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Background: Ethanol has been pointed out as a laccase inducer. However, there are controversial reports about its
efficiencywith some fungi. In this study, we hypothesized that ethanol laccase induced in Pycnoporus sanguineus
depends on nitrogen nutriment conditions. To prove this, we assessed laccase production in submerged cultures
of P. sanguineus, with different nitrogen concentrations andwith, orwithout ethanol added in a factorial designed
experiment.
Results: In order to analyze the effects of factors on the response variables, a factorial ANOVA, and
response-surface models were performed. It was found that the nitrogen source was the main factor that
affected laccase production in P. sanguineus. The treatments with yeast extract (2 g/L) and ethanol (3 g/L)
induced the highest laccase activity (31.01 ± 4.9 U/L), while the treatments with urea reached the lowest
activity (less than 1.6 U/L). Ethanol had positive and synergic effects on laccase production, in accordance with

the surface response model, as long as simple nitrogen sources (urea) were not available.
Conclusions:We suggest that laccase in P. sanguineus is regulated by a catabolic nitrogen repressionmechanism;
laccase activity is strongly inhibited by urea used as nitrogen source and it decreases when the amount of urea
increases; contrarily, a synergic positive effect was observed between yeast extract and ethanol on laccase
production.
© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

It is well known that nitrogen is one of the main nutrients for
microbial metabolism because it is an essential component of proteins
and nucleic acids, as well as carbon. Its concentration in the medium
and type of source (e.g. mineral or organic) can affect enzyme
production in submerged fungal cultures [1,2,3]. In fungi, the nitrogen
catabolite repression, homologous to the economic theory of microbial
metabolism for carbon sets that, simple sources of nitrogen (e.g.
ammonium) are preferred and consumed before complex sources (e.g.
organic complex sources, such as yeast extract), with the objective of
saving resources. For some enzymes linked to secondary metabolism,
e.g. proteases, L-asparaginase and laccase, it is well known that this
mechanism drives their extracellular production [4,5,6,7]; thus, for
fungal laccases, for example, some studies pointed that this enzyme is
idad Católica de Valparaíso.
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regulated by the nitrogen catabolite repression system [8] and besides,
their production, it responds differentially to diverse nitrogen sources
in the culture medium. Thus, it is assumed that fungal laccases are
activated when carbon and nitrogen are limited [9,10]. Thereby, it has
been observed that laccase production in submerged cultures is
performed in the presence of nitrogen as a simple mineral source
(such as ammonium nitrate and ammonium sulfate [11]), or complex
organic supplies (e.g. a mixture of amino acids, peptone, and yeast
extract, [12,13,14]). In this sense, high laccase yields have been
reported, when complex organic nitrogen was added to the medium,
in contrast with a simple mineral nitrogen source, for Agaricus
bisporius [15], Pleurotus ostreatus [3], Trametes hirsuta [16] and
Trametes pubescens [17]. Besides, the effect of the nitrogen source
could be species and strain specific and varies with culture conditions
(e.g. carbon source, C/N ratio, micro-nutriments content, presence of
inducers). Hence, not only the source, but also the concentration of
nitrogen in the medium, influences laccase production [10,18].

Other factors also affect laccase production, like the type of inducer:
metal ions (e.g. copper and manganese) [19,20,21]; phenolic
sevier B.V. All rights reserved.
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Table 2
ANOVA effect of all measured parameters on laccase activity, i.e. N source (yeast extract/
urea), N concentration (1, 2, 3 g/L), ethanol concentration (0, 3 g/L) and their
interactions. Significant effects are showed in bold.

