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Normal forms for discrete-time switched linear systems

Cyrille Chenavier, Rosane Ushirobira, Laurentiu Hetel

Abstract— In this paper, we propose an algebraic approach
to the analysis of discrete-time switched linear systems, where
we investigate linear relations between words over the matrices
of the system. We introduce normal form matrix words as well
as a numerical criterion to reduce drastically the number of
linear matrix inequalities conditions for checking stability. In
particular, we relate exponential stability to quadratic stability
of another system. We illustrate our methods with an example.

I. INTRODUCTION

In this article we investigate some properties of discrete-
time switched linear systems [1], [2]. Such systems con-
sist of a family of linear systems systems with a rule
that orchestrates the switching among them. Discrete-time
switched linear systems are a popular model in various
control domains. Among such application areas, we may
cite networked control systems [3], systems with aperiodic
sampling [4], discrete-time delay systems [5], [6], etc., they
all can be modeled as switched linear systems. Despite the
fact that switched systems have been intensively studied over
the last two decades, the stability problem is still a complex
open problem [7].

Various methods are available for studying the stability
of discrete-time switched linear systems. Roughly speaking,
stability criteria have been proposed either based on algebraic
methods (such as the ones within the framework of the
theory of Lie algebras [8], [9] and the ones based on joint
spectral radii [10], [11]) or also on numerical approaches,
usually based on Linear Matrix Inequalities and Lyapunov
functions. Stability criteria have been proposed by check-
ing the existence of quasi-quadratic [12], [13], parameter
dependent [14], path-dependent [15], non-monotonic [16],
[17], [18], [19] and composite quadratic [13], [20] Lyapunov
functions. The aim of the article is to propose a new method
for analyzing the stability of switched linear systems by
investigating the structure and algebraic properties of some
particular Lyapunov based criteria.

In [16], a necessary and sufficient condition is given for a
discrete-time switched linear system to be globally uniformly
exponentially stable: it is equivalent to the existence of
a positive integer N such that a problem consisting in
pN +1 LMI conditions admits a solution. Hence, we obtain
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the following method for constructing the quasi-quadratic
Lyapunov function: starting with N = 1, the value of N is
increased until we find a solution to the LMI problem, from
which the corresponding quasi-quadratic Lyapunov function
is derived. As mentioned in [20], an optimization of this
method consists in reducing the computational complexity,
since the number of LMI conditions grows exponentially
when N increases.

In the present paper, starting from the condition proposed
in [16], we propose an approach to study discrete-time
switched linear systems using linear algebra tools. Two
stability criteria are provided. These two methods are based
on the observation that the matrices involved in the LMI
problem from [16] may satisfy algebraic relations. The
first method consists in restricting the LMI conditions to
a basis of the linear span of all matrices involved in the
initial LMI problem and then, to check if the solution for
the basis elements still holds for the other matrices. The
second method consists in adding numerical constraints to
the LMIs corresponding to basis elements in such a way
that the LMI conditions corresponding to the other matrices
are automatically fulfilled. The main argument used in this
second approach is that convex decomposition of matrices
does not bring new LMI constraints. We point out that
for both methods, the number of LMI conditions is upper-
bounded by the dimension of the matrix space, which does
not depend on N.

The paper is organized as follows. In Section II, we fix
some notations. Section III is a recollection about discrete-
time switched linear systems, stability definition and its
characterization in terms of LMIs given in [16]. Section IV
contains our results: we present two methods for reducing
the number of LMI conditions, the first one using linear
algebra and the second one using convex decompositions. In
Section V, the second method is illustrated with numerical
examples. Section VI containes the proof of an intermediate
lemma.

II. NOTATIONS

We fix the following notations: let p,n ∈ N\{0}.
• We write Ip = {1, · · · , p}.
• Given a set S, we denote by S∗ the set of words over

S, that is the set of formal concatenation of elements of
S. Given N ∈N, we denote by S(N) the set of words of
S∗ of length N.



• Given a matrix M ∈ Rn×p, we denote by MT ∈ Rp×n

the transpose of M.
• For x = (x1 . . .xn)

T ∈ Rn, we denote by ‖x‖ =√
x2

1 + · · ·+ x2
n the Euclidean vector norm on Rn.

• Given a square symmetric matrix M, we write M � 0 or
M ≺ 0 according to M is positive or negative definite,
respectively.

• Given P = {p1, · · · ,pk} ⊂ Rn, the convex hull of P is
the set of elements ∑

k
i=1 aipi ∈ Rn, where ai are non-

negative real numbers satisfying ∑
k
i=1 ai = 1.

• Given λ ∈ R, we denote by sign(λ ) the sign of λ .

III. PRELIMINARIES

Consider n, p, two strictly positive integers, and a set
of matrices A =

{
Ai ∈ Rn×n | i ∈ Ip

}
. Given a word ω =

ik−1 · · · i0 ∈ I∗p on the alphabet Ip, the corresponding matrix
word on A is denoted by Aω = Aik−1 · · ·Ai0 ∈A∗. By conven-
tion, if k = 0, we let Aω = Idn.

