferation, ρb and ρp,
scored high in affecting all the infection measures, e.g. size of peak or duration (‘effects of epi-

thelial parameters’ in Table 2). However, a pathogen-specific effect was that increasing basal

proliferation, ρb, of uninfected cells decreases the time to clear HPVs but not chlamydia.

Together, this suggests that epithelial cell features themselves play an important role in infec-

tion dynamics and outcomes.

Epithelial stratification shapes infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006646 January 23, 2019 10 / 25

https://doi.org/10.1371/journal.pcbi.1006646


Discussion

Epithelial infections are a major public health burden, and, in particular, STIs are on the rise

causing a worldwide concern [1, 9, 56]. Quantitative models, both experimental and mathe-

matical, are essential in developing our understanding of these infections. As for systemic (and

virulent) infections such as HIV and HCV, mathematical models have been developed to pre-

dict and analyze the kinetics of epithelial infections. Here, we show that to understand the

kinetics of epithelial infections, it is essential to account for the stratified structure of the epi-

thelium, a property that is absent from most models. We illustrated how such a general frame-

work can be combined with 3D cell culture data to estimate key parameters and how it can

generate relevant insights regarding the course of epithelial infections.

Dynamical implications of ecological features

The rate of basal cell proliferation had a strong effect on the homeostasis of both uninfected

and infected epithelia, which suggests an ecological ‘bottom-up controlled’ system [57, 58],

analogous to those found in free-living food webs. These bottom-up effects are more apparent

if we consider that basal cell replication is strongly determined by the resources that are avail-

able in the basal lamina, such as growth factor. While we did not explicitly model the resources

of the basal layer (it is implicit in the basal proliferation rates), the growth of the cells in the

experimental set-up does depend on concentration and temporo-spatial distribution of growth

factors, impacting epithelial thickness and proliferation rates. Therefore, this ecological insight

of bottom-up driven systems, could be tested more formally in experimental systems by moni-

toring resource concentrations.

The key role of bottom-up control is further supported by our finding that accelerating

basal cell proliferation, as a response to infection [53, 54], affected all infection measures (e.g.

time of peak, total load, duration). This infection response, then, can have a strong effect on

the severity and duration of infections. However, using the same response mechanism might

be differentially effective depending on the infection strategy of the pathogen. For instance, we

found that increasing cell proliferation did not shorten the infection of chlamydia. This is

probably because proliferation increases the number of uninfected epithelial cells in the upper

layers which, for chlamydia, means more ‘resources’.

Pathogens can have different tropisms for the various cell phenotypes of the stratified epi-

thelium. For instance, EBV more readily infects and replicates in differentiated cells of the

upper/mid layers [59], whereas HPV infects the basal layer to establish an infection [37]. We

hypothesized that this should impact how effective protective processes (e.g. increased mucus

production) of the epithelium are against them. In chlamydia, where the pathogen infects all

cell types equally well, we found that tight packing (i.e. epithelial permeability) mattered to the

pathology at the site. The speed at which the epithelium shrank and the stability of the infec-

tion system (how quickly it can reach chronic phase) depended on how well the bacteria could

access cells down the column. If the bacteria were able to infect the bottom of the column

quickly, that led to a population crash due to the lack of resources. On the contrary, and some-

how unexpectedly, less epithelial permeability stabilized the infection that then lasted much

longer and exhibited a clear chronic phase. This stabilizing effect is also observed in ecological

systems when one stage is invulnerable to attack, i.e. a stage refugia [32, 60]. For instance, a

parasitic wasp was introduced as a biological control of red scales (a common plant pest). It

successfully controlled the red scales because one of the mature stage of the red scales was not

vulnerable to attack [32]. Such effects from decreasing permeability (protecting the basal repli-

cative stage) would have implications in the context of treatments that bolster cell adhesion

and require testing experimentally.
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Considering pathogens with contrasted life-histories allowed us to identify how similar

infection outcomes arise. In the case of chlamydia, the interaction between free-form chla-

mydia and its infection rates of the various stages drove the chronic phase, but although the

activation of the immune response through the same feedback ultimately led to clearance,

this feedback affected several infection features. In contrast, HR-HPV persistence was

achieved via a slow growth strategy that delays clearance by decreasing the negative dynam-

ical feedback involving the immune system (i.e. faster growth implies faster immune detec-

tion and clearance). Indeed, HPV types appear to evade, or counteract, these immune

responses differently. In particular, viral protein E6 of various HPV types differ in their

many cellular binding partners resulting in a variety of effects on host processes [61].

We found that the difference between HPV-induced genital warts and epithelial lesions

depended most on the number of virions an infected cell releases upon death (or ‘burst size’)

and the initial size of inoculum; suggesting that more productive viruses are better coloniz-

ers. A ‘colonization’ strategy (in ecology ‘r strategy’) appeared to have a cost for the virus

because infecting the basal layer of the epithelium triggers the immune response. While

more sites are colonized, each site is exploited less optimally. Another feature that was medi-

ated through the immune response feedback was that mucus trapping delayed the peak of

the infection (i.e. the decreased progeny of bacteria and viruses meant less antigen and thus

slower immunity detection).