Day Effect Df MS F value P

4 N source 1 2.04 7.28 0.01
N concentration 2 0.22 0.80 0.24
Ethanol concentration 1 0.69 2.46 0.12
Ethanol concentration ∗ N concentration 2 0.02 0.08 0.91
Ethanol ∗ N source 1 0.29 1.04 0.31
N concentration ∗ N source 2 0.33 1.20 0.31
Ethanol ∗ N concentration ∗ N source 2 0.10 0.35 0.70

8 N source 1 601.98 59.08 b0.001
N concentration 2 56.53 5.54 0.007
Ethanol concentration 1 14.63 1.43 0.23
Ethanol concentration ∗ N concentration 2 52.95 5.19 0.01
Ethanol ∗ N source 1 14.90 1.46 0.23
N concentration ∗ N source 2 57.26 5.61 0.007
Ethanol ∗ N concentration ∗ N source 2 53.18 5.22 0.01

12 N source 1 1584.39 282.12 b0.001
N concentration 2 404.55 72.03 b0.001
Ethanol concentration 1 240.51 42.82 b0.001
Ethanol concentration ∗ N concentration 2 369.76 65.84 b0.001
Ethanol ∗ N source 1 240.41 42.80 b0.001
N concentration ∗ N source 2 404.59 72.04 b0.001
Ethanol ∗ N concentration ∗ N source 2 369.80 65.84 b0.001

16 N source 1 222.70 11.15 0.001
N concentration 2 44.51 2.22 0.12
Ethanol concentration 1 34.25 1.71 0.19
Ethanol concentration ∗ N concentration 2 65.02 3.25 0.05
Ethanol ∗ N source 1 35.19 1.76 0.19
N concentration ∗ N source 2 45.49 2.27 0.11
Ethanol ∗ N concentration ∗ N source 2 64.58 3.23 0.05

Table 1
Levels of factors evaluated.

Nitrogen supply N concentration
(g/L)

Ethanol concentration
(g/L)

Code

Yeast extract 1 0 Y1E−
Yeast extract 2 0 Y2E−
Yeast extract 3 0 Y3E−
Yeast extract 1 3 Y1E+
Yeast extract 2 3 Y2E+
Yeast extract 3 3 Y3E+
Urea 1 0 U1E−
Urea 2 0 U2E−
Urea 3 0 U3E−
Urea 1 3 U1E+
Urea 2 3 U2E+
Urea 3 3 U3E+
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compounds; some organic molecules, like tannic acids [22], and ethanol
[23,24,25] in white-rot fungi. It has been reported that these inducers
increase the production rate of fungal laccases, both in solid state
fermentation and submerged fermentation. Ethanol has been pointed
out as cheap and less toxic inducer for laccase production [26];
nevertheless, little is known about its induction mode. Some have
speculated that ethanol could cause oxidative stress via membrane
disruption, and/or by the segregation of intracellular Ca2+, which acts as
a secondary messenger and induces the laccase genes [27]. Some
authors had recommended the use of ethanol to increase laccase
production, meanwhile other studies have not reported positive effects
of using this alcohol as an inducer; even negative effects were observed
in some cases [23,24]. The effectiveness of ethanol as an inducer of
laccase could be related to other relevant culture conditions, e.g. the
concentration and source of nitrogen. However, little is known in this
field about P. sanguineus. It has been reported that 2,5-xylidine and
cooper sulfate had a synergic and positive effect on laccase production
when combined with organic nitrogen sources [16,17], but there are no
results with ethanol. With this in mind, we hypothesized that the
different results reported so far about the inductive effect of ethanol on
fungal laccase could be due to the differences in nitrogen availability.
Thus, this study was conducted to evaluate the effectiveness of ethanol
as a laccase inducer, in the tropical white-rot fungus Pycnoporus
sanguineus, using different and contrasting nitrogen nutriment
conditions (various sources and concentrations).

2. Materials and methods

2.1. Strain and inoculum

The strain of P. sanguineus used was isolated from a wild mushroom
found in the sugar cane fields of Jalcomulco, Veracruz, Mexico (19°20′
00″N, 96°46′00″W) and preserved in a potato-dextrose-agar medium
(PDA) at 4°C. The collected fungus was identified by Ramírez-Guillén F.,
a classical taxonomy expert, and deposited at XAL Herbarium (INECOL
A.C., Xalapa, Mexico) as F. Ramírez-Guillén 932. The fungus strain was
also identified by sequencing the ITS 1 and ITS 4 regions, compared
with sequences in GenBank and the DNA sequence obtained was
deposited in GenBank under the accession number KR013138.

The fungus was reactivated in Petri dishes with PDA at 30°C for
seven d prior to the experiment. As inoculum during the experimental
phase, agar squares of 0.25 cm2 in size with the reactivated mycelium
of P. sanguineus were used.

