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A homography-based dynamic control approach of Autonomous
Underwater Vehicles observing a (near) vertical target without linear

velocity measurements

Lam-Hung Nguyen, Minh-Duc Hua and Tarek Hamel

Abstract— The paper addresses the challenging problem
of image-based dynamic control of Autonomous Underwater
Vehicles observing a (near) vertical planar target, without
measuring the linear velocity. The proposed control approach
exploits a minimum sensor suite consisting of a camera looking
forward to provide images from which the homography matrix
is extracted and an IMU providing angular velocity and
gravity direction measurements. The dynamics of the AUV
are exploited in a hierarchical control scheme with inner-
outer control loop architecture. Rigourous stability analysis
is established. The performance of the proposed approach is
illustrated via simulation results conducted on a realistic AUV
model.

I. INTRODUCTION

Cameras have been widely used for surveillance and in-
spection applications involving an Autonomous Underwater
Vehicle (AUV). They also provide reliable visual feedback
information to control the vehicle’s motion. Nowadays, due
to the ability of performing high frame rate image processing,
monocular cameras are often adopted to perform underwater
navigation tasks. When a robotic vehicle operates in an
environment containing (near) planar surfaces, the so-called
homography [3] that encodes the rotation and scaled trans-
lation between two views of a camera observing the same
planar target can be used as visual primitive. Homography-
based algorithms have been developed over the last 20 years
for pose estimation (up to a scale factor) [13], [15], [16].
Proposed by Malis et al. [11], the so-called 2 1

2 -D visual
servo technique that requires homography decomposition
into rotation, scaled translation, and target’s normal vector
was the foundation of some works in AUV docking [2] and
station keeping [10], [17]. A more advanced homography-
based visual servoing (HBVS) control scheme is proposed
in [1]. The innovative feature is the non-requirement of
homography decomposition often computationally expensive
[12], making it more relevant for embedded systems. The
kinematic control approach developed by [1] has been ex-
ploited in our prior work [8] in order to take the full dynamics
of fully-actuated AUVs into account, achieving almost global
asymptotic stability. The proposed HBVS approach requires,
however, linear velocity measurements typically obtained by
a Doppler Velocity Log (DVL) that is often unaffordable
for low-cost AUVs. Due to such a practical reason, in [14]
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we have proposed an extension of [8] to the case where
linear velocity measurements are not available and the AUV
is equipped with a downward-looking camera. The approach
has been successfully validated in challenging environments
(see https://bit.ly/2QENdkI for video demonstration).

We consider here a more challenging case of a fully-
actuated AUV equipped with a forward-looking camera
observing a (near) vertical visual target. A similar problem
concerning underactuated aerial drones has been addressed
in [4] which is in line with our effort in dealing with system’s
dynamics and in depleting the need of a linear velocity sen-
sor. However, that approach relies on the assumption that the
visual velocity is available for control design, for instance,
via the use of a high-gain observer, but a complete stability
analysis including such high-gain observer is missing.

This paper is part of our continuing efforts in developing
low-cost but efficient visual servoing solutions for AUVs by
depleting the need of a costly DVL. Potential applications
encompass, for instance, docking on a planar docking station,
stabilization or positioning in front of a man-made subsea
manifold for performing common tasks in offshore indus-
try such as high-resolution imaging, monitoring, inspection,
valve-turning, cleaning, repairing, or changing underwater
structures, etc.

This paper is organized as follows. Notation, system
modeling and control model are given in Section II. Problem
statement is described in Section III. Cascade inner-outer
loop control design is presented and analyzed in Section IV.
In Section V simulation results on a realistic AUV model are
reported, showing the performance of the proposed approach.
A concluding section with perspectives then follows.

II. NOTATION AND MODELING

A. Notation
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Fig. 1. An AUV with a forward-looking camera and notation
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Let us consider an AUV immersed in water and address
the case of absence of current. The following notion is used
throughout the paper (see Fig. 1).
• Let m and J0 denote the vehicle’s mass and inertia matrix,
G and B its center of mass (CoM) and center of buoyancy
(CoB). The distance between G and B is denoted as l. The
gravity constant is denoted as g.
• The considered inertial frame is A = {O;−→e a1 ,−→e a2 ,−→e a3}.
The body-fixed frame with the origin at the CoB is denoted as
B = {B;−→e b1,−→e b2,−→e b3}. The camera frame with base vectors
parallel to those of B is denoted as C = {C;−→e c1,−→e c2,−→e c3}.
The vectors of coordinates expressed in B of