To compare our results to HPV epidemiological studies of acute HPV infections, we see

that the model creates underlying patterns (e.g. viral load Fig 4C) that could be looked for

using prospective studies of HPV infections with normal cytology. Study designs with dense

sampling (with visits every 3 or less months) are best for capturing the dynamics of these infec-

tions, particularly for the exponential increase and decay of viral loads. The majority of HPV

prospective studies are of persistent infections and with advancing cytological abnormality but

there are exceptions. For instance, Marks et al. sampled young women with HPV16 infections

every 3 months and found that a greater than 2 log decrease in viral load was associated to

clearance and a single viral load measure could not predict clearance [62]. The HR-HPV viral

load dynamics from our model (Fig 4C) can provide possible underlying explanations and

our exponential decrease is consistent with the decrease found by this epidemiological study.

Though, sampling once would not give enough information as to whether the infection is

increasing or decreasing at a given point. Consecutive viral load measures, then, are more

appropriate to estimate clearance or persistence [63].

The effect of stage-structure on infection dynamics can be interpreted in light of earlier

results from ecology or epidemiology. For instance, in epidemiology, it is known that the more

a general population of infected host is subdivided into classes, the more rapid the growth rate

of the epidemic is and the shorter it lasts [64]. Our model bears even more parallels with age

structured models in epidemiology where the age groups of the host population are explicitly

considered. In many of these models, children tend to be key to the spread of epidemics [64], a

result that echoes the bottom-up effects we identify. However, the driving forces in the two

models are different: in our model it is due to the fact that basal cells are the ones replicating,

whereas in epidemiology it is usually driven by longer lasting acquired immunity at higher

ages.

Perspectives

Spatial structure is a natural extension of our model that could be investigated further. Here,

the different cell populations partly capture the vertical structure. A specific consequence of
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not including space is that the immune system effects are more homogeneous than in reality,

where more resident immune cells are present in the lower layers. The assumption of well-

mixed populations holds best when the model represents a portion of the squamous epithe-

lium (rather than, for instance, the whole cervix). In the case of patchy infections like HPV, a

metapopulation modeling approach may be more appropriate (e.g. [22, 38]) or a full spatial

model [21]. We chose not to include space since much of the experimental data available on

these systems is not spatial. Instead most are cell population counts from immunofluorescence

or flow cytometry techniques. Several mathematical modeling methods, such as agent-based

models, are available to study spatial aspects of infections, particularly cell-to-cell spread [65].

These should be of interest to those studying chlaymdia infections. Even though HPVs have

not been found to spread cell-to-cell like other viruses [66], studying the spatial aspects of their

infections should most certainly still be considered in future studies.

Introducing stochastic aspects in epithelial dynamics have recently refueled the discussion

on the determinants of HPV clearance [23]. In general, considering stochastic dynamics could

matter most when pathogen populations approach low-levels (i.e. very few infected cells or

small loads). For instance, our finding that mucus trapping can delay the peak and the dura-

tion of infections could interact with stochasticity. This is similarly true for infections started

with a small inoculum, very rapid abrasion closure, and rapid repair with small inoculum.

These processes keep the pathogen populations sizes down and thus, as seen in ecological sys-

tems, stochasticity should play a larger role in extinction. As for the spatial structure, it is

important to stress that there often is little data on the initial stage of the infections, when the

pathogen is rare.

Many previous works have used simplified descriptions of the immune response in a simi-

lar fashion as we have chosen to model here [15, 27]. Models with simplified immunity usually

ask conceptual questions or are used to infer parameter values from data with few measured

cell types (e.g. only counting CD8+ and CD4+ T cells). Future work interested in specific

questions that are immune related, for instance comparing the respective roles of innate and

adaptive immunity in clearance, could benefit from more detailed descriptions of immune

effectors. In particular, expression of cytokines are interesting as they are important in the

epithelium’s part in innate immunity [52].

Our model does not attempt to capture the progression stages that HPVs can cause in per-

sisting infections. To appropriately model these changes would require several adjustments,

including that cell proliferation of infected cells and probabilities of symmetric divisions

become time variant. Indeed, our model can be adapted to study other oncoviruses that infect

the epithelium, where future studies can consider the contexts of immune evasion and cellular

transformation driven by oncogenes [37]. In addition, there is increased interest in how epi-

thelial cell dynamics (e.g. cell competition, mechanisms to maintain homeostasis and repair)

interact with our knowledge of how tumor viruses alter cellular programing, in particular

changing balanced cell fate ratios, skewing squamous differentiation toward a proliferative

phenotype [67]. New modeling methods will require possible evolutionary approaches of cell

phenotypes emerging over time.