2.2. Experimental design

To determine the response of laccase production in P. sanguineus
under different culture conditions (Table 1) a factorial design was
used, where the independent variables were: i) source of nitrogen
with two levels, yeast extract and urea; ii) concentration of nitrogen
in the source with three levels, 1, 2 and 3 g/L; and iii) ethanol as
laccase inducer with two levels, 0 and 3 g/L.

The dependent variables measuredwere: i) laccase activity (U/L), ii)
extracellular protein (mg/mL), and iii) simple sugars released from the
substrate (g/L). Each treatment was replicated four times. Samples for
the determination of laccase activity, protein production and simple
sugars released were taken each 4 d for a 20 d period.

2.3. Culture conditions

The experimental units were glass containers with 150 mL of basal
medium [11] with the following composition per liter: 1 g of KH2PO4;
0.26 g of NaH2PO4; 0.317 g of (NH4)2SO4; 0.5 g of MgSO4 × 7H2O;
0.5 mg of CuSO4; 74 mg of CaCl2; 6 mg of ZnSO4; 5 mg of FeSO4; 5 mg
of MnSO4; and 1 mg of CoCl2 supplemented with sugar cane bagasse
as a carbon source (2%). The experimental units were incubated in
darkness at 30°C in an environmental chamber (Binder, GmbH),
without agitation.

2.4. Statistical analysis

To identify if the independent variables have significant effects
on laccase production, a factorial ANOVA was carried out (α = 0.05).
The combined effect of nitrogen concentration in the source and
the ethanol concentration in the medium was analyzed by response
surface methodology [28]. The analysis was carried out using Statistica
7 (Statsoft, Inc.) and GraphPad PRISM (GraphPad Software, Inc.)
software.

2.5. Analytical methods

Lacasse activity was estimated using syringaldazine as a substrate,
according to Leonowicz and Grzywnowicz [29]. 10 μL of a solution
of syringaldazine at 5 mM in 0.1 M sodium acetate buffer, pH 4.5,
were added to 990 μL of culture sample, according to Criquet [30]. The
oxidation kinetics from syringaldazine to quinone was followed at



Fig. 1. Laccase activity observed during 16d of culturewith (a) yeast extract, and (b) urea, as nitrogen source; andwith 3 g/L (+) or 0 g/L (−) of ethanol. Bars indicate themean of the data,
and whiskers the standard error, n = 3. The subscripts numbers indicate concentration in g/L. Note the differences on the ordinate scale (Y axis).
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525 nm (ε= 65,000 M−1 cm−1) for 90 sec. The activity was expressed
as μmol of quinone formed from syringaldazine per min (U) per one
liter of culture (U/L).

The releasing of simple sugars was determined by the
spectrophotometric method of 3,5-dinitrosalicylic acid (DNS), according
to Miller [31]. 500 μL of the sample was mixed with 500 μL of DNS
reagent and boiled for 5 min; later the reaction mixture was cooled for
10 min in icy water. Subsequently, the reaction mixture was diluted
Fig. 2. Influence of yeast extract and ethanol concentrations on laccase produced by P. sanguineu
the observed laccase activity. The response surface graph follows a linear fit of the data; the pr
with 5 mL of dH2O and quantified at 540 nm. The absorbance was
transformed into glucose (g/L) through calibration according to a
standard curve. The total of extracellular protein was determined
according to the Bradford method [32]. 500 μL of the sample were
mixed with 500 μL of Bradford reagent (Sigma, USA), the mixture was
left standing for 5 min and quantified spectrophotometrically at
595 nm. The absorbance was transformed into protein (mg/mL) using a
standard curve of bovine serum albumin (BSA).
s after (a) 4 d; (b) 8 d; (c) 12 d, and (d) 16 d. Changes in color patterns indicate changes on
oposed model is showed.
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3. Results

Laccase production was highly dependent on nitrogen supply
conditions (P b 0.05, Table 2). In cultures with yeast extract as
nitrogen supply (Fig. 1a), the highest activity was observed (31.01 ±
4.9 U/L) after 12 d in a culture treated with 2 g/L of yeast extract as a
nitrogen source and 3 g/L of ethanol (Y2E+). Meanwhile, in all
treatments with urea as nitrogen supply (Fig. 1b) laccase activity was
lower than 1.6 U/L.