−−→
BC and

−−→
BG

are respectively denoted as rC = [rC1 rC2 rC3]> ∈ R3

and rG = le3 ∈ R3, with e3 = [0 0 1]>. Denote r̄C =
[rC1 rC2]>.
• The orientation (i.e. attitude) of the frame B relative to
the frame A is represented by R ∈ SO(3). Let ξ and ξC
be the vectors of coordinates (expressed in A) of B and C
respectively. One has ξ = ξC −RrC .
• Let Ω = [ω1 ω2 ω3]> ∈ R3 denote the angular velocity
(expressed in B) of B with respect to A. By denoting
V = [V1 V2 V3]> ∈ R3 and VC = [VC1 VC2 VC3]> ∈ R3

respectively the vectors of coordinates (expressed in B) of
the linear velocity of B and C, one has V = VC −Ω× rC .
Denote V̄ = [V1 V2]>, V̄C = [VC1 VC2]>.
• Let {e1, e2, e3} denote the canonical basis of R3 and In
denote the identity of Rn×n. For all u ∈ R3, u× denotes the
skew-symmetric matrix associated with the cross product by
u, i.e., u×v = u× v, ∀v ∈ R3. The Euclidean norm in Rn
and the Frobenius norm in Rn×n are denoted as | · | and ‖·‖.
Let satδ(·) ∈ Rn, with δ>0, denotes the classical saturation
function, i.e., satδ(x) , x min (1, δ/|x|) ,∀x ∈ Rn. Let sα
and cα denote shortened notations of sin(α) and cos(α), ∀α.

B. System modeling
The kinematic equations of the AUV are given by

ξ̇ = RV (1a)

Ṙ = RΩ× (1b)

Define the translational and rotational momentums as{
P , MV + Ξ>Ω

Π , JΩ + ΞV
(2)

with M , mI3 + Ma, J , J0 + Ja, Ξ , mrG×, and
Ma, Ja denoting the added mass and added inertia matrices
respectively. Then, according to the formulation of Leonard
[9], the vehicle’s dynamics are given by

Ṗ = P×Ω + Fc + Fgb + Fd (3a)

Π̇ = Π×Ω + P×V + Γc + Γg + Γd (3b)

where Fc ∈ R3 and Γc ∈ R3 are the control force and
torque vertors, Fgb , mg − Fb, Fgb , FgbR

>e3 the sum
of the gravity and buoyancy forces, Γg , mgrG×R>e3 the
gravity torque, and Fd and Γd the damping force and torque
modeled as the sum of linear and quadratic terms as follows{

Fd(V) = −(DVl + |Vh|DVq)V
Γ(Ω) = −(DΩl + |Ω|DΩq)Ω

(4)

with positive damping matrices DVl, DVq , DΩl, DΩq ∈
R3×3. Note that model (4) of Fd and Γd is not used for
control design but it is exploited for simulation validations.

C. Model for control design

For simplicity, the added-mass matrix is modeled as a
diagonal matrix Ma = diag(ma1,ma2,ma3). Thus, M has
the form M = diag(m1,m2,m3) with mi , m + mai

(i = 1, 2, 3). Denote M̄ , diag(m1,m2).
The translational and rotational dynamics (3a)-(3b) are

tightly coupled due to the coupling matrix Ξ. This coupling
is often neglected in the literature using the fact that the
distance between the CoB and CoM is relatively small.
Since the linear velocity is not measured, the “Munk mo-
ment” (MV) × V is here considered as a disturbance.
Finally, the damping force and torque are also considered
as disturbances. These considerations result in the following
simpler dynamic equations that decouple the translational
and rotational dynamics:

MV̇ = (MV)×Ω + Fc + Fgb + ∆F (5a)

JΩ̇ = (JΩ)×Ω + Γc + Γg + ∆Γ (5b)

with the “disturbance” terms

∆F , (Ξ>Ω)×Ω−Ξ>Ω̇ + Fd
∆Γ , (ΞV)×Ω + P×V −ΞV̇ + Γd

In absence of current the term ∆F would eventually
converge to zero in fixed-point stabilization problem. Since
Fd is a dissipative force, it is reasonable to neglect ∆F in
control design (i.e. setting ∆F ≡ 0).

III. PROBLEM FORMULATION
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visual target
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Fig. 2. Illustration of angles α? and β?. The projection vector n̄? and e1

lie on the horizontal plane and n̄? is perpendicular to the intersection line
of the two planes.