In many ways, the simultaneous infection of a host by different pathogen strains or even

species is the rule rather than the exception [68]. Of particular interest is how different patho-

gens or strains interact inside a host and how this affects the course of the infection. For

instance, HPV infections are often of multiple HPV types and as lesions progress to cancer

there is clonal-selection, usually leading to a single type as the main driver of the tumor [69].

One straightforward extension of this model would be to investigate coinfections between

pathogens with similar cell tropisms (e.g. chlamydia and EBV) or pathogens that differ in

their life-cycles. Our model could consider both infections at once or be adapted to study
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organotypic models that include multiple pathogen infections (e.g. HSV, EBV and HPV coin-

fecting the same tissues and cells [70]) or the effects of the resident microbiota.

Finally, opening a dialogue between mathematical modeling and experimental data gener-

ates new hypotheses to test. One of the clearest illustrations of this is our result that burst size

differences appear as the most parsimonious explanation to explain symptom differences

between wart-causing and lesion-causing HPV infections. Technological improvements in

clinical and experimental techniques also allow us to test more subtle predictions. Testing

hypotheses generated by the model will allow us to move forward by validating the model

assumptions that are consistent with the data and rejecting the others. This will allow us to

increase the model complexity and test more elaborate predictions. We hope to inspire experi-

mental studies on infections of stratified epithelia to focus more on dynamics and time series

approaches (including mathematics) to better understand these varied and broadly impacting

pathogens.

Materials and methods

Ethics statement

The Thunder Bay Regional Health Research Institute’s Biosafety Committee approved all

research involving NIKS cell line cultures. The NIKS cell line [40] was obtained from Dr. Paul

Lambert, McArdle Laboratory for Cancer Research, University of Wisconsin.

Cell culture data

Organotypic culture growing techniques used here have already been described in detail else-

where [71, 72]. Original experiments were performed to obtain time series data with sufficient

replicates for model fitting. Three independent experiments were performed, with rafts har-

vested at one-week intervals (0, 1, 2, and 3 weeks) starting the day after lifting them to an air-

liquid interface. From a total of 12 formalin-fixed, paraffin-embedded (FFPE) rafts, 48 tissue

slices were imaged using fluorescence microscopy (DAPI staining for cell nuclei) and resulted

in 3 Fields of View (FOV) per slice (n = 144). Counts in each FOV were done semi-automa-

tized using ImageJ cell counting software.

Epithelial model

The uninfected epithelial model consists of 4 cell populations of distinct phenotypes to capture

epithelial structure (Fig 1): basal cells (assumed to have a constant population size, Ub = Nb, as

cells that move up are replaced immediately), parabasal cells (with population size Up), differ-

entiated cells of the mid and upper layers (with population size Ud) and of the surface layer

(with population size Us). Since we are interested in cervicovaginal infections of non-kerati-

nized squamous epithelia, we assume the top layer of keratinocytes are close to death and are

shed from the surface as they die. The cell population dynamics are captured by three ordinary

differential equations (ODE):

_Us ¼ n Ud � m Us

_Ud ¼ rpð1 � DqÞUp � n Ud

_Up ¼ rbð1 � DpÞUb þ rp Dq Up

ð1Þ

Epithelial stratification shapes infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006646 January 23, 2019 14 / 25

https://doi.org/10.1371/journal.pcbi.1006646


Dots above the variables indicate time derivatives. Basal cells proliferate at a rate ρb, giving

rise to parabasal cells which in turn proliferate at a rate ρp, while entering the mid and upper

layers of the squamous column (Eq 1). These cells are differentiated and migrate up to the sur-

face layer at a rate ν. Mature keratinocytes die at the surface of the epithelium at a rate μ. There

is an overlap between cell phenotype and spatial structure since an epithelial cell moves up the

stages as it ages (Fig 1).

When modeling stem cell divisions, we follow earlier studies [23, 73] and introduce the

fraction of basal cell divisions that are symmetric and give rise to two basal cells, p1, and the

fraction that creates two parabasal daughter cells is p2. Note that q1 and q2 are the parabasal

equivalent terms (see Fig 1). The generation of parabasal cells from basal cells is found by

2 p2 + (1 − p1 − p2) which we simplify to 1 − Δp by assuming Δp = p1 − p2 and the equivalent of

this for the generation of differentiated cells is Δq = q1 − q2 in equation system 1. We consid-

ered distinct probabilities of divisions for the two layers (ps and qs), even though both the

basal and parabasal layers are mostly made up of the same transit-amplifying cells, because the

basal layer also contains stem cells which can divide in an unlimited fashion [74]. Thus, the

two layers should have distinct properties. Finally, the assumption that the basal layer is con-

stant implies that we must assume Δp = 0 in order for the basal layer to neither grow nor

shrink. However, we maintain this structure of the model because Δp would be needed if one

were to either relax the assumption of a constant basal layers (e.g. when studying a growing

epithelium, as in organotypic cultures) or when it is infected (e.g. HPV infections might alter

this parameter and make p1 divisions more frequent [67]; though we do not address this fea-

ture of HPV infection directly).

