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A homography-based dynamic control approach
applied to station keeping of autonomous

underwater vehicles without linear velocity
measurements

Lam-Hung Nguyen, Minh-Duc Hua, Guillaume Allibert and Tarek Hamel

Abstract—A homography-based dynamic control approach
applied to station keeping of Autonomous Underwater Vehicles
(AUVs) without relying on linear velocity measurements is
proposed. The homography estimated from images of a planar
target scene captured by a downward-looking camera is directly
used as feedback information. The full dynamics of the AUV
are exploited in a hierarchical control design with inner-outer
loop architecture. Enhanced by integral compensation actions
and disturbance torque estimation, the proposed controller is
robust with respect to model uncertainties and unknown currents.
The performance of the proposed control approach is illustrated
via both comparative simulation results conducted on a realistic
AUV model and experimental validations on an in-house AUV.

Index Terms—Autonomous Underwater Vehicle, visual ser-
voing, homography-based control, station keeping, nonlinear
control

I. INTRODUCTION

Safe and efficient navigation of Autonomous Underwater
Vehicles (AUVs) in cluttered environments remains a chal-
lenging task. Scientific issues are particularly related to the fact
that global acoustic positioning systems become unusable or
insufficiently precise in such situations, leading to an obvious
interest in developing advanced sensor-based control strategies
for AUV applications in close proximity to a complex sea
bottom or submarine structures. While acoustic systems have
been widely used for sensing underwater environments, cam-
eras offer an appealing alternative due to the rich information
captured by images and their high update rate. By using vision
sensors as a sensor modality for relative (scaled) position and
orientation, the control problems can be cast into Position-
Based Visual Servoing (PBVS) or Image-Based Visual Servo-
ing (IBVS) [5]. Classical visual servo control techniques have
been initially developed for robotic manipulators and mobile
ground vehicles [15], [21] and then for aerial drones [7], [9],
[10]. In underwater robotics, vision sensors have been used
to perform station keeping or positioning [6], [8], [19], [31],
docking [4], [20], [22], [32], and pipeline following [1], [2],
[25], [30], etc.

Both stereo and monocular cameras have been exploited
for stabilization and positioning of AUVs. When the vehicle’s
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pose (i.e. position and orientation) can be estimated, existing
PBVS controllers can be directly applied [28]. In contrast, the
case of monocular vision without the assumption of planarity
of the visual target and the prior knowledge of its geometry is
more involved since full pose reconstruction from visual data
is not possible. However, monocular vision can be sufficient
to achieve stabilization of an AUV in front of a planar
target [4], [19], [31]. Recently, an advanced kinematic IBVS
control scheme was proposed in [3] by exploiting the so-
called homography that is an invertible mapping relating two
camera views of the same planar scene by encoding in a single
matrix the camera pose, the distance between the camera and
the scene, and the normal direction to the scene [3], [11]. A
remarkable feature of that approach is the non-requirement
of homography decomposition often computationally expen-
sive (see e.g. [24]), as opposed to other homography-based
visual servo (HBVS) controllers [4], [23]. More recently, this
kinematic HBVS control approach has been extended in our
prior work [17] in order to account for the full dynamics
of fully-actuated AUVs and to obtain an enlarged provable
domain of stability. The present paper continues to extend
our work [17] to the case where linear velocity measurements
are unavailable. We restrict, however, our study to the case
of a downward-looking camera. One of the main motivations
behind this effort is related to the development of a low-cost
but efficient solution for station keeping of AUVs without
the need of a costly Doppler Velocity Log (DVL) velocity
sensor. More precisely, the proposed solution makes use of a
minimal and inexpensive sensor suite consisting of an Inertial
Measurement Unit (IMU) and an embedded video camera
whose total cost can be less than 150C. A similar problem
concerning underactuated aerial drones addressed in [7] is in
line with our effort in dealing with system’s dynamics and
in depleting the need of a linear velocity sensor. However,
the approach proposed in [7] relies on the assumption that
the visual velocity is available for control design, for instance,
via the use of a high-gain observer, but a complete stability
analysis including such high-gain observer is missing.

The paper is structured into seven sections including the
introduction and concluding sections. Notation and problem
formulation of HBVS control of fully-actuated AUVs are
provided in Section II. Section III presents a recall on sys-
tem modeling together with a simplified model for control
design. In Section IV a novel inertial-aided homography-based
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dynamic control approach applied to station keeping of fully-
actuated AUVs without relying on linear velocity measure-
ments is proposed. Comparative simulation results conducted
on a realistic AUV model are reported in Section V, showing
the performance and robustness of the proposed approach. Sec-
tion VI first describes some practical development aspects of
the experimental platform then reports extensive experimental
validation results in a real environment. Three video links are
also provided showing these experimental results.

A primary version of this work has been presented at a
conference [27]. Several extensions of [27] are proposed in
this paper. For instance, the restrictive assumption of alignment
between the AUV’s center of buoyancy and center of mass and
the camera optical center used in [27] is no longer necessary,
allowing one to accommodate any arbitrary camera location
on the AUV. The inner-loop controller has been modified by
using a bounded nested saturation integrator of the angular
velocity error instead of a classical integrator that is prone to
the well-known phenomenon of integrator wind-up. Finally,
the comparative simulation study and extensive experimental
validations on an in-house AUV of this paper have been newly
developed.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

P4 P3

P2
P1

d?

n?

A
B

C

O

B

C
rC

−→e a3

−→e a2
−→e a1

G

−→e b3 rG

−→e b1−→e b2
(R,pC)

(R,p)

Fig. 1: An AUV with a downward-looking camera and notation

The AUV is modeled as a rigid body immersed in water. The
following notation is used throughout the paper (see Fig. 1).
• Let m and J0 denote respectively the vehicle’s mass and
inertia matrix, G and B its center of mass (CoM) and center
of buoyancy (CoB). The distance between G and B is denoted
as l. The gravity constant is denoted as g.
• The considered inertial frame is denoted as A =
{O;−→e a1 ,−→e a2 ,−→e a3}. The body frame attached to the AUV with
the origin at the CoB is denoted as B = {B;−→e b1,−→e b2,−→e b3}.
The camera frame with base vectors parallel to those of B is
denoted as C = {C;−→e c1,−→e c2,−→e c3}. The vectors of coordinates
expressed in B of

−−→
BC and

−−→
BG are respectively denoted as

rC ∈ R3 and rG = le3 ∈ R3, with e3 = [0, 0, 1]>.
• The orientation (i.e. attitude) of the body frame B relative
to the inertial frame A is represented by a rotation matrix
R ∈ SO(3). By denoting p and pC the vector of coordinates
expressed in A of B and C respectively, one verifies that
p = pC −RrC .

• Let Ω = [ω1, ω2, ω3]> ∈ R3 denotes the angular velocity of
B with respect to A, expressed in B. By denoting V ∈ R3 and
VC ∈ R3 respectively the vector of coordinates expressed in B
of the linear velocity of B and C, one has V = VC−Ω×rC .
• The vectors of coordinates of the current velocity expressed
in A and B are denoted as vf and Vf , respectively. Then
the CoB’s velocity relative to the current expressed in B is
denoted as Vh , V −Vf . Assume that vf is constant.
• Let {e1, e2, e3} denote the canonical basis of R3 and I3

denote the identity of R3×3. For all u ∈ R3, u× denotes the
skew-symmetric matrix associated with the cross product by
u, i.e., u×v = u×v, ∀v ∈ R3. Let vex(·) denote an operator
such that vex(u×) = u. The transpose operator is denoted as
(·)>. The Euclidean norm in Rn and the Frobenius norm in
Rn×n are denoted as | · | and || · ||, respectively. The notation
satδ(·) ∈ Rn, with δ > 0, denotes the classical saturation
function, i.e., satδ(x),x min (1, δ/|x|) ,∀x ∈ Rn.