Based on a reference image, taken at some desired pose
using a forward-looking monocular camera, and the current
images, the control design objective consists in stabilizing the
camera’s pose to the reference one. Let us choose the inertial
frame A attached to the camera’s desired pose (see Fig. 1).
Assume that a good estimate of the homography matrix H
is available for control design. This latter encodes geometric



information about the rotation and translation between the
current camera frame C and the reference frame A [1][

h11 h12 h13
h21 h22 h23
h31 h32 h33

]
, H = R>(I3 −

1

d?
ξCn?>) (6)

with d? the distance between the camera optical center and
the target plane and n? ∈ S2 the unit vector normal pointing
towards the target plane expressed in A (see Fig. 1).

Denote n̄? the projection vector of n? on the horizontal
plane; β? the angle between n̄? and camera optical axis when
taking the reference image; and α? the angle between n? and
the horizontal plane (see Fig. 2). One verifies that

n = [n1 n2 n3]> ,
n?

d?
=

1

d?
[
cα?cβ? cα?sβ? sα?

]>
(7)

Since the visual target is within the camera’s field of view
(FOV) when taking the reference image, one should have
|α?|, |β?| < π

2 , which in turn imply that n1 > 0.
In addition to the estimation of H, it is assumed that

an Inertial Measurement Unit (IMU) is available to provide
measurements of the angular velocity Ω together with an
approximate of the gravity direction R>e3.

The control objective consists in stabilizing H about I3

(or equivalently stabilizing (R, ξC) about (I3,0)) using only
(H,Ω,R>e3) as available information. In addition to the
lack of the linear velocity measurement, the main issues
of control design are retated to the unknown terms d? and
n? involved in the expression (6) of H. More importantly,
we here exploit directly H without extracting the usual
components (R, ξCd? ,n

?) via a complex and computationally
expensive decomposition [12].

IV. CONTROL DESIGN
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Fig. 3. Control architecture of the proposed HBVS

A cascade inner-outer loop control architecture as depicted
in Fig. 3 is proposed.
• The inner-loop controller (developed in Subsection IV-

B) governs the rotation dynamics (1b) and (5b) by
defining the torque control vector Γc to ensure the
almost global asymptotic stability (almost-GAS) of the
equilibrium (Ω,R>e3) = (Ωr, e3), where the refer-
ence angular velocity Ωr is defined by

Ωr , kge3 ×R>e3 + ω3re3 (8)

with kg > 0 positive gain and ω3r ∈ R the reference
yaw angular velocity to be specified by the outer-loop
controller. Assume that ω3r is bounded by design. Note

that ω̇3r must be computable so that the feedforward
term Ω̇r is also computable by the torque controller.

• The outer-loop controller (developed in Subsection IV-
A) defines the force control vector Fc and the refer-
ence yaw angular velocity ω3r (used by the inner-loop
controller) to fulfill the main objective of stabilizing
(R, ξC) about (I3,0).

In the sequel we first present the outer-loop control design,
which constitutes the main contribution of this paper. The
design for the inner-loop is less involved and is postponed
after the outer-loop control design.

A. Outer-loop control design
Let ψ denote the AUV’s yaw angle and Rψ the rotation

matrix around AUV’s axis −→e b3. Denote

∆R =

[
∆11 ∆12 ∆13
∆21 ∆22 ∆23
∆31 ∆32 ∆33

]
, R> −R>ψ

Since R>e3 converge to e3 as a result of the inner-loop
controller, one verifies that ∆R converges to zero. The con-
vergence of R>e3 about e3 implies that ω1 and ω2 converge
to zero. One then deduces that ∆̇R remains bounded and
converges to zero.

Define the following visual errors

σ ,

[
−h11 + h22

−h12 − h21

]
, % , −h31

Using (6) one deduces[
σ
%

]
=

[
N 0
0 n1

]
R>ξC +

−∆11 + ∆22

−∆12 −∆21

−∆31

 (9)

with N,n1I2+n2S, S,
[
0 −1
1 0

]
. This in turn yields

R>ξC =

[
N−1 0

0 1
n1

][
σ
%

]
−
[
N−1 0

0 1
n1

]−∆11 + ∆22

−∆12 −∆21

−∆31

(10)

Using (9) and (10) one verifies that

σ̇ =− ω3Sσ + NV̄C −
%

n1
Nω12 −

∆31

n1
Nω12

+ ω3S

[
−∆11 + ∆22

−∆12 −∆21

]
+

[
−∆̇11 + ∆̇22

−∆̇12 − ∆̇21

](11)