Nitrogen concentration and ethanol had significant effects on
laccase production only at certain moments. Nitrogen concentration
had significant effects after 8 d (F = 5.54; P = 0.007) and 12 d
(F = 72.03; P b 0.001) of culture (when laccase expressed high
activity), and ethanol concentration had significant effects only at
d 12 (F = 42.82; P b 0.001). Combined effects of ethanol and
nitrogen supply/nitrogen concentration were found at d 8 and 12, and
as well as between nitrogen supply and nitrogen concentration
(Table 2). The surface response analysis showed combined effects of
ethanol and nitrogen concentration on laccase production when yeast
extract was supplied (Fig. 2); ethanol showed positive effects after 8
(m = 0.73; Fig. 2b), 12 (m = 3.07 Fig. 2c) and 16 d (m = 1.13). At d
4, non-synergic effects were observed between ethanol and nitrogen
concentrations (nitrogen concentration did not show effect, Fig. 2a).
However, at d 8 and 12 the highest laccase activities were observed in
treatments with 3 g/L of ethanol and low nitrogen concentration
(Fig. 2b, Fig. 2c).
Fig. 3. Influence of urea and ethanol concentrations on laccase produced by P. sanguineus (a) a
observed laccase activity. The response surface graph follows a linear fit of the data; the propo
In cultures with urea, non-effects were observed when ethanol was
added (Fig. 3), and urea concentration only showed an effect after 16 d
of culture (Fig. 3d). When urea was used, the highest laccase activities
were observed at d 16 on treatments with 1 g/L (Fig. 3d).

Extracellular protein production was slightly higher in treatments
with yeast extract than those with urea (Fig. 4a and Fig. 4b). However,
no effects of ethanol addition or nitrogen concentration were
observed. The sugar content in cultures with urea was slightly higher
than those with yeast extract (Fig. 5), but no significant effect was
observed.

4. Discussion

In accordance with previous reports for other fungi [3] such as P.
ostreatus, our ANOVA results indicate that the source of nitrogen is
the most significant source of variation in laccase activity, and that the
yeast extract (an organic complex source) promotes more laccase
production in a submerged culture than urea (amineral simple source).

Some studies have reported better laccase production with mineral
sources of nitrogen than with organic ones [21], for several species of
Pleurotus. However, it is accepted that inorganic sources lead to lower
laccase yields than organic sources, although both of them promote
good fungal (biomass) development [33]. However, the source of
nitrogen added to the medium and its consequent effect on laccase
activity is species and strain specific, as determined by Mikiashvili
et al. [3]. In this study, we observed that P. sanguineus preferred a
fter 4 d; (b) 8 d; (c) 12 d, and (d) 16 d. Changes in color patterns indicate changes on the
sed model is showed.



Fig. 4. Extracellular protein kinetics produced during 16 d of culture with (a) yeast extract, and (b) urea, as nitrogen source; and with 3 g/L (+) or 0 g/L (−) of ethanol. Bars indicate the
mean of the data, and whiskers the standard error, n = 3. The subscripts numbers indicate concentration in g/L.
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medium with an organic nitrogen source for the production of laccase,
as reported previously. Eugenio et al. [23] stated that asparagine is the
best nitrogen source (even better than yeast extract) for laccase
production using P. sanguineus.

According to our results, the nitrogen source concentration
used showed significant effects. When yeast extract (at d 8 and 12)
and urea (at d 16) concentrations were significant, the highest laccase
activities were registered. It suggests that nitrogen concentration has a
strong effect on laccase production during the late stages of
development of fungi, when secondary metabolism is active [34].
Negative correlations between concentrations of an inorganic nitrogen
source (ammonium tartrate) and laccase production were reported
for P. sanguineus by Pointing et al. [35]. That study also reported
that the highest laccase production was reached when low carbon
(glucose) and low nitrogen (ammonium tartrate) sources were added
to the medium. Laccase repression occurred at high nutriment
(carbon/inorganic nitrogen) conditions. Our surface response results
tend to the same conclusion of Pointing et al. [35]: the amount of
inorganic nitrogen source – urea, in our case – affects the production
of laccase negatively in P. sanguineus.