B. Problem formulation

Assume that the AUV, equipped with a downward-looking
monocular camera, operates sufficiently close to a (near)
planar textured seafloor. To perform the station-keeping task, a
reference image of the seafloor is first taken at a desired pose.
Then, the visual servoing controller must stabilize the AUV
about the desired pose by exploiting information encoded in
both the current and reference images.

Let us define the inertial frame A attached to the camera’s
desired pose as depicted in Fig. 1. Assume that the estimation
of the so-called homography H ∈ R3×3 between the current
image and the reference image is available for control design.
Such a homography matrix contains coupled information about
the rotation and translation between the current camera frame
C and the inertial A as follows [3]

H = R> − 1

d?
R>pCn?> (1)

where n? ∈ S2 is the unit normal vector pointing toward the
target plane with coordinates expressed in A; and d? is the
distance between the camera optical center at the desired pose
and the target plane (see Fig. 1). The derivative of H satisfies

Ḣ = −Ω×H− 1

d?
VCn?> (2)

In addition to the estimate of H, (approximate) measure-
ments of the angular velocity Ω and of the gravity direction
R>e3 provided by an IMU are also available for control
design.

The considered control objective consists in asymptotically
stabilize H about I3, which is equivalent to the stabilization
of (R,pC) about (I3,0). Main difficulties for control design
are related to the unknown quantities d? and n? involved in
the expression (1) of the homography H, the coupled rotation
and translation transformations encoded in H, and last but not
least the unavailability of linear velocity measurements (i.e.
DVL is not used).

C. Discussions on an existing HBVS control approach

An advanced HBVS approach without relying on homogra-
phy decomposition has been proposed in [3]. This kinematic
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control approach consists in using (VC ,Ω) as control inputs
to stabilize the visual errors ep, eΘ ∈ R3 to zero, where

ep , (I3 −H)m?, eΘ , vex(H> −H) (3)

with m? ∈ S2 an arbitrary unit vector satisfying n?>m? >
0. In the case of station keeping using a downward-looking
camera, the angle between the target plane’s normal vector
and the camera axis at the desired pose should be smaller
than 90 degree, which implies that n?>e3 > 0. It follows
that the simple choice m? = e3 ensures the validity of the
condition n?>m? > 0 without any prior knowledge of n?.
This choice (i.e. m? = e3) will be considered throughout the
present paper.

The following lemma states the local exponential stability
of the kinematic controller proposed in [3].

Lemma 1 (See [3]) The following kinematic controller

VC = −kpep , Ω = −kΘeΘ (4)

with positive gains kp and kΘ ensures the local exponential
stability of the equilibrium (R,pC) = (I3,0), i.e. H = I3.

For AUV control design, forces and torques must be used
as control inputs instead of the linear and angular velocities.
However, the passage from kinematic control to dynamic
control requires these velocity measurements as discussed in
our prior work [17]. It is thus inapplicable to the problem
here considered due to the unavailability of linear velocity
measurements for control design. In the sequel, a novel
dynamic HBVS control approach will be developed to address
the lack of linear velocity measurements.

III. SYSTEM MODELING

A. Recalls on system modeling

The kinematic equations of the vehicle are given by

ṗ = RV (5a)

Ṙ = RΩ× (5b)

The vehicle’s dynamic equations are derived based on
the translational and rotational momentums of the body-fluid
system. The total kinetic energy of the body-fluid system is
ET = EB +EF where EB and EF are the kinetic energy of
the vehicle and of the surrounding fluid, respectively:

EB =
1

2
W>hMBWh, with MB ,

[
mI3 −mrG×
mrG× J0

]
EF =

1

2
W>hMAWh, with MA ,

[
M11
A M12

A

M21
A M22

A

]
with Wh , [V>h , Ω>]> ∈ R6, and MA ∈ R6×6 the
hydrodynamic added-mass matrix. One thus deduces

ET =
1

2
W>hMTWh, with MT =

[
M D>

D J

]
and M , mI3 + M11

A , J , J0 + M22
A , D , mrG× + M21

A .
From there, the translational and rotational momentums are
computed as {

Ph = ∂ET
∂Vh

= MVh + D>Ω

Πh = ∂ET
∂Ω = JΩ + DVh

(6)

Then, according to the formulation of Leonard [18], the
vehicle’s dynamics are given by

Ṗh = Ph ×Ω + Fc + Fgb + Fd (7a)

Π̇h = Πh×Ω + Ph×Vh + Γc + Γg + Γd (7b)

where Fc ∈ R3 and Γc ∈ R3 are the control force and torque
vertors, Fgb , (mg − Fb)R>e3 the sum of the gravity and
buoyancy forces, Γg , mgle3×R>e3 the gravity torque, and
Fd and Γd the damping force and torque modeled as the sum
of linear and quadratic terms as follows{

Fd(Vh) = −(DVl + |Vh|DVq)Vh

Γd(Ω) = −(DΩl + |Ω|DΩq)Ω
(8)

with positive damping matrices DVl, DVq , DΩl, DΩq ∈ R3×3.
Note that the model (8) of Fd and Γd is not used for control
design but is only useful for simulation purposes.

B. Simplified model for control design

The translational and rotational dynamics (7a)-(7b) are
tightly coupled due to the coupling matrix D involved in the
definition (6) of the momentum terms. These complex dynamic
couplings are often neglected in the literature by neglecting
all terms involving D using the fact that the considered AUV
is compact and the distance between the CoB and CoM is
relatively small. Moreover, since the linear velocity is not mea-
sured, the “Munk moment” (MVh)×Vh is here considered
as a disturbance. Finally, all terms involving unknown current
velocity Vf , together with the damping force and torque, are
also considered as disturbances. These considerations result
in the following simpler dynamic equations that decouple the
translational and rotational dynamics:

MV̇ = (MV)×Ω + Fc + Fgb + ∆F (9a)

JΩ̇ = (JΩ)×Ω + Γc + Γg + ∆Γ (9b)

with the “disturbance” terms

∆F , −(MVf )×Ω−MΩ×Vf+(D>Ω)×Ω−D>Ω̇ + Fd
∆Γ , (DVh)×Ω + Ph×Vh −DV̇h + Γd

In the case of station keeping, ∆F and ∆Γ would eventually
converge to constant vectors. In the sequel, these terms will
be first neglected in the derivation of a basic controller, which
later on will be robustified via both integral correction actions
and a high-gain observer of ∆Γ.

IV. CONTROL DESIGN

   

Homography
estimation

Outer-loop
Inner-loop IMU

AUV
Fc

Γcω3r

ω̇3r

H

Ω,R>e3Ω,Fgb

Fig. 2: Control architecture of the proposed HBVS

By analogy to the cascade inner-outer loop control ar-
chitecture proposed in [17], the following modified version
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(illustrated by Fig. 2) handling the unavailability of linear
velocity measurements is adopted:
• An inner-loop controller, governing the rotation dynamics

(5b) and (9b), defines the torque control vector Γc to
ensure the asymptotic stabilization of (Ω,R>e3) about
(Ωr, e3), where the reference angular velocity Ωr is
defined by

Ωr , kge3 ×R>e3 + ω3re3 (10)
with kg > 0 positive gain and ω3r ∈ R the reference
yaw angular velocity to be specified by the outer-loop
controller. Note that ω̇3r must be computable so that the
feedforward term Ω̇r is also computable by the torque
controller.

• An outer-loop controller defines the force control vector
Fc together with the reference yaw angular velocity ω3r

(for the inner-loop controller) to fulfill the main objective
of stabilizing H about I3, provided that the inner-loop
controller ensures the almost global asymptotic stability
(almost-GAS) and local exponential stability (LES) of the
equilibrium (Ω,R>e3) = (Ωr, e3).