We chose to not include the stochastic nature of these cell divisions, as it has been consid-

ered previously [23, 73], and we were interested in understanding deterministic behaviors of

the system, such as active repair or active changes to cell ratios. All the variables and parame-

ters used are summarized in Fig 1 and Table 1. Finally, the model is sufficiently general that it

can represent different kinds of stratified epithelia, including keratinized and non-keratinized

squamous epithelia.

To calibrate parameters (Table 1), we initially relied on a study from 1970 that used in vivo
autoradiography techniques to calculate the mean cell cycle time for epithelial cells in cervical

and vaginal tissues [41]. They found that basal cells have a relatively slow cycle of approxi-

mately 33 days and that 1.14% of these cells are synthesizing DNA at a given time point. Para-

basal cells have a much shorter cell cycle (2.6 days) and 14.25% of these cells are synthesizing

DNA. Differentiated cells do not divide and have a life expectancy of 4 days (Table 1). A

detailed analytical analysis of this uninfected model can be found in the S1 Text.

For fitting raft cell culture data, we did not want to assume a priori that the basal layer starts

off as a constant, especially since in the experiments the tissue is grown-up from a single layer

cells. So we used a variation of our model by assuming the basal layer was not constant but

rather followed this equation:

_Ub ¼ rb Ub Dp 1 �
Ub

Nb

� �

: ð2Þ

Here we assume the basal layer (cells that are touching the basal lamina) are growing until

they reach a maximum capacity, Nb, and Δp is not assumed to be zero. There are other changes

from the previous model: Us now represents the surface cells that are keratinized, and since the

Up and Ud cells cannot be distinguished experimentally we summed these two variables for fit-

ting the ‘suprabasal’ cells counted in the experiment.
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Infection models

Modeling infections of the stratified epithelium requires adding populations of free-forms of

the pathogens, infected cells and immune cells. See Fig 5 for the schematics of the models and

Table 3 for the parameter estimates.

Human papillomaviruses. To establish an infection HPV virions can only infect basal

cells because HPV capsids need to bind to the epithelial basement membrane to undergo con-

formational changes that allow cell entry [75]. HPV infections are non-lytic, thus infected

basal cells, Ib, follow their life-cycle move up the epithelium column, from parabasal, Ip, to dif-

ferentiated in the mid layers Id and surface layers, Is. When the infected cells on the surface, Is,
die they release the virions they contain, V (Fig 5A). As in the uninfected model, we assume

that the total number of basal cells is constant, Nb, but we distinguish between infected, Ib, and

uninfected basal cells (Nb − Ib). In the upper layers the HPV oncogenes can drive some cell-

cycle re-entry in order to promote its genome amplification [37]. As infected cells follow their

life cycle up the epithelium column, the number of viral copies in the cells increases (from

approximately 10–100 copies per basal cell to 103–106 in the upper layers [63]).

Fig 5. Flow diagram of the infection models for HPV (A) and chlamydia (B). HPV virions, V, only infect uninfected basal cells, Ub, to become

basal infected cells, Ib. Since HPV is non-lytic, infected cells follow the typical epithelial life-cycle up to the surface passing through different life

stages (parbasal Ip, differentiated Id, differentiated at the surface Is). Model 3. In the case of C. trachomatis, the elementary bodies, EBs, start the

infection by infecting uninfected cells in the upper layers (βu Ud Eu creates Id). The EB populations start in the upper layers, Eu, and then migrate

down, ηu, into the lower layers, El. As EBs migrate down layers they enter uninfected cells (Ub and Up) and create infected cells (Ib and Ip) which

die at rate α (boxes with square represent dead cells). The host immune response, A, is activated by infected basal cells in the case of HPV and all

EBs in the case of C. trachomatis. Model 4. Note that for wart-associated HPV infections ρa = 0 and αb = αp = 1. See Table 3 for parameter

descriptions and estimates.

https://doi.org/10.1371/journal.pcbi.1006646.g005
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The following set of ordinary differential equations represent HPV infection dynamics:

dV
dt

¼ m y Is � z V

dIs
dt
¼ rað1 � DqÞId þ n Id � ðmþ ks AÞIs

dId
dt

¼ ap rpð1 � DqÞIp þ ðra Dq � n � kd AÞId

dIp
dt

¼ ab rbð1 � DpÞIb þ ðap rp Dq � kp AÞIp

dIb
dt

¼ b VðNb � IbÞ þ ðab rb Dp � kb AÞIb

dA
dt

¼ s Ib A

ð3Þ

Most of the parameters are identical to that of the uninfected model (model system 1). Addi-

tional parameters that relate to specific infection processes are: the infection rate of basal cells

by the virus, β, the ‘burst size’ of infected keratinocytes θ (how many virions are released per

cell), and the clearance rate of free virions at the surface of the epithelium which is mostly due

to mucus flow, z. To capture the increased cell division driven by HPV of infected basal and

parabasal cells are the multiplicative factors ab and ap, respectively; while in the upper layer