In our study, the highest laccase activity was observed in
the treatments with the lowest urea concentrations (1 g/L). The
preference of an organic nitrogen source and the negative correlation
between urea concentration and laccase activity may suggest that
laccase production in P. sanguineus could be subjected to a nitrogen
catabolic repression; a mechanism for saving resources that was
reported for laccase production in other basidiomycetes, like
Cryptococcus neoformans [8]. It has also been suggested that
Phanerochaete chrysosporium (wild-type) has a regulatory system for
laccase that inhibits its production under sufficient carbon and
nitrogen conditions; this can be deregulated in mutant strains [36].
Fig. 5. Sugar content kinetics in the culturemedium during 16 d of culture with (a) yeast extract
the mean of the data, and whiskers the standard error, n = 3. The subscript numbers indicate
The catabolic nitrogen repression states that in the presence of simple
nitrogen sources the expression of genes for more complex
nitrogen sources (like genes of protease, γ-glutamyl transpeptidase,
L-asparaginase, and permease) is repressed [37]. In this study we
suggest that this regulatory mechanism operates and regulates laccase
production in P. sanguineus; however, more research must be done to
prove that. Nevertheless, the effect of the nitrogen source added to
medium on laccase activity is evident.

In this study, we evaluated submerged cultures of P. sanguineus, but
other studies have reported that in solid-state fermentation, an
increment of urea concentration accompanied an increment of laccase
production for P. ostreatus, Lentinula edodes, and Agaricus blazei [10].
This shows how the response of laccase to nitrogen supplies and
culture conditions could change accordingly for fungi species.

According to our results, ethanol had a significant effect on laccase
activity at d 12 and showed combined effects with nitrogen conditions
at d 8 and 12. As we previously hypothesized, the effect of ethanol as
an inducer of laccase is linked to other factors. We observed that
ethanol induces laccase production when simple nitrogen sources
(urea) are not available. In previous reports, Eugenio et al. [23] and
Barreto et al. [24] have established that the effect of adding ethanol to
the medium was null or negative on laccase production. Eugenio et al.
[23] used ammonium tartrate (Kirk's medium) to produce laccase
with P. sanguineus. Barreto et al. [24] used glutamine (Trametes
defined medium), a simple organic source of nitrogen to produce
laccase with T. versicolor. In both cases, the nitrogen source of the
medium corresponded to simple sources, one inorganic and one
organic. When more complex mediums were used, ethanol addition
had a positive effect as a laccase inductor. Valeriano et al. [26] used
malt extract medium for the production of laccase, Alves et al. [25]
used a mixture of yeast extract and ammonium sulfate as nitrogen
, and (b) urea, as nitrogen source; andwith 3 g/L (+) or 0 g/L (−) of ethanol. Bars indicate
concentration in g/L.
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sources, and Lomascolo et al. [27] used yeast extract; all those studies
suggested that the ethanol is a good laccase-inducer. Following this
line of knowledge, and supported by our results, we conclude that
ethanol can act as a weak inducer of laccase only in the presence of
complex nitrogen sources. Moreover, we hypothesize that this works
only when nitrogen catabolite repression is not operating.

Our study contributes to a better understanding of the use of ethanol
as an inducer of laccase in P. sanguineus, and our results showed that its
functioning as an inducer is dependent onnitrogennutriment conditions.

5. Conclusion

In accordance with our results, we conclude that: i) laccase
production in P. sanguineus is strongly dependent on the type
of nitrogen source added to medium in submerged cultures; urea
inhibits its production (simple mineral source) and yeast extract
(organic complex source) promotes it. We hypothesize that these
results suggest the presence of a mechanism of nitrogen catabolite
repression for P. sanguineus; however, genomic studies are required to
assert it. ii) Ethanol only functions as a laccase inducer when simple
nitrogen sources are not available in the culture medium; in the
presence of complex nitrogen sources, such as yeast extract, ethanol
showed positive synergic effects on laccase production.
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