The inner-loop control design is less involved and is post-
poned after the outer-loop control design, which is the main
contribution of this paper.

A. Outer-loop control design
1) Force control design: Analogously to our prior work

[17], the control design for stabilizing the visual error ep
defined in (3) about zero is first carried out, but here without
linear velocity measurements.

In view of (2) and (3) and using the choice m? = e3, the
dynamics of ep satisfy

ėp = −Ω× (ep − e3) + a?VC (11)

with a? , n?>e3

d? an unknown number. However, we know
that it is positive using the condition n?>e3 > 0.

In our prior work [27] the outer-loop controller has been
designed based on the assumption that the vehicle’s CoB B
and CoM G and the camera optical center C are aligned. This
restrictive assumption is not used in the present paper. To this
purpose let us introduce a modified velocity variable

V̄ , V + ω3re3 × rC (12)

As a result of the inner-loop controller (to be designed there-
after) that ensures the exponential convergence of (Ω,R>e3)
to (Ωr, e3), one ensures that Ω exponentially converges to
ω3re3, which in turn implies that VC exponentially converges
to V̄ and Ω× e3 exponentially converges to zero. Therefore,
(11) can be rewritten as

ėp = −Ω× ep + a?V̄ + ε(t) (13)

with exponentially vanishing term

ε(t) , Ω× e3 + a?(Ω−Ωr)× rC (14)

On the other hand, using (9a) the dynamics of V̄ verify

M ˙̄V = (MV̄)×Ω + Fc + Fgb + ∆F

+ω̇3rM(e3 × rC)− ω3r(M(e3 × rC))×Ω

= (MV̄)×Ω + F̄c + Fgb + ∆F + ε1(t)

(15)

with new control force variable

F̄c , Fc + ω̇3rM(e3 × rC)− ω2
3r(M(e3 × rC))× e3

= Fc + (ω̇3rI3 + ω2
3r[e3]×)M(e3 × rC)

(16)

and exponentially vanishing term

ε1(t) , −ω3r(M(e3 × rC))× (Ω−Ωr) (17)

To expose the main ideas of control design, the outer-loop
control design will be first carried out for the case where
the disturbance term ∆F involved in (15) is considered null,
i.e. ∆F ≡ 0. Then, we will show later on how to cope
with external disturbances and model uncertainties via integral
correction actions.

Proposition 1 Consider system including the dynamics (13)
of ep and translation dynamics given by (15) with ∆F ≡ 0.
Assume that Ω remains bounded for all time. Assume that the
disturbance terms ε(t) and ε1(t) remain also bounded for all
time and converge asymptotically to zero and with exponential
rate of convergence after some time instant Tε ≥ 0. Introduce
the augmented system

˙̂ep = −Ω× êp −K1êp + K1ep, êp(0) ∈ R3 (18)

with K1 ∈ R3×3 positive definite gain matrix. Apply the
control force

F̄c = m̄M−1
(
k2êp − (k2 + k3)ep

)
− Fgb (19)

with m̄, k2, k3 > 0. Then, the equilibrium (êp, ep, V̄) =
(0,0,0) is globally asymptotically stable (GAS).

Proof: Define ẽp , êp − ep. From (13) and (18) one
obtains

˙̃ep = −Ω× ẽp −K1ẽp − a?V̄ − ε(t) (20)

Define x1 , [ẽ>p , e
>
p ,MV̄>]>, x2 , [ε>, ε>1 ]>. One verifies

from (14) and (17) that x2 is independent with x1. Thus, the
closed-loop system of system (13)+(15)+(20) can be rewritten
in the following cascaded time-varying system studied by
Panteley and Loria [29]1:

ẋ1 = A(t)x1 + Bx2 (21)

with

A(t) ,

−Ω× −K1 0 −a?M−1

0 −Ω× a?M−1

k2m̄M−1 −k3m̄M−1 −Ω×


and B a constant matrix composed of 0 and 1. System (21)
can be seen as a nominal system

ẋ1 = A(t)x1 (22)

perturbed by the output x2 of a stable system that remains
bounded for all time and converges to zero with exponential
rate when t ≥ Tε.

To apply [29, Theorem 2] one needs to verify first that the
state x1 of the nominal system (22) remains bounded in the

1The class of cascade time-varying systems studied by Panteley and Loria
is of the form: ẋ1 = f(t,x1)+g(t,x1,x2)x2. Thus, in our case f(t,x1) =
A(t)x1 and g(t,x1,x2) = B.
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time interval [0, Tε]. Indeed, since Ω, ε and ε1 are bounded
for all time (and subsequently in [0, Tε]) by assumption there
exist two positive numbers β1, β2 > 0 such that

|ẋ1(t)| ≤ β1|x1(t)|+ β2, ∀t ∈ [0, Tε]

This inequality implies that the solutions x1 cannot grow
faster than exponentially and, thus, do not blow up in finite
time. From there, one can conveniently consider System (21)
with initial time t0 = Tε and apply [29, Theorem 2] to this
system. The next step consists in verifying the validation of
all assumptions of that theorem.

One of the main requirements of [29, Theorem 2] is that
the origin of the nominal system (22) is globally uniformly
asymptotically stable. Consider the following Lyapunov func-
tion candidate

L ,
k2

2
|ẽp|2 +

k3

2
|ep|2 +

a?

2m̄
|MV̄|2 (23)

One verifies that the time-derivative of L along any solution
to the controlled unperturbed system (22) is

L̇ =− k2ẽ
>
p K1ẽp − a?k2ẽ

>
p V̄ + a?k3e

>
p V̄

+ a?m̄−1
(
MV̄)>(F̄c + Fgb

)
=− k2ẽ

>
p K1ẽp

(24)

From (24) one deduces that L̇ is semi-negative definite and,
thus, ẽp, ep, and V̄ remain bounded by initial conditions.
One then easily verifies that ˙̃ep and L̈ also remain bounded,
implying the uniform continuity of L̇. Then, application of
Barbalat’s lemma [16] ensures the convergence of L̇ and,
thus, of ẽp to zero. Then, from (20) (with ε(t) ≡ 0) and
by application of the extended Barbalat’s lemma [26] one also
ensures the convergence of ˙̃ep to zero, which in turn implies
that V̄ converges to zero. Similar arguments can be used to
show the convergence of ˙̄V to zero. In view of (15) (with
∆F ≡ 0), ε1(t) ≡ 0 and F̄c given by (19), one ensures
that ep converges to zero. The stability of the equilibrium
(ep, êp, V̄) = (0,0,0) (or x1 = 0) is a direct consequence of
(23) and (24).

We have proved that the origin of the nominal system (22) is
GAS. The next step consists in showing [29, inequality (7)] is
satisfied with the Lyapunov function (23) and for the nominal
system (22). This condition consists in proving the existence
of c1 > 0, δ1 ≥ 0 such that∣∣∣∣ ∂L∂x1

∣∣∣∣ |x1| ≤ c1L, ∀|x1| ≥ δ1 (25)

From the definition (24) of L one deduces

α1|x1|2 ≤ L ≤ α2|x1|2

with α1 , min(k2

2 ,
k3

2 ,
a?

2m̄ ), α2 , max(k2

2 ,
k3

2 ,
a?