We are interested in the class of discrete-time switched
linear systems described by the equation

xk+1 = Aσk xk, ∀k ∈ N, x0 ∈ Rn, (1)

where x : N → Rn represents the system state, x0 = x(0)
the initial condition and σ : N→ Ip, k 7→ σk, the switching
function associated to the system. It is assumed that the
switching function is not known. In what follows, A will
denote the set of matrices

{
Aσk

}
defined by the switching

function σ of the system (1).
For k ∈ N, denote by Sk (Ip)⊂ σ(N)∗ the set of k-length

words formed by the image of the switching function σ

starting with σ0. This set is also called the set of k-length
switching paths.

For the initial condition x0 ∈Rn and an infinite word ω =

(σk)
∞

k=0 ∈ S∞(Ip), we consider the flow (k,x0) 7→ φω(k,x0)

defined by
φω(k,x0) = Aω(k) x0,

where Aω(k) = Aσk−1 · · ·Aσ0 , so that Aω(0) = Idn, is called
the k-step transition matrix of the discrete-time switched
system associated to ω .

For an infinite word ω ∈ S∞(Ip), the solution of (1)
associated to the initial condition x0 is given by the sequence
of points (φω(k,x0))

∞

k=0.
Definition 3.1: The equilibrium point x = 0 of the

switched linear system (1) is globally uniformly exponen-
tially stable (GUES) if there exist constant c > 0 and 0 <

λ < 1 such that

‖φω(`,x0)‖2 ≤ cλ
`‖x0‖2 (2)

holds for all initial conditions x0 ∈ Rn, all ` ∈ N and all
sequences of switching ω = (σk)

∞

k=0 ∈ S∞(Ip).
Proposition 3.2: [16] The following assertions are equiv-

alent:

1) The equilibrium point x = 0 of (1) is GUES
2) There exists a positive integer N such that the follow-

ing LMIs problem admits a solution

∃P = PT � 0 such that P� AT
ω PAω , ∀ω ∈ I

(N)
p . (3)

As an immediate corollary, we obtain the following crite-
rion for checking GUES:

Proposition 3.3: Let N be a positive integer. If the LMIs
problem (3) admits a solution, then the equilibrium point
x = 0 of (1) is GUES.

For a fixed N, the criterion of Proposition 3.3 for checking
GUES consists of pN +1 LMI conditions. In Section IV, we
propose an approach based on linear algebra methods for
reducing the number of LMI conditions.

IV. CONDITIONS BASED ON NORMAL FORM MATRICES

Our approach for stability analysis is based on the fol-
lowing observation: the matrices in A∗ may satisfy algebraic
relations of the form

∑
finite

λω Aω = 0,

where the sum is taken over a finite set of words ω ∈ I∗p and
λω ∈ R. Hence, for such a decomposition, if λω0 6= 0 for a
word ω0, then we have

Aω0 = ∑µω Aω ,

where ω 6= ω0 and µω = − λω

λω0
. In the sequel, we present

two methods for removing the LMI condition corresponding
to ω0 in (3).

Given N, let us denote by V (N)
A the subspace of Rn×n

spanned by the matrices Aω , where ω ∈ I
(N)
p .

Definition 4.1: Let dN be the dimension of V (N)
A and let

Aω1 , · · · ,AωdN
, where ωi ∈ I

(N)
p , be a basis of V (N)

A . We call
the matrices Aωi , 1≤ i≤ dN , normal form matrices.

Next, non-normal form matrices are denoted by Aωi , dN +

1≤ i≤ pN .
Since the vector space spanned by normal form matrices is

a subspace of the n2-dimensional space Rn×n, the following
lemma yields:

Lemma 4.2: The number dN of normal form matrices is
smaller than n2.

Remark 4.3: Given a positive integer N, a necessary con-
dition for the existence of a matrix P solution of the LMIs
problem (3) is that the following LMIs problem admits a
solution

∃P = PT � 0, such that P� AT
ωi

PAωi , ∀1≤ i≤ dN . (4)

Remark 4.3 has two consequences. On the one hand, if
(4) has no solution, then the criterion of Proposition 3.3 for
proving GUES does not hold. On the other hand, if (4) admits



a matrix P as a solution such that P� AT
ωi

PAωi for each non-
normal form matrix Aωi , then the criterion of Proposition 3.3
holds.

Moreover, from Lemma 4.2, the number of normal form
matrices is upper-bounded by n2, so that the maximal number
of LMI conditions of (4) does not depend on N. Nevertheless,
it could happen that the problem for normal form matrices
admits a solution which is not valid for (3).

We fix a positive integer N, and we denote as previously
normal form matrices and non-normal form matrices by
Aω1 , · · · ,AωdN

and AωdN+1 , · · · ,AωpN , respectively. For each
non-normal form matrix Aω`

, let λ`,1, · · · ,λ`,dN be its coordi-
nates in the basis of normal form matrices, so that we have

Aω`
=

dN

∑
k=1

λ`,kAωk .