HPVs cause cell proliferation of differentiated cells that otherwise would not happen, denoted

ρa. We assume that both wart-associated and high-risk types drive the cell proliferation in

upper layer at the same rate, ρa (Table 3). High-risk HPVs are the most oncogenic and their

Table 3. Parameter descriptions for infection models (equations systems 3 and 4), default values and biologically realistic ranges. Parameters value that were chosen

for the results to be biologically consistent are indicated by ‘calibrated’. Parameter values that can be set arbitrarily without affecting the results qualitatively are referred to

as ‘fixed’. Parameters varied without any a priori assumption are indicated by ‘free’.

Default Range Ref

HPV models

β Infection rate of HPV virions (cell−1� virion−1� day−1) 10−10 [10−15; 10−5] fixed

ρa Replication in upper layers driven by wart-associated and HR HPV (day−1) 0.78 [0; 5] [37]

ab Multiplicative replication factor by HR-HPV in basal cells 1.5 [1; 10] [37]

ap Multiplicative replication factor by HR-HPV in parabasal cells 2.0 [1; 10] [37]

θ Differentiated keratinocyte wart-associated HPV-infected burst size (day−1) 106 [102; 108] [63]

Differentiated keratinocyte HR-HPV-infected burst size (day−1) 104 [102; 108] [63]

z Virion clearance rate by mucus (day−1) 1.18 [0.2; 3] [18, 19]

κ Removal rate by adaptive response (day−1) 0.0024 [0; 0.1] fixed

σ Adaptive response growth rate in HPV infection (HR 0.001) 0.0001 Rþ calibrated

Chlamydia model

βb Infection rate of EBs in basal layer (cell−1� EB−1� day−1) 3.0x10−6 [0; 2.31] [17–19]

βp Infection rate of EBs in parabasal layer (cell−1� EB−1� day−1) 5.0x10−6 [0; 2.31] [17–19]

βu Infection rate of EBs in upper layers (cell−1� EB−1� day−1) 1.0x10−5 [0; 2.31] [17–19]

α Chlamydia’s killing rate of infected cell (day−1) 0.6 [0.01; 0.6] [16, 17, 17–19]

Θ Chlamydia-infected cell burst size (day−1) 200 [200; 500] [16, 17]

zu EB clearance rate by mucus (day−1) 2 [0.01; 10] [18, 19]

zp EB clearance rate by macrophages (day−1) 4 [0.01; 10] [18, 19]

ηu EB migration rate down the epithelial column (day−1) 0.005 [0; 1] free

ηl EB migration rate up the epithelial column (day−1) 0.001 [0; 1] free

f Fraction of removed infected cells that recover (day−1) 0.6 [0; 1] free

γ Removal rate by adaptive response (day−1) 0.2 [10−4; 0.5] [17–19]

φ Adaptive response growth rate in chlamydia infection 0.0001 Rþ calibrated

https://doi.org/10.1371/journal.pcbi.1006646.t003
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oncogenes E6 and E7 give them the ability to force basal and parabasal cells to re-enter S-phase

with the aim to have access to the cell’s replication machinery [37]. This process thereby creates

more infected cells. Low-risk HPV genotypes have oncogenes with less transformative proper-

ties than the HR types and thus only drive cell proliferation in the upper layers for genome

amplification but not in the lower layers. Therefore, to model wart-associated type infections

we set ρa = 0 and αb = αp = 1 to capture these differences in cell transformation properties.

Here, our description of the immune response is intentionally simplistic. Following earlier

studies (e.g. [27]), we model only one population of immune effectors as a generic adaptive

immune population (typically CD8+ lymphocytes), A. The proliferation rate of immune effec-

tors is σ, and the killing rates by immune effectors are considered layer specific, with κb, κp,
and κd, corresponding to their respective layer. This layer-specific assumption should be cho-

sen when considering that immune cells come up from the dermis and thus are less numerous

in the higher layers of the epithelium. However, we chose for simplicity to assume all κs were

the same (Table 3). Since our overall goal was to develop a generic model for infections of the

stratified epithelium, tailoring the immune response was beyond the scope of this aim.

Note that the equations of ODE system 3 are run in combination with the uninfected cells

Eq 1. The only adjustment made to system 1 is that the Ub in the parabasal layer equation is

replaced with Nb − Ib the number of uninfected basal cells.

Chlamydia. Even though Chlamydia trachomatis also infects the cervix and is an obligate

intracellular bacteria, its life-cycle is quite different from that of HPV’s. Chlamydia must get

past dying cells in the top layer to reach living cells in the upper layer. Once the transmissible

free-forms of the bacteria, the elementary bodies (EB), are taken into the cell via a membrane-

bound vacuole, they transform into reticulate bodies (RB), which undergo 8 to 12 rounds of

replication before turning back into EB. After approximately 30 to 84 hours post-infection the

cell bursts to release the EBs [39].