2m̄ ). One
also verifies that

∣∣∣ ∂L∂x1

∣∣∣ ≤ 2
√

3α2|x1|. Thus, inequality (25)

is satisfied with c1 = 2
√

3α2/α1 and δ1 = 0.
It remains to verify Assumptions A2 and A3 of [29,

Theorem 2]. Indeed, Assumption A2 on the interconnection
term B is clearly satisfied since B is constant (i.e. ∃cB > 0 :
|B| ≤ cB) which implies that [29, inequality (9)] is satisfied,
i.e.

|B(t,x1,x2)| ≤ θ1(t, |x2|) + θ2(t, |x2|)|x1|

with θ1(t, |x2|) = cB and θ2(t, |x2|) = 0.
One can verify that Assumption A3 is also satisfied using

the fact that |x2(t ≥ t0)| exponentially converges to zero (with
initial time t0 = Tε as explained previously). Indeed, there
exist γ1, γ2 > 0 such that

|x2(t, t0,x2(t0))| ≤ γ1|x2(t0)|e−γ2(t−t0), ∀t ≥ t0

and, subsequently, [29, inequality (10)] holds, that is∫ ∞
t0

|x2(t, t0,x2(t0))|dt ≤ φ(|x2(t0)|) , γ1

γ2
|x2(t0)|

with φ(·) a class K function (i.e. strictly increasing and
vanishing at zero). From there, the application of [29, Theorem
2] ensures that the equilibrium (x1,x2) = (0,0) is GAS. This
concludes the proof.

Note that Proposition 1 applies to the case where the
perturbation term ∆F is negligible. While this basic controller
would be able to handle small currents, in practice it is
often desirable to enhance control robustness by incorporating
integral correction actions. However, in our case the system
considered in Proposition 1 (i.e. (18)+(13)+(15)) is already
a third-order time-varying system. Thus, adding an integrator
would lead to a fourth-order time-varying system. Too high
order system, together with the presence of an unknown
multiplicative factor a? in (13) and the unavailability of linear
velocity measurements, excludes the possibility of establishing
global (or semi-global) stability results similar to Proposition
1. However, it is still possible to state local exponential
stability. For simplicity, let us consider the case where M can
be roughly approximated by a positive diagonal matrix, i.e.
M ≈ diag(m1,1,m2,2,m3,3).

Proposition 2 Consider system including dynamics of ep
given by (13) and translation dynamics given by (15) with
constant disturbance ∆F and diagonal total mass matrix
M = diag(m1,1,m2,2,m3,3). Assume that the disturbance
terms ε(t) and ε1(t) remaining bounded for all time and
converge asymptotically to zero and with exponential rate
of convergence after some time instant Tε. Introduce the
following integrator

ż = −Ω× z + ep, z(0) ∈ R3 (26)

and the following augmented system

˙̂ep = −Ω× êp −K1êp + K1ēp, êp(0) ∈ R3 (27)

with positive diagonal matrix K1 ∈ R3×3 and ēp , ep + kIz
with positive integral gain kI . Apply the control force

F̄c=m̄M−1
(
satη1(k2˜̄ep)− satη2(k3ēp)

)
− Fgb (28)

with positive numbers m̄, k2, k3, η1, η2, and ˜̄ep , êp − ēp.
Choose η2 high enough such that

η2 > m̄−1|M∆F | (29)

and choose kI satisfying

kI <
k2λK1

k2 + k3
(30)
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with λK1
the smallest diagonal component of K1. Assume

that the outer-loop control ω3r together with the inner-
loop control Γc ensures that Ω can be considered as a
first order term in first order approximations. Then, the
equilibrium (êp, ep, V̄, z) = (kIz

?,0,0, z?), with z? ,
(m̄k3kI)

−1M∆F , of the controlled system is locally expo-
nentially stable (LES). Moreover, F̄c remains bounded by

|F̄c| ≤ m̄λ−1
M (η1 + η2) + |mg − Fb| (31)

with λM the smallest eigenvalue of M.

Proof: One verifies that the linearized system of Eqs.
(13), (15), (27) augmented with integrator (26) around the
equilibrium (êp, ep, V̄, z) = (kIz

?,0,0, z?), with z? ,
(m̄k3kI)

−1M∆F , is given by

ẋ1 = Ax1 + Bx2 (32)

with

x1 , [(êp − kIz?)>, e>p , (MV̄)>, (z− z?)>]> ∈ R12

x2 , [ε>, ε>1 ]> ∈ R6

A ,


−K1 K1 0 kIK1

0 0 a?M−1 0
k2m̄M−1 −(k2+k3)m̄M−1 0 −kI(k2+k3)m̄M−1

0 I3 0 0


and B ∈ R12×6 a constant matrix composed of 0 and 1.

The 12th-order characteristic polynomial of the nominal
autonomous system ẋ1 = Ax1 is Q(λ) = Q1(λ)Q2(λ)Q3(λ),
with
Qi(λ) = λ4 + k1iλ

3 + (k2 + k3)a?
m̄

m2
i,i

λ2

+
(
k1ik3 + (k2 + k3)kI

)
a?

m̄

m2
i,i

λ+ k1ik3kIa
? m̄

m2
i,i

with kI satisfying (30). Application of Routh-Hurwitz criterion
ensures the exponential stability of the nominal autonomous
system. Since x2 is exponentially stable by assumption, one
deduces that the cascade (32) is also exponentially stable.

One can verify that condition (29) is necessary so that
the integral action can compensate for the disturbance ∆F .
Finally, the bound of the force control vector F̄c given by
(31) is directly deduced from (28).

Remark 1 In first order approximations, the force control F̄c
given by (28) is given by

F̄c = k2m̄M−1êp − (k2 + k3)m̄M−1ēp − Fgb (33)

The proof of global asymptotic stability of the equilibrium
(êp, ep, V̄, z) = (kIz

?,0,0, z?), with F̄c given by (33),
proceeds analogously to the proof of Proposition 2. The linear
approximation (33) of F̄c is useful for gain tuning using,
for instance, pole placement technique, while its nonlinear
expression (28) that involves saturation functions allows us
to define explicitly the bound of the force control input F̄c as
given by (31). The latter property is of particular importance
in practice since it is often desirable to take explicitly actuation
limitations into account. For instance, (31) implies that the
desired bound of |F̄c| can be set to any value µ (> |mg−Fb|)
if η1 + η2 ≤ m̄−1λM(µ− |mg − Fb|).

2) Control design of the reference yaw angular velocity
ω3r: The previous part of outer-loop control design ensures
the convergence of ep to zero, which in turn ensures the
convergence of pC to zero. Then, using the fact that the inner-
loop torque controller ensures the convergence of R>e3 to e3,
one easily verifies that the element h1,2 at the first row and
second column of H converges to sinψ, with ψ to yaw Euler
angle. From there, the design of ω3r can proceed identically
to our prior work [17] and is, thus, recalled here for the sake
of completeness.

Proposition 3 (see [17] for proof) Assume that the inner-loop
torque controller Γc ensures the almost-GAS and LES of the
equilibrium (Ω,R>e3) = (Ωr, e3), with Ωr defined by (10)
combined with ω3r (involved in (10)) solution to the following
system

ω̇3r = −kΘ2ω3r − kΘ1sat∆Θ(h1,2), ω3r(0) ∈ R (34)

with kΘ1, kΘ2,∆Θ > 0 and h1,2 the element at the first
row and second column of H. Apply the outer-loop force
controller Fc given either by Proposition 1 (when ∆F ≡ 0) or
Proposition 2 (when ∆F is constant). Then, the equilibrium
H = I3 is LES. Moreover, this equilibrium is almost-GAS in
the case where F̄c is given by Proposition 1 and ∆F ≡ 0.

B. Inner-loop control design

The more involved part concerning the outer-loop control
design has been presented. It remains to design an effective
inner-loop torque controller that ensures the stability of the
equilibrium (Ω,R>e3) = (Ωr, e3), with Ωr defined by (10)
combined with (34).