For 1≤ i≤ dN , we define the real number:

mi = max
1≤`≤pN

{
dN

∑
k=1

∣∣λ`,k
∣∣ ∣∣∣∣∣ λ`,i 6= 0

}
. (5)

Notice that mi ≥ λ`,i for all i, `.
Before stating our main result, we need the following

Lemma, for which a proof is given the Appendix:
Lemma 4.4: Let P = PT � 0 be such that P�miAT

ωi
PAωi ,

for every 1≤ i≤ dN . Then, we have

P� AT
ω`

PAω`
, ∀1≤ `≤ pN . (6)

We obtain our main result, stated as follows:
Theorem 4.5: Let N be a positive integer and

Aω1 , · · · ,AωdN
be the normal form matrices. For

dN + 1 ≤ ` ≤ pN , let λ`,k, 1 ≤ k ≤ dN , be the coefficients
of the decomposition of the non-normal form matrix Aω`

.
Consider the real number defined in (5):

mi = max
1≤`≤pN

{
dN

∑
k=1

∣∣λ`,k
∣∣ ∣∣∣∣∣ λ`,i 6= 0

}
, ∀1≤ i≤ dN .

If the LMIs problem

∃P = PT � 0, P� miAT
ωi

PAωi , 1≤ i≤ dN , (7)

admits a solution, then the equilibrium point x = 0 of (1) is
GUES.

Proof: Assume that (7) admits a solution. From (6),
we have P � AT

ω`
PAω`

for every 1 ≤ i ≤ pN . Hence, P is a
solution of (3), so that (1) is GUES from Proposition 3.3.

Remark 4.6: We fix an integer N.

1) The existence of a solution for the LMIs problem (7)
does not mean that the system (1) is quadratically
stable, excepted if N = 1. A counter-example is given
in Section V.

2) Theorem 4.5 shows that the stability of (1) is related
to the quadratic stability of another discrete-time linear
switched system, namely

zk+1 = Aωγk
zk, ∀k ∈ N, z0 ∈ Rn, (8)

with the switching function γ : N→ IdN . More pre-
cisely, when (7) admits a solution, (8) is quadratically
stable and an estimation of the delay rate equals to√

δ , where

δ = max
1≤i≤dN

{
1
mi

}
. (9)

V. EXAMPLES

In this section, we illustrate Theorem 4.5 with an example
adapted from [21], [20]: we consider two matrices

Ac
1 =

(
−1 −1
1 −1

)
and Ac

2 =

(
−1 −a

1
a −1

)
,

where a ∈ R>0 and we consider the discrete-time switched
linear system (1) with p = 2, Ai = exp

(
AC

i T
)
, T = 1 and

i ∈ {1, 2}.
The following table was given in [20, Section V]:

a=5 a=6 a=7 a=8 #LMI conditions
N=1 X - - - 2
N=3 X X - - 9
N=8 X X X X 257

The meaning is the following: for every box with a X,
a matrix P for the corresponding LMIs problem (3) was
obtained and for every box with −, no matrix was obtained 1.

Moreover, each value of N corresponds to the smallest
one for which a matrix P was obtained for a new value of
a: in particular, for a = 7, 8 and 4≤ N ≤ 7, no matrix were
obtained.

Given values 5 ≤ a ≤ 8 and 2 ≤ N ≤ 8, the number of
LMI conditions of (7) is constant equal to 5. In particular,
for a = 8 and N = 8, our method provides a positive definite
matrix P with 5 LMI conditions instead of 257.

VI. APPENDIX

In this section, we prove Lemma 4.4.
For that, we use the following result, which relates convex

hulls to LMIs problems:
Lemma 6.1: [22] Let P = PT � 0 and Mi ∈Rn×n, 1≤ i≤

k, such that P � MT
i PMi. If M ∈ Rn×n is a matrix in the

convex hull of the Mi’s, then P�MT PM.
Now, we prove Lemma 4.4.

Proof: [Lemma 4.4] For 1 ≤ ` ≤ dN , (6) is a con-
sequence of the following sequence of inequalities and
equality:

P� m`AT
ω`

PAω`
� λ`,`AT

ω`
PAω`

= AT
ω`

PAω`
.

1 That does not mean that the LMIs problem does not admit any solution!



For dN + 1 ≤ ` ≤ dN , we let n` = ∑
`
i=1 | λ`,i | and we

consider the following decomposition:

Aω`
=

dN

∑
i=1

λ`,iAωi

=
dN

∑
i=1

| λ`,i |
n`

(
sign

(
λ`,i
)

n`Aωi

)
.

For 1 ≤ i ≤ dN such that λ`,i 6= 0, by defini-
tion of mi in (5) and by definition of n`, we have
n`Aωi � miAωi , which implies P � (n`Aωi)

T P(n`Aωi) =(
sign

(
λ`,i
)

n`Aωi

)T P
(
sign

(
λ`,i
)

n`Aωi

)
. Hence, (6) follows

from Lemma 6.1.
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