Using existing models of chlamydia infection [16, 18] to modify our main model for epithe-

lial dynamics (1), we derive the following set of equations to capture chlamydia within-host

dynamics:

dEu
dt
¼ Y aðId þ IsÞ � zu Eu þ Zl El � Zu Eu

dEl
dt
¼ Y aðIb þ IpÞ � zl El � Zl El þ Zu Eu

dIs
dt
¼ n Id � ðaþ mþ gAÞIs

dId
dt
¼ bu Eu Ud � ðaþ nþ gAÞId

dIp
dt
¼ bp El Up � ðaþ gAÞIp

dIb
dt
¼ bb ElðNb � IbÞ � ðaþ gAÞIb

dUs

dt
¼ n Ud � m Us þ f g Is A

dUd

dt
¼ rpð1 � DqÞUp � ðnþ bu EuÞUd þ f g Id A

dUp

dt
¼ rbð1 � DpÞðNb � IbÞ

þðrp Dq � bp ElÞUp þ f g Ip A
dA
dt
¼ φðEu þ ElÞA

ð4Þ
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In addition to the populations of uninfected (Up, Ud, Us) and infected cells (Ib, Ip, Id, Is) of

each respective layer (basal, b, parabasal, p, mid, d, and surface, s), we now have equations for

the EBs in the mid/surface layers, Eu, and in the basal/parabasal layers, El. Infection of the cell

kills it at a rate α and each cell releases Θ EBs upon dying (the ‘burst size’). EBs are cleared at

rates zu and zp. The clearance rate of EBs in the upper layers is mainly due to being trapped in

the mucus of the surface. In the basal/parabasal layers, the EBs are cleared by the activity of

innate effectors, especially resident macrophages [39]. We, therefore, assume zp> zu. Finally,

EBs can ‘migrate’ down and up the epithelium at rates ηu and ηl respectively.

All cells except surface keratinocytes (already near death), Is, can be infected by EBs at rates

βb for the basals, βp for parabasals, and βu for mid/upper layers. The increasing number of

intracellular junctions down the epithelium column and the effect of space decreases suscepti-

bility to infection from the upper layers down to the basal layers, hence we assume βu> βp>
βb. Infected keratinocytes (Is and Id) have enough time to migrate towards the surface of the

epithelium. The immune effectors, A replicate at a rate φ. Finally, infected cells interact with

immune effectors, A, at a rate γ. The outcome of this interaction is either cell death or cell

recovery (the fraction of removed by recovery is f). Therefore, the populations of uninfected

cells can be enriched by cell recovery upon the action of the immune response, fγA term. Natu-

ral clearance of C. trachomatis is possible and it is believed that it is due to a high Th1, IFN-γ
response. The host cell and immune cells produce IFN-γ which decreases the amino acid tryp-

tophan which is essential for chlamydia intracellular growth [39]. By pumping IFN-γ into the

infected region, the immune effectors, A, help the cells recover from chlamydia infection,

which we capture using the γA terms.

Infection dynamics were simulated in Mathematica [76] using NDSolve (with methods

‘BDF’ or ‘StiffnessSwitching’) for numerical integration.

Parameter values and sensitivity analyses

Nearly all the parameter values could be set using data from the literature, which mostly lay in

narrow ranges (Tables 1 and 3). Parameters for which we had little information were either

kept free or calibrated. For instance we used Δq to scale all equilibrium population sizes (see

Results).

To test the robustness of our results, we performed uncertainty and sensitivity analyses

using Latin Hypercube Sampling and Partial Rank Correlation Coefficients (PRCC) via the

pse package in R [77], which is popular for disease models [78], and numerical integration

was done using deSolve package. We generated 1,000 parameter sets by Latin Hypercube

sampling from uniformly distributed parameter values within a specified biologically realistic

range. PRCCs were calculated between the rank-transformed samples and the resulting output

matrix of the response variables (e.g. duration of infection, maximum pathogen load). 100

bootstraps were performed to generate 95% confidence intervals. The magnitude of the

PRCCs determines the effect strength of a given parameter on a specific response variable (0

for no effect and 1 for very strong) and the sign indicates whether the response grows or

shrinks with increasing the parameter value.

Monotonicity for each parameter was checked for each response variable, and the parame-

ter ranges were shortened when monotonicity was not obeyed. This was not common and was

usually for values very close to zero.

Parameter estimation from experimental data

We inferred parameter values from the data we collected over 3 weeks from a 3D raft culture

of NIKS cells. Note that cells attached to the basal membrane were considered basal and those
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above them were counted as suprabasal cells. This was done (rather than use differentiation

markers) in order to differentiate between true basal cells and parabasals and to estimate a car-

rying capacity, Nb. Model parameters were inferred using maximum likelihood estimation and

trajectory matching, assuming measurement error follows a Poisson distribution. Fitting and

model predictions were performed in R software [79], using packages bbmle [80], deSolve
[81], and pomp [82]. Note that the parameter values estimated experimentally were not used

for the infection models since the experiments had the tissues growing up into full stratified

form while infections usually start with the epithelium already at homeostasis, thus the epithe-

lium parameters from the literature were more appropriate.