In view of the rotation dynamics (i.e. (5b) and (9b)), it is
not too difficult to carry out the above-mentioned objective
since the sub-system under consideration is fully-actuated and
the measurements of both Ω and R>e3 are at our disposal.
However, the troublesome term ∆Γ involved in (9b) should be
carefully addressed, especially when the vehicle is subjected to
strong currents that excite the Munk moment effects. Since the
angular velocity can be measured at high frequency and with
good precision, we propose to estimate ∆Γ using a high-gain
observer similarly to the idea proposed in [13].

Lemma 2 Consider the following observer of ∆Γ:{
J

˙̂
Ω = (JΩ)×Ω̂ + Γc+Γg + ∆̂Γ + k0J(Ω− Ω̂)
˙̂

∆Γ = a2
0k

2
0J(Ω− Ω̂)

(35)

with Ω̂ and ∆̂Γ the estimates of Ω and ∆Γ, respectively;
Ω̂(0) ∈ R3, ∆̂Γ(0) ∈ R3; a0, k0 some positive gains. Assume
that ∆̇Γ is uniformly ultimately bounded (u.u.b.). Then for any
a0 ∈ (1−

√
2/2, 1 +

√
2/2),

1) The errors Ω̂−Ω and ∆̂Γ−∆Γ are u.u.b. by a positive
constant ε(k0) that tends to zero when k0 tends to +∞.
Moreover, these terms converge exponentially to zero for
any k0 > 0 if ∆Γ is constant.

2) ˙̂
∆Γ is u.u.b. by a constant independent of k0.
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The proof proceeds identically to the proof of [12, Propo-
sition 8]. Now, we can use the estimate ∆̂Γ as a feedforward
term for the inner-loop torque control design.

Define the angular velocity error variable Ω̃ , Ω − Ωr.
From (9b), one obtains the following error equation

J ˙̃Ω = (JΩ)×Ω̃ + Γc + Γg + Γ + ∆̂Γ + ∆̄Γ (36)

with Γ , (JΩ)×Ωr − JΩ̇r and ∆̄Γ , ∆Γ − ∆̂Γ.

Proposition 4 Consider error equation given by (36). Assume
that the unknown perturbation term ∆̄Γ is constant and
bounded by a known value ε̄. Define an anti-windup integrator
IΩ solution to the following differential equation

İΩ = −kIΩ + sat∆1
(
kIΩ + sat∆2(QΩ̃)

)
, IΩ(0) ∈ R3 (37)

with k a positive gain, ∆1,∆2 some positive constants, and
Q ∈ R3×3 satisfying Q>Q = J. Apply the control torque

Γc =− satη3(KΩΩ̃)− kiΩQ>IΩ

+ max
(
0,
|QΩ̃|
∆2

− 1
)
Γg − Γ− ∆̂Γ

(38)

with KΩ ∈ R3×3 positive diagonal gain matrix, kiΩ positive
gain, η3 a positive number, and Ωr defined by (10) combined
with (34). If

k

kiΩ
||Q−>||ε̄+ ∆2 ≤ ∆1 (39)

then, the following properties hold.
1) The error state (Ω̃, IΩ,R

>e3) converges either to
(0, I?Ω, e3) or (0, I?Ω,−e3) for all initial conditions, with
I?Ω , k−1

iΩ Q−>∆̄Γ.
2) The “desired” equilibrium (Ω̃, IΩ,R

>e3) = (0, I?Ω, e3)
is almost-GAS and LES. The “undesired” equilibrium
(Ω̃, IΩ,R

>e3) = (0, I?Ω,−e3) is unstable.

The proof is given in Appendix A.

V. COMPARATIVE SIMULATION RESULTS

The proposed control approach applied to station keeping
of fully-actuated AUVs without the need of linear velocity
measurements is, in fact, inspired by the one proposed in
[17, Remark 7] which corresponds to the particular case of
using a downward-looking camera and which makes use of
linear velocity measurements. Although the novel approach
already has a practical advantage by depleting the need of a
costly DVL, it is even more desirable if its performance is also
comparable to the previous approach. Therefore, comparative
simulation results of the two approaches using a realistic
model of a fully-actuated AUV and in presence of a constant
horizontal current vf = [ 1

2
√

2
, 1

2
√

2
, 0]>(m/s) will be reported

thereafter. For convenience, let us call the proposed controller
(c.f. Propositions 2, 3, 4) and the one proposed in [17] as
Controller 1 and Controller 2, respectively.

The simulated vehicle is the BlueROV2. Its physical param-
eters are provided in Tab. I, where the added-mass, added-
inertia and damping coefficients are roughly identified from

2http://bluerobotics.com/store/retired/bluerov-r1/

Specification Numerical value
m [kg] 7.6
Fb [N ] 1.01mg
l [m] 0.025
rC [m] [0 0 0.15]

J0 [kg.m2]

 0.0842 0.004 0.005
0.004 0.2643 0.007
0.005 0.007 0.3116


M22

A [kg.m2]

 0.1 0.005 0.006
0.005 0.25 0.008
0.006 0.008 0.3


M11

A [kg]

 1.39 0.10 0.12
0.10 4.26 0.13
0.12 0.13 4.02


M21

A = M12
A

 0.002 0.02 0.01
0.02 0.003 0.018
0.01 0.018 0.003


DV l [kg.s−1] diag(5.85, 9.21, 11.03)
DV q [kg.m−1] diag(36.57, 57.58, 68.97)

DΩl [kg.m2.s−1] diag(0.01126, 0.01855, 0.01701)
DΩq [N.m] diag(0.0053, 0.0130, 0.0118)

TABLE I: Specifications of the simulated AUV

Controller Gains and other parameters
Outer-loop K1 = diag(3s, 3s, 3s)

k2 =
8

3

s2

a?
, k3 =

1

3

s2

a?
, s =

√
2

kI = 0.7, η1 = 1.8, η2 = 2.3

kg = 1, kΘ1 = 1, kΘ2 =
√

2, ∆Θ = 1
Inner-loop KΩ = diag(3, 3, 3), kiΩ = 2

k = 10,∆1 = 6.25,∆2 = 2
a0 = 0.5, k0 = 20, η3 = 8

TABLE II: Control gains and parameters of Controller 1

Controller Gains and other parameters
Outer-loop kp1 = 0.4145, kp2 =

√
2

ku = 1, kΘ1 = 1, kΘ2 =
√

2, ∆Θ = 1
Inner-loop KV = diag(5, 5, 5),KiV = 0.4KV

KΩ = diag(3, 3, 3), kiΩ = 2
k = 10,∆1 = 6.25,∆2 = 2
a0 = 0.5, k0 = 20, η3 = 8

TABLE III: Control gains and parameters of Controller 2

the given shape. To test the robustness of the controllers
with respect to model uncertainties, the following “erroneous”
estimates of M and J are used:{

M̂ = mI3 + M̂11
A = diag(8.712, 12.712, 10.816) [kg]

Ĵ = Ĵ0 + M̂22
A = diag(0.1642, 0.5643, 0.5116) [kg.m2]

One notes that these estimated parameters are quite different
from the corresponding “real” ones.

The homography H is directly computed using
(1) with d? = 1(m) and n? = R{ π18 ,

π
6 ,0}e3 =

[0.4924,−0.1736, 0.8529]>. The initial conditions are
pC(0) = [−2,−1.5,−1]>(m), R(0) = R{ π18 ,−

π
18 ,π},

V(0) = Ω(0) = 0. A very large initial yaw error is chosen
(i.e. ψ = π) to verify the large stability domain of the control
algorithms.