%̇ = n1V3 + n1ω
>
12N

−1σ

− n1ω
>
12N

−1

[
−∆11 + ∆22

−∆12 −∆21

]
− ∆̇31

(12)

with ω12 ,
[
ω2 −ω1

]>
. By denoting P̄ , [P1 P2]>

(respectively F̄c , [Fc1 Fc2]>), the vector of the two
first components of P (respectively Fc), and rewriting
Fgb = Fgb

[
∆13 ∆23 1 + ∆33

]>
, one can write (5a) as

two interconnected dynamics (surge-and-sway and heave) as
follows

˙̄P = −ω3SP̄ + F̄c − ω12P3 + Fgb

[
∆13

∆23

]
(13a)

Ṗ3 = Fc3 + Fgb + ω>12P̄ + Fgb∆33 (13b)

with P3 the third component of P. Introduce a new velocity



variable1

¯̄V , V̄ + ω3rSr̄C (14)

One verifies that

V̄C = ¯̄V + (ω3 − ω3r)Sr̄C + rC3ω12 (15)

Define the following new control force
¯̄Fc , F̄c +

(
ω̇3rI2 + ω2

3rS
)
M̄Sr̄C (16)

Denoting ¯̄P , M̄ ¯̄V and using (14), (15), (16), Subsys-
tem (11)+ (13a) and Subsystem (12)+(13b) can be rewritten
as  σ̇ = −ω3Sσ + NM̄−1 ¯̄P− %

n1
Nω12 + ε1

˙̄̄
P = −ω3S

¯̄P + ¯̄Fc − P3ω12 + ε2

(17)

{
%̇ = n1

m3
P3 + n1ω

>
12N

−1σ + ε3

Ṗ3 = Fc3 + Fgb + ω>12
¯̄P + ε4

(18)

with bounded vanishing terms

ε1 ,(ω3 − ω3r)NSr̄C + rC3Nω12 −
∆31

n1
Nω12

+ ω3S

[
−∆11 + ∆22

−∆12 −∆21

]
+

[
−∆̇11 + ∆̇22

−∆̇12 − ∆̇21

]
ε2 , Fgb

[
∆13

∆23

]
ε3 ,− ∆̇31 − n1ω

>
12N

−1

[
−∆11 + ∆22

−∆12 −∆21

]
ε4 , −ω3rω

>
12M̄Sr̄C + Fgb∆33

One observes that systems (17) and (18) are interconnected
(see Fig. 4). In the sequel we first neglect all coupling terms
in the outer-loop control design. This is intuitively guided by
the fact that these terms are multiplicative terms by vanishing
variables ω1 and ω2. Then, a more complete stability analysis
for this interconnected system will be carried out thereafter.

Surge-and-sway dynamics (σ̇,
˙̄̄
P)

%, P3 σ, ¯̄P

Heave dynamics (%̇, Ṗ3)

Fig. 4. Interconnected translational dynamics

1) Heave control design: Similarly to the approach pro-
posed in [14], the altitude (heave) control can be designed
independently from surge-and-sway and yaw control design.

Proposition 1 Consider System (18) where the coupling
terms involving σ and ¯̄P are neglected. Introduce the aug-
mented system

˙̂% = −k13(%̂− %), %̂(0) = %(0)

with k13 > 0. Apply the control force

Fc3 = m3k23%̂−m3k33%− (mg − Fb)
1 ¯̄V is used for handling the case with an arbitrary position of the camera

w.r.t the COB. The convergence of ω3r to zero then results in V̄ → ¯̄V .

with k33 > k23 > 0. Then, the equilibrium (%̂, %, P3) =
(0, 0, 0) of the controlled system is globally asymptotically
stable (GAS) with exponential convergence rate after some
time instant T > 0.

Proof: The considered system can be rewritten as

ẋ=Āx + ε34 (19)

with

x,

[
%̂
%
P3

]
, Ā,

−k13 k13 0
0 0 n1

m3

m3k23 −m3k33 0

, ε34 ,

 0
ε3

ε4

 (20)

From there, the proof is straightforward since the nominal
system ẋ = Āx is Hurwitz (using k33 > k23 > 0) while the
perturbation terms ε3 and ε4 converge to zero.