Supporting information

S1 Fig. Effect of re-seeding on wart-associated HPV infection kinetics. a. Infection with

baseline parameters. b. Here infection rate of basal cells β decays to zero with time (with decay

rate b = 0.05). No wart-like manifestation of the infection is possible.

(EPS)

S2 Fig. Effect of parameter variations on the kinetics of HR-HPV infection. a. Infection

with baseline parameters. b. and c. HR-HPV gives wart-like infections with either higher

HPV-driven proliferation, (3x αb) or higher burst size (1 order of magnitude higher), thus

demonstrating that HR-HPVs need to keep both of these parameters down in order to have

flat, slow growing infections. d. Progression with stronger HPV-driven proliferation, increas-

ing symmetric divisions biased toward making more basal-like cells, and increasing differenti-

ated cell death.

(EPS)

S3 Fig. Chlamydia dynamics. a. Time series of uninfected cells (Ud and Up) and the infected

cells of the same layers (Id and Ip). Infection with baseline parameters.

(EPS)

S4 Fig. Non-stratified HPV infection model schematic. A population of target cells, T,

becomes infected by interacting with free virions, V at a rate β. Infected cells, I, self-proliferate,

ρa, due to HPV infection. Infected cells die naturally, μ, and release the virions they contain

with a burst size of θ. Free virions are cleared by mucus, z, and infected cells are killed by the

adaptive response, A, at rate σ.

(EPS)

S5 Fig. Non-stratified HPV model. A. Time series of i. low cell proliferation driven by HPV

infection (wart-associated-HPV-like), ρa = 0.7 and θ = 106, and ii. high cell proliferation by

HPV infection (HR-HPV-like), ρa = 1.4 and θ = 104. Cell accumulation and duration are the

opposite of what is seen in real infections, i.e. HR-HPV infections should accumulate less cells

and last longer. B, C, D. Parameter plots of burt size, θ, and HPV-driven cell proliferation, ρa.
The magnitude of the peak of infected cells, I, (C) and the duration of the infection (D) are

controlled almost exclusively by HPV-driven cell proliferation, ρa, not burst size. Parameter

values: β = 10−10, Nb = 103, μ = 0.67, z = 1.18, κ = 0.0024, σ = 0.0001.

(EPS)

S1 Text. Supporting information. Supplementary methods and results.

(PDF)

S1 Code. Supporting code. R file that uses 3 csv data files for model fits.

(R)

Epithelial stratification shapes infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006646 January 23, 2019 20 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006646.s007
https://doi.org/10.1371/journal.pcbi.1006646


S2 Code. Supporting code. Mathematica file that generates figures 3, 4, and supplementary

figures.

(NB)

S3 Code. Supporting code. Mathematica file that generates figures for non-stratified model.

(NB)

S1 Data. Supporting data. CSV file.
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S2 Data. Supporting data. CSV file.
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S3 Data. Supporting data. CSV file.
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14. Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-kralovetz MM, Ott CM, et al. Organotypic 3D cell cul-

ture models: using the rotating wall vessel to study host? pathogen interactions. Nature Reviews Micro-

biology. 2010; 8:791. https://doi.org/10.1038/nrmicro2423 PMID: 20948552

15. Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013; 11:96.

https://doi.org/10.1186/1741-7007-11-96 PMID: 24020860

16. Wilson DP, Timms P, McElwain DLS. A mathematical model for the investigation of the Th1 immune

response to Chlamydia trachomatis. Math Biosci. 2003; 182(1):27–44. https://doi.org/10.1016/S0025-

5564(02)00180-3 PMID: 12547038

17. Wilson DP. Mathematical modelling of Chlamydia. ANZIAM. 2004; 45:C201–14. https://doi.org/10.

21914/anziamj.v45i0.883

18. Vickers DM, Zhang Q, Osgood ND. Immunobiological outcomes of repeated chlamydial infection from

two models of within-host population dynamics. PLoS ONE. 2009; 4(9). https://doi.org/10.1371/journal.

pone.0006886

19. Vickers DM, Osgood ND. The arrested immunity hypothesis in an immunoepidemiological model of

Chlamydia transmission. Theor Pop Biol. 2014; 93:52–62. https://doi.org/10.1016/j.tpb.2014.01.005

20. Nelson MR, Sutton KJ, Brook BS, Mallet DG, Simpson DP, Rank RG. STI-GMaS: an open-source envi-

ronment for simulation of sexually-transmitted infections. BMC Syst Biol. 2014; 8:66. https://doi.org/10.