• Simulation with Controller 1 (i.e proposed approach):
The proposed control approach including the outer-loop con-
troller given in Propositions 2–3 and the inner-loop controller
given in Proposition 4 is simulated, with gains and parameters
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Fig. 3: (Simulation) AUV’s position and attitude (Euler angles) vs. time
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(b) Controller 2

Fig. 4: (Simulation) ep (and êp) vs. time

given in Tab. II. The control gains have been obtained based
on the classical pole placement technique using a coarse
estimation of a? equal to 1. Due to the current velocity
of significant magnitude (i.e. 0.5[m/s]), the drag force and
Munk moment are not negligible. This shows the need of
control robustification using, for instance, the integrator and
high-gain observer techniques proposed in this paper. As
observed from the simulation results reported in Figs. 3a–
6a, the estimate ∆̂Γ and the integrators in both inner- and
outer-loop controllers successfully counteract for these above-
mentioned disturbances as well as the imprecise estimated sys-
tem parameters. Fig. 3a shows the convergence of the AUV’s
position and orientation to zero without large overshoots. The
sea current on horizontal plane has a clear impact on the
integral variable z, the estimate terms êp and ∆̂Γ, as well as
the control force and torque. More precisely, z1, z2, êp1, êp2,
∆̂Γ3, Fc1, Fc2 and Γc3 converge to non-null values as shown
in Figs. 4a–6a. On the other hand, the vertical component of
Fc3 converges to a positive value since the vehicle is positively
buoyant.

• Simulation with Controller 2 (i.e. approach proposed in

[17]): To make a fair comparison, the inner-loop controller
of [17] has been revised by also incorporating a high-gain
observer of the perturbation torque induced by sea current,
similarly to the one proposed in Lemma 2. Control parameters
and gains of the controller are given in Tab. III. They have been
chosen so that the time evolution of the AUV’s position has
almost the same settling time as in the previous simulation.
Simulation results are reported in Figs 3b–6b. In overall, the
time evolutions of the vehicle’s pose and of the visual error
ep are quite reminiscent of the corresponding ones resulted by
Controller 1. This implies that the performance of the proposed
controller is comparable to our prior control approach [17]
that in contrast relies on a costly DVL for linear velocity
measurements.

VI. EXPERIMENTAL VALIDATIONS

A. Experimental setup
The implementation of the proposed algorithm with real-

time homography estimation has been performed on an in-
house AUV experimental platform (see Fig. 7). This plat-
form has been developed based on a purchased BlueROV.
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Fig. 5: (Simulation) Control force Fc and torque Γc vs. time

0 5 10 15 20 25 30 35 40

-1

0

1

2

0 5 10 15 20 25 30 35 40

-1.5

-1

-0.5

0

0.5

(a) Controller 1

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

0 5 10 15 20 25 30 35 40

-1.5

-1

-0.5

0

0.5

(b) Controller 2

Fig. 6: (Simulation) z (left), zV (right), and ∆̂Γ vs. time

The on-board electronic components (see Fig. 8) include a
widely-used 3DR Pixhawk flight controller and a compact
and low-cost Odroid XU-4 octa-core single board computer.
A laptop is used as a ground station, that is connected with
Odroid XU-4 over the high speed Ethernet connection. In
the AUV architecture depicted in Fig. 8, ROS plays the role
of a middleware, providing communication (i.e. sending and
receiving messages between the distributed components). The
open-source PX4 autopilot widely-used for unmanned aerial
vehicles is exploited and adapted for our research purpose.

The overall dimensions of the vehicle are 0.39[m] ×
0.33[m] × 0.65[m] in height, width and length. The original
dry weight of BlueROV is only 7.6[kg]. However, for our
research a longer tube has been used to accommodate the
main electronic components and two smaller tubes have been
added for camera and battery housing. After incorporating all
these components, the total volume of the AUV is almost
double to its original design. Consequently, the buoyancy force
is significantly increased. To overcome that issue, additional
weight blocks have been attached to the vehicle to achieve near
neutral buoyancy. The weight blocks together with additional
buoyant blocks give two degrees of freedom to adjust the
center of mass G and the center of buoyancy B such that the
line connecting them (i.e BG) is parallel with the direction
of the downward-looking camera. The resulting total weight

of the AUV is approximately 16[kg] in air. The vehicle is
equipped with three vertical thrusters for heave, pitch and
roll actuations, two horizontal thrusters for yaw and surge
actuations, and one lateral thruster for sway actuation.

For performing the real-time homography estimation, the
AUV is equipped with a myAHRS+ IMU sensor pro-
viding measurement output at 100[Hz] and an oCam
downward-looking monocular camera providing color images
of 640[px]× 480[px] at 20[Hz]. For homography estimation,
we have used the HomographyLab library3 which has been
developed by our team based on the homography observer
proposed in [14]. This library has been implemented in C++
combined with OpenCV for image processing (for instance,
the FAST Feature Detector and ORB Descriptor Extractor
algorithms available in the OpenCV library are employed for
carrying out feature detection and descriptor extraction in
images). HomographyLab has been evaluated at the TRL 7
(Technology Readiness Level) and is protected by the French
Agency for the Protection of Programs. Real-time and ro-
bustness (with respect to fast camera motions, occlusions,
image blurs, sudden changes in light intensity, poor image
quality, etc.) are the two principle distinguished features of
HomographyLab and the implemented algorithm with respect
to the state-of-the-art codes and algorithms (see [14] for

3http://sdb3.i3s.unice.fr/homographyLab/

http://sdb3.i3s.unice.fr/homographyLab/
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Fig. 7: AUV with downward-looking camera (inside yellow
circle)

Fig. 8: AUV’s architecture

more detail). In the reported experiments, HomographyLab
has been implemented on the ground station laptop with an
Intel Core i7-7700HQ octa-core CPU running at 2.8 GHz.
The transmission of the data from the camera and the IMU
to the ground station is carried out through the high speed
Ethernet cable. The laptop has a Linux-based operating system
and is responsible for the following tasks: 1) interfacing with
the camera and IMU hardwares and acquisition of images and
IMU data 2) real-time estimation of the homography at 10[Hz]
3) perform outer-loop control at 10[Hz], and 4) interfacing
with the joystick and Pixhawk via Odroid to remotely control
the vehicle.

To perform the station-keeping task, the UAV is initially
in the teleoperation mode and is manually positioned at a

Fig. 9: Experimental validations in lake Saint-Cassien

certain depth above the lakebed so that the latter is visible by
the camera ensuring a sufficient number of detected features
for good homography estimation. Such unknown depth thus
varies according to lighting conditions and water turbidity. In
the reported experiment, the vehicle was positioned at about
0.5[m] above the lakebed.

The parameters and control gains involved in the computa-
tion of the control inputs are given in Tab. IV and Tab. V.

Specification Numerical value
m [kg] 16
Fb [N ] 1.01mg
l [m] 0.025
rC [m] [0.2 0 0.1]

M̂ = mI3 + M̂11
A [kg] diag(17.868, 23.868, 21.024)

Ĵ = J0 + M̂22
A [kg.m2] diag(0.3105, 0.8486, 1.0)

D̂ = mle3×[kg.m] 0.4e3×

TABLE IV: Specifications of the experimental AUV

B. Experimental results

Experimental results carried out in lake Saint-Cassien
(France) are reported next (see Fig. 9). Due to space limitation,
only brief but most representative parts of total results are
presented in the video https://youtu.be/p oiISPOtgw. How-
ever, the reader can also view two other videos showing the
capability of long-term station keeping (more than 30 minutes)
as well as other trials carried out during our research process
with different water turbidity conditions and target images:
• https://youtu.be/mkAAjX3mgVk
• https://youtu.be/KjAfYu1jG18
Regarding the reported video, experimental results including

the time evolution of the control force Fc, the visual error
ep and its estimate êp, the homography component h12, and

Controller Gains and other parameters
Proposition 2 K1 = diag(3s, 3s, 3s)

k2 =
8

3

s2

a?
, k3 =

1

3

s2

a?
, s = 0.9

kI = 0.1, η1 = 1.8, η2 = 2.3

Proposition 3 kg = 1, kΘ1 = 1/2, kΘ2 =
√

2, ∆Θ = 2
√

2
Proposition 4 KΩ = diag(1.863, 5.0916, 5.0), KiΩ = 0.1KΩ

a0 = 0.5, k0 = 20, η3 = 6

TABLE V: Control gains and parameters in experiment

https://youtu.be/p_oiISPOtgw
https://youtu.be/mkAAjX3mgVk
https://youtu.be/KjAfYu1jG18
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Fig. 10: Control force Fc vs. time

the Frobenius norm of H − I are shown in Figs. 10–13,
respectively.