2) Surge-and-sway control design: Consider System (17)
and neglect all coupling terms involving % and P3. Introduce
the following augmented system

˙̂σ = −ω3Sσ̂ − k1σ̂ + k1σ, σ̂(0) = σ(0) (21)

with k1 > 0. Apply the control force
¯̄Fc = k2M̄σ̂ − k3M̄σ (22)

with k2, k3 > 0. Then, the controlled surge-and-sway sub-
system is given by

˙̂σ = −ω3Sσ̂ − k1σ̂ + k1σ

σ̇ = −ω3Sσ + NM̄−1 ¯̄P + ε1

˙̄̄
P = −ω3S

¯̄P + k2M̄σ̂ − k3M̄σ + ε2

(23)

Denote

X1 =

[
x11

x12

]
, σ̂, X2 =

[
x21

x22

]
, σ, X3 =

[
x31

x32

]
, ¯̄P

X ,

X1

X2

X3

 , ε12 ,

 0
ε1

ε2

 , S̄ ,

S 0 0
0 S 0
0 0 S

 (24)

A,

−k1I2 k1I2 0
0 0 n1M̄

−1

k2M̄ −k3M̄ 0

,B,

0 0 0
0 0 n2SM̄−1

0 0 0

(25)

System (23) can be rewritten as

Ẋ = −ω3rS̄X + AX + BX− ω̃3S̄X + ε12 (26)

with ω̃3 , ω3−ω3r. In the sequel we will specify a sufficient
condition ensuring that the origin of System (26) is GAS.

Lemma 1 Consider system

Ẋ = AX + BX (27)

with A and B defined in (25). Assume that the reference
image is captured with a reference heading angle satisfying

|β?| < β?max , arctan

(
1√

1+
√

2

)
≈ 32.8◦ (28)

Then, there exist k̄1 > 0 large and ε > 0 small enough, with
k̄1 and ε depending on (β?max, |β?|), such that system (27) is
globally exponentially stable (GES) provided that k1 > k̄1,
1 < k3/k2 < 1 + ε.

The proof is given in Appendix I.



Proposition 2 Consider System (26). Assume that all as-
sumptions of Lemma 1 hold. Assume that the inner-loop
controller ensures the uniform boundedness and convergence
to zero of ε12 and ω̃3. Then, there exists a positive number
$ such that if sup |ω3r| < $ then the equilibrium X = 0
is GAS with exponential convergence rate after some time
instant T > 0.

The proof is given in Appendix II.
So far the outer-loop control design and associated sta-

bility analysis have been carried out for systems (17) and
(18) by neglecting all coupling terms. Next, stability analysis
for the full interconnected system will be developed. The
interconnected system (17)–(18) can be rewritten as{

Ẋ = −ω3(t)S̄X + AX + BX + E1x + ε12

ẋ = Āx + E2X + ε34

(29)

with vanishing matrices

E1,

0 0 0
0 − N

n1
ω12 0

0 0 −ω12

, E2,

0 0 0
0 n1ω

>
12N

−1 0
0 0 ω>12

 (30)

Theorem 1 Consider the interconnected system (29). As-
sume that all assumptions in Propositions 1 and 2 hold.
Assume that all outer-loop control gains and ω3r are chosen
as in Propositions 1 and 2. Assume that the inner-loop
controller ensures the uniform boundedness and convergence
to zero of ε12, ε34 and ω̃3. Then, the equilibrium (X,x) =
(0,0) is GAS with exponential convergence rate after some
time instant.

Proof: As a result of Propositions 1 and 2, there exists
a time instant T1 > 0 and some positive numbers α1, α2,
β1, β2 such that ∀t ≥ T1 one has

d

dt
(X>DX) ≤ −α1|X|2 + β1‖E1‖ |X| |x|

d

dt
(x>D̄x) ≤ −α2|x|2 + β2‖E2‖ |X| |x|

with D given in the proof of Lemma 1 and D̄ the sym-
metric positive matrix solution to the Lyapunov equation
D̄Ā+Ā>D̄ = −I3. Subsequently, the time-derivative of the
aggregate Lyapunov function L , X>DX+x>D̄x satisfies

L̇(t ≥ T1) ≤ −α1|X|2−α2|x|2+(β1‖E1‖+β2‖E2‖)|X| |x|
Since E1 and E2 converge uniformly to zero, there exists
another time instant T2 > T1 such that ∀t ≥ T2 the cross
term is dominated by the quadratic terms. Thus, there exists
a positive number ν such that L̇(t ≥ T2) ≤ −νL(t ≥ T2),
implying the exponential convergence of (X,x) to zero.