1186/1752-0509-8-66 PMID: 24923486

21. Orlando PA, Brown JS, Gatenby RA, Guliano AR. The ecology of human papillomavirus-induced epi-

thelial lesions and the role of somatic evolution in their progression. J Infect Dis. 2013; 208(3):394–402.

https://doi.org/10.1093/infdis/jit172 PMID: 23599315

22. Murall CL, McCann KS, Bauch CT. Revising ecological assumptions about Human papillomavirus inter-

actions and type replacement. J Theor Biol. 2014; 350:98–109. https://doi.org/10.1016/j.jtbi.2013.12.

028 PMID: 24412334

23. Ryser MD, Myers ER, Durrett R. HPV clearance and the neglected role of stochasticity. PLoS Comput

Biol. 2015; 11(3):e1004113. https://doi.org/10.1371/journal.pcbi.1004113 PMID: 25769112

24. Miller AK, Munger K, Adler FR. A Mathematical Model of Cell Cycle Dysregulation Due to Human Papil-

lomavirus Infection. Bull Math Biol. 2017; 79(7):1564–1585. https://doi.org/10.1007/s11538-017-0299-9

PMID: 28608043

25. Huynh GT, Rong L. Modeling the dynamics of virus shedding into the saliva of Epstein-Barr virus posi-

tive individuals. J Theor Biol. 2012; 310:105–114. https://doi.org/10.1016/j.jtbi.2012.05.032 PMID:

22683365

Epithelial stratification shapes infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006646 January 23, 2019 22 / 25

https://doi.org/10.1038/nrm2636
http://www.ncbi.nlm.nih.gov/pubmed/19209183
https://doi.org/10.1016/0169-5347(96)20067-9
http://www.ncbi.nlm.nih.gov/pubmed/21237891
https://doi.org/10.1007/s13752-014-0194-7
https://doi.org/10.1371/journal.ppat.1004111
http://www.ncbi.nlm.nih.gov/pubmed/25101790
https://doi.org/10.1111/andr.284
http://www.ncbi.nlm.nih.gov/pubmed/25270519
https://doi.org/10.1371/journal.ppat.1005229
https://doi.org/10.1016/j.semcancer.2013.11.002
https://doi.org/10.1016/j.vaccine.2006.05.113
https://doi.org/10.1095/biolreprod.110.090423
https://doi.org/10.1095/biolreprod.110.090423
http://www.ncbi.nlm.nih.gov/pubmed/21471299
https://doi.org/10.1371/journal.pone.0158338
https://doi.org/10.1038/nrmicro2423
http://www.ncbi.nlm.nih.gov/pubmed/20948552
https://doi.org/10.1186/1741-7007-11-96
http://www.ncbi.nlm.nih.gov/pubmed/24020860
https://doi.org/10.1016/S0025-5564(02)00180-3
https://doi.org/10.1016/S0025-5564(02)00180-3
http://www.ncbi.nlm.nih.gov/pubmed/12547038
https://doi.org/10.21914/anziamj.v45i0.883
https://doi.org/10.21914/anziamj.v45i0.883
https://doi.org/10.1371/journal.pone.0006886
https://doi.org/10.1371/journal.pone.0006886
https://doi.org/10.1016/j.tpb.2014.01.005
https://doi.org/10.1186/1752-0509-8-66
https://doi.org/10.1186/1752-0509-8-66
http://www.ncbi.nlm.nih.gov/pubmed/24923486
https://doi.org/10.1093/infdis/jit172
http://www.ncbi.nlm.nih.gov/pubmed/23599315
https://doi.org/10.1016/j.jtbi.2013.12.028
https://doi.org/10.1016/j.jtbi.2013.12.028
http://www.ncbi.nlm.nih.gov/pubmed/24412334
https://doi.org/10.1371/journal.pcbi.1004113
http://www.ncbi.nlm.nih.gov/pubmed/25769112
https://doi.org/10.1007/s11538-017-0299-9
http://www.ncbi.nlm.nih.gov/pubmed/28608043
https://doi.org/10.1016/j.jtbi.2012.05.032
http://www.ncbi.nlm.nih.gov/pubmed/22683365
https://doi.org/10.1371/journal.pcbi.1006646


26. Hawkins JB, Delgado-Eckert E, Thorley-Lawson DA, Shapiro M. The Cycle of EBV Infection Explains

Persistence, the Sizes of the Infected Cell Populations and Which Come under CTL Regulation. PLoS

Pathog. 2013; 9(10):e1003685. https://doi.org/10.1371/journal.ppat.1003685 PMID: 24146621

27. Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S, Magaret A, et al. Frequent Release of Low

Amounts of Herpes Simplex Virus from Neurons: Results of a Mathematical Model. Sci Transl Med.

2009; 1(7):7ra16–7ra16. https://doi.org/10.1126/scitranslmed.3000193 PMID: 20161655

28. Nowak MA, May RM. Virus dynamics: Mathematical principles of immunology and virology. Oxford,

USA: Oxford University Press; 2000.
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