To excite the external force response, the AUV has been
manually moved by a stick at time instants 85[s], 100[s],
120[s], 180[s], 245[s] and 280[s]. In Fig. 11 one observes that
right after finishing the interaction, the AUV went back to its
stabilized pose with relatively small overshoot. The control
force generated for pushing the AUV back to the reference
position is shown in Fig. 10. The settling time is about 30
seconds. The transient response also shows the efficiency of
the integrator in eliminating the static error caused by the
current.

In general, one can clearly observe the practical convergence
of the AUV’s pose to the desired one as illustrated by the
practical convergence of the Frobenius norm ||H− I|| to zero
(see Fig. 13). In particular, the convergence of the AUV’s
position is attested by the convergence of visual error ep to
zero (Fig. 11) whereas the component h12 converges near to
zero (Fig. 12) showing the practical convergence of the AUV’s
yaw angle to the desired one.

The effectiveness of the integrator correction in dealing with
unknown currents and model uncertainties can be appreciated
from Figs. 10 and 11. In steady state, the horizontal com-
ponents of the control force Fc1 and Fc2 (Fig. 10) converge
to non-zero values required to compensate for the horizontal
current. The vertical component Fc3 ultimately remains far
from zero since the AUV is positively buoyant. In Fig. 11
it can be seen that ep converges near to zero and that the
offsets between the corresponding components of ep and êp
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Fig. 11: ep and êp vs. time
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Fig. 12: h12 vs. time
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Fig. 13: Frobenius norm ‖H−I‖ vs. time. The AUV has been
pushed by a stick at time instants 85[s], 100[s], 120[s], 180[s],
245[s] and 280[s]. One observes the practical convergence of
||H− I|| to zero after these instants.

are almost constant in steady state.
As can be observed from the reported video, the experiment

has been carried out on a sunny day and the waves generate
moving bright spots in the lakebed that periodically alter local
brightness of the images captured. However, very good and
robust quality of homography estimation can be appreciated
despite that change in light illumination as well as large
occlusions due to a panel fixed to the stick in between 310[s]
and 360[s]. It is also worth noting that, theoretically, the
homography estimation uses a planar target. In the experiment,
this assumption does not hold true since the lakebed is covered
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by 3D reliefs such as sand rocks, and additionally the camera
is relatively close to the lakebed. However, the proposed
controller along with real-time homography estimation keeps
working efficiently, showing the robustness of the control
approach.

One can observe some small oscillations during the conver-
gence. This is essentially due to the fact that the outer-loop
control runs at a low frequency (10[Hz]) and also due to the
imperfect thrust generated by the thrusters inside its dead-
band. This phenomenon becomes more prominent when the
outer-loop poles are large. Hence, smaller pole values have
been chosen while tuning the gains in the actual experiment
as compared to the ones used in the reported simulation.

In conclusion, the experimental results for the overall con-
trol approach (i.e inner and outer-loop controls) are quite con-
vincing even though some vehicle’s physical parameters (e.g.
added mass and added moment of inertia) are only roughly
estimated and the AUV was subjected to various challenging
conditions (e.g. significant unknown currents, water turbidity,
lightning variation, target occlusion, etc.).

VII. CONCLUSION

In this paper a homography-based dynamic control approach
of fully-actuated underwater vehicles is proposed. An ad-
vanced feature with respect to existing works on the topic
is the non-requirement of a costly DVL for linear velocity
measurements. A potential application to station keeping has
been demonstrated in a real environment with very encourag-
ing results despite challenging conditions such as important
disturbances induced by currents, water turbidity, lightning
variation, target occlusion, etc. The proposed approach will
undoubtedly enlarge the working envelop of low-cost remotely
operated underwater vehicles (ROVs) as a costly DVL is not
required. Even for industrial or professional ROVs and AUVs
equipped with DVLs, the approach also allows for overcoming
the common problem of measurement imprecision of DVLs
due to threshold violation when operating close to underwater
structures or a sea bottom. A potential extension of this work
concerns the station-keeping task of an AUV equipped with a
forward-looking camera observing a (near) vertical target.
Acknowledgement: This work was supported by the French
ANR Astrid CONGRE (ANR-18-ASTR-0006) and FUI
GreenExplorer projects.

APPENDIX
PROOF OF PROPOSITION 4

Proof: Consider the positive storage function

V ,


1

2
|QΩ̃|2 if |QΩ̃| ≤ ∆2

1

2
(2|QΩ̃| −∆2)∆2 otherwise

Using the fact that J = Q>Q one verifies that

V̇ = min

(
1,

∆2

|QΩ̃|

)
Ω̃>J ˙̃Ω (40)

From (36), (38) and the definition of Ω̃ one obtains

J ˙̃Ω = (JΩ)×Ω̃− satη3(KΩΩ̃) + max
(

1,
|QΩ̃|
∆2

)
Γg

− kiΩQ>IΩ + ∆̄Γ

(41)

Consider the Lyapunov function candidate

L1 , V +mgl(1− e>3 R>e3) +
1

2
kiΩ|ĨΩ|2 (42)

with ĨΩ , IΩ−I?Ω. Calculating the time-derivative of L1 using
the expression (40) of V̇ , equation (36), the torque control
expression (38), the definition (10) of Ωr, the expression (37)

of İΩ and the fact that sat∆2(QΩ̃) = min(1,
∆2

|QΩ̃|
)QΩ̃, one

deduces

L̇1 = −min(1,
∆2

|QΩ̃|
)Ω̃>satη3(KΩΩ̃)− kiΩĨ>Ωsat∆2(QΩ̃)

−mglΩ>r e3 ×R>e3 + kiΩĨ>Ω İΩ

= −min(1,
∆2

|QΩ̃|
)Ω̃>satη3(KΩΩ̃)−mglkg|e3 ×R>e3|2

− kkiΩ|ĨΩ|2 + kiΩĨ>Ω
(
− kI?iΩ − sat∆2(QΩ̃)

+ sat∆1
(
kĨΩ + kI?Ω + sat∆2(QΩ̃)

))
≤ −min(1,

∆2

|QΩ̃|
)Ω̃>satη3(KΩΩ̃)−mglkg|e3 ×R>e3|2

(43)
where the last inequality is obtained using condition (39) and
the fact that ∀a, b ∈ R3,∆ ∈ R+ one has | − a + sat∆(b +
a)| ≤ |b| if |a| ≤ ∆ (see [12] for the proof). Clearly L̇1 is
negative semi-definite. Remark that system (41) and (37) is not
autonomous due to the time-varying term Ω and consequently
La Salle’s principle does not apply. However, Ω̃ and IΩ are
bounded with respect to initial conditions. Since Ωr and its
derivative are bounded thanks to the expressions (10) and (34),
one deduces from (41) that ˙̃Ω is also bounded. Then it is
straightforward to verify that L̈ is also bounded, implying
the uniform continuity of L̇. Then, application of Barbalat’s
lemma ensures that L̇ and, thus, Ω̃ and e3 ×R>e3 converge
to zero. Next, using Barbalat-like arguments it can be shown
that ˙̃Ω also converges to zero, implying the convergence of
IΩ to I?Ω. The convergence of e3×R>e3 to zero implies that
Re3 converges to either e3 or −e3. So far we have proved that
(Ω̃, IΩ,Re3) converges either to (0, I?Ω, e3) or (0, I?Ω,−e3).

It remains to show that the “desired” equilibrium
(Ω̃, IΩ,Re3) = (0, I?Ω, e3) is LES and the “undesired” equi-
librium (Ω̃, IΩ,Re3) = (0, I?Ω,−e3) is unstable. Note that the
almost-GAS of the “desired” equilibrium then directly follows.
In the first-order approximations, one has R ≈ I + Θ× with
Θ = [φ, θ, ψ]> and, subsequently, e3×R>e3 ≈ [−φ,−θ, 0]>.
Denoting [ω̃1, ω̃2, ω̃3]> , Ω̃ and using the approximation
Θ̇ ≈ Ω, one obtains the following linearized system of (36)
and (37)

φ̇ ≈ ω̃1 − kgφ
θ̇ ≈ ω̃2 − kgθ
˙̃Ω≈ −J−1KΩΩ̃−J−1kiΩQ>ĨΩ+mglJ−1[−φ,−θ, 0]>

İΩ= QΩ̃
(44)

Consider the following Lyapunov function candidate



13

LΩ =
1

2
Ω̃>JΩ̃ +

1

2
kiΩ|ĨΩ|2 +

1

2
mgl

(
φ2 + θ2

)
(45)

One verifies that

L̇Ω = −Ω̃>KΩΩ̃− kgmgl(φ2 + θ2) ≤ 0 (46)

From here, LaSalle’s principle ensures that Ω̃, φ and θ and,
thus, ˙̃Ω converge to zero, which implies the convergence of
zΩ to zero. The convergence of φ and θ to zero is equivalent
to the convergence of R>e3 to e3. Since the equilibrium
(Ω̃, IΩ,R

>e3) = (0,0, e3) of the linearized system (44) is
asymptotically stable, it is also exponentially stable.

Now, the Chetaev’s theorem is used to prove the instability
of the equilibrium (Ω̃, IΩ,R

>e3) = (0,0,−e3). Define y =
e3 + R>e3. Consider the positive function S1(y) , y>e3 =
1 + e>3 R>e3, satisfying S1(0) = 0. Define Ur , {y|S1(y) >
0, |y| < r} for some number 0 < r < 1. Note that Ur is non-
empty. By neglecting all high-order terms, one verifies that

Ṡ1 ≈ e>3 RΩr×e3 = kg|e3×R>e3|2 = kg|e3×y|2

For all y ∈ Ur, the fact that y>e3 > 0 is equivalent to
|e3×y|2 > 0, which implies that Ṡ1 > 0. Since all conditions
of Chetaev’s theorem are now united [16], one concludes
that the origin of the linearized system about the undesired
equilibrium (so that y = 0) is unstable.
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[9] T. F. Gonçalves, J. R. Azinheira, and P. Rives. Vision-based autonomous
approach and landing for an aircraft using a direct visual tracking
method. In Int. Conf. on Informatics in Control, Automation and
Robotics, pages 94–101, 2009.

[10] T. Hamel and R. Mahony. Visual servoing of an under-actuated dynamic
rigid-body system: an image-based approach. IEEE Trans. on Robotics
and Automation, 18(2):187–198, 2002.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2003.

[12] M.-D. Hua. Contributions to the automatic control of aerial vehicles.
PhD thesis, 2009.

[13] M.-D. Hua, T. Hamel, P. Morin, and C. Samson. Balanced-force-control
of underactuated thrust-propelled vehicles. 46th IEEE Conference on
Decision and Control (CDC), pages 6435–6441, 2007.

[14] M.-D. Hua, J. Trumpf, T. Hamel, R. Mahony, and P. Morin. Feature-
based recursive observer design for homography estimation and its
application to image stabilization. Asian Journal of Control, pages 1–16,
2019.

[15] S. Hutchinson, G. Hager, and P. Cork. A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation, 12(5):651–670, 1996.

[16] H. K. Khalil. Nonlinear systems (3rd Edition). Prentice Hall, 2002.
[17] S. Krupı́nski, G. Allibert, M.-D. Hua, and T. Hamel. An inertial-

aided homography-based visual servoing control approach for (almost)
fully actuated autonomous underwater vehicles. IEEE Transactions on
Robotics, 33(5):1041–1060, 2017.

[18] N. E. Leonard. Stability of a bottom-heavy underwater vehicle. Auto-
matica, 33(3):331–246, 1997.

[19] J.-E Lots, D. M. Lane, E. Trucco, and F. Chaumette. A 2-D visual
servoing for underwater vehicle station keeping. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 2767–2772, 2001.

[20] K. N. Lwin, N. Mukada, M. Myint, D. Yamada, A. Yanou, T. Matsuno,
K. Saitou, W. Godou, T. Sakamoto, and M. Minami. Visual docking
against bubble noise with 3-D perception using dual-eye cameras. IEEE
Journal of Oceanic Engineering, Early Access:1–24, 2018.

[21] Y. Ma, J. Kosecka, and S. Sastry. Vision guided navigation for a
nonholonomic mobile robot. IEEE Transactions on Robotics and
Automation, 15(3):521–536, 1999.

[22] F. Maire, D. Prasser, M. Dunbabin, and M. Dawnson. A vision
based target detection system for docking of an autonomous underwater
vehicle. In Australasian Conference on Robotics and Automation
(ACRA), 2009.

[23] E. Malis, F. Chaumette, and S. Boudet. 2 1/2D visual servoing. IEEE
Trans. on Robotics and Automation, 15(2):238–250, 1999.

[24] E. Malis and M. Vargas. Deeper understanding of the homography
decomposition for vision-based control. INRIA Researh report, RR-
6303:90, 2007.

[25] S. Matsumoto and Y. Ito. Real-time vision-based tracking of submarine-
cables for AUV/ROV. In Challenges of Our Changing Global Environ-
ment. MTS/IEEE OCEANS’95, pages 1997–2002, 1995.

[26] A. Micaelli and C. Samson. Trajectory tracking for unicycle-type and
two-steering-wheels mobile robots. Technical Report 2097, INRIA,
1993.

[27] L.-H. Nguyen, M.-D. Hua, G. Allibert, and T. Hamel. Inertial-
aided homography-based visual servo control of autonomous underwater
vehicles without linear velocity measurements. In 21st International
Conference on System Theory, Control and Computing (ICSTCC), pages
9–16, 2017.

[28] N. Palomeras, S. Nagappa, D. Ribas, N. Gracias, and M. Carreras.
Vision-based localization and mapping system for AUV intervention.
In MTS/IEEE OCEANS’13, pages 1–7, 2013.

[29] E. Panteley and A. Loria. On global uniform asymptotic stability of
non linear time-varying non autonomous systems in cascade. System &
Control Letters, 33(2):131–138, 1998.

[30] P. Rives and J.-J. Borrelly. Underwater pipe inspection task using
visual servoing techniques. In IEEE Int. Conf. on Intelligent Robots
and Systems (IROS), pages 63–68, 1997.

[31] S. van der Zwaan, A. Bernardino, and J. Santos-Victor. Visual station
keeping for floating robots in unstructured environments. Robotics and
Autonomous Systems, 39(3):145–155, 2002.

[32] M. Wirtz, M. Hildebrandt, and C. Gaudig. Design and test of a robust
docking system for hovering AUVs. In MTS/IEEE OCEANS’12, pages
1–6, 2012.

Lam-Hung Nguyen obtained his Engineer degree
from Bauman Moscow State Technical University,
Russia in 2007, then received his MSc degree from
Institut Supérieur de l’Aéronautique et l’Espace
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