3) Control design of the reference yaw angular velocity
ω3r: The previous parts of outer-loop control design ensure
the convergence of ξC to zero. In view of the definition
(6) of the homography, H converges to R>, which in
turn converges to R>ψ as a consequence of the inner-loop
controller. Therefore, the component h12 of H converges to
sinψ. It, thus, can be exploited for the design of ω3r for

ensuring the convergence of R to I. Note that the whole
control design process in the previous subsections is based
on the assumption about the boundedness of ω3r (see Propo-
sition 2). The design of ω3r and associated stability analysis
(omitted due to space limitation) proceeds identically to our
prior work [6].

Proposition 3 Assume that the inner-loop torque control Γc
ensures the almost-GAS of the equilibrium (Ω,R>e3) =
(Ωr, e3), with Ωr defined by (8) combined with ω3r (involved
in (8)) solution to the following system

ω̇3r = −kΘ2ω3r − kΘ1sat∆Θ(h12), ω3r(0) ∈ R (31)

with positive numbers kΘ1, kΘ2,∆Θ satisfying kθ1
kθ2

∆Θ < $

where $ is defined from Proposition 2. Apply the outer-
loop force control Fc =

[
F̄>c Fc3

]>
where F̄c is given by

(16)+(22) with control gains k2, k3 specified in Lemma 1
and Fc3 is defined in Proposition 1. Then, the equilibrium
(R, ξC) = (I3,0) is almost-GAS.

B. Inner-loop control design

The more involved part concerning the outer-loop con-
trol design has been presented. The design of an effective
inner-loop torque controller that ensures the stability of the
equilibrium (Ω,R>e3) = (Ωr, e3), with Ωr defined by (8)
combined with (31) proceeds identically to our prior work
[14] and is, thus, recalled for the sake of completeness.

In view of the rotation dynamics (i.e. (1b) and (5b)),
it is not too difficult to carry out the above-mentioned
objective since the sub-system under consideration is fully-
actuated and the measurements of both Ω and R>e3 are at
our disposal. Remark that the disturbance term ∆Γ, which
containing the Munk moment P×V, involved in (5b) should
be carefully addressed. In fixed-point stabilization problem,
∆Γ converges to zero. However, ∆Γ should be estimated
then used as an feedforward term for enhancing the control
performance. Since the angular velocity can be measured
at high frequency and with good precision, we propose to
estimate ∆Γ using a high-gain observer similarly to the idea
proposed in [5, Proposition 8].

Lemma 2 Consider the following observer of ∆Γ:{
J

˙̂
Ω = (JΩ)×Ω̂ + Γc+Γg + ∆̂Γ + k0J(Ω− Ω̂)
˙̂

∆Γ = a2
0k

2
0J(Ω− Ω̂)

with Ω̂ and ∆̂Γ the estimates of Ω and ∆Γ, respectively;
Ω̂(0) ∈ R3, ∆̂Γ(0) ∈ R3; a0, k0 some positive gains.
Assume that ∆̇Γ is uniformly ultimately bounded (u.u.b.).
Then for any a0 ∈ (1−

√
2/2, 1 +

√
2/2),

1) The errors Ω̂−Ω and ∆̂Γ−∆Γ are u.u.b. by a positive
constant ε(k0) that tends to zero when k0 tends to +∞.
Moreover, these terms converge exponentially to zero for
any k0 > 0 if ∆Γ is constant.

2) ˙̂
∆Γ is u.u.b. by a constant independent of k0.

The proof proceeds identically to the proof of [5, Propo-
sition 8].



Define the angular velocity error variable Ω̃ , Ω − Ωr.
From (5b), one obtains the following error equation

J ˙̃Ω = (JΩ)×Ω̃ + Γc + Γg + Γ + ∆̂Γ + ∆̄Γ (32)

with Γ , (JΩ)×Ωr − JΩ̇r and ∆̄Γ , ∆Γ − ∆̂Γ.

Proposition 4 (See [14] for the proof) Consider error equa-
tion given by (32). Introduce the following integrator

żΩ = Ω̃, zΩ(0) ∈ R3

Apply the control torque
Γc =− satη3(KΩΩ̃)−KiΩzΩ − Γ− ∆̂Γ

with KiΩ,KΩ ∈ R3×3 positive diagonal gain matrices, η3 a
positive number, Ωr defined by (8) combined with (31), and
with ∆̂Γ given by Lemma 2. Assume that ∆Γ is constant.
Then, the following properties hold.

1) The error state (Ω̃, zΩ,Re3) converges either to
(0,0, e3) or (0,0,−e3) for all initial conditions.

2) The equilibrium (Ω̃, zΩ,Re3) = (0,0, e3) is almost-
GAS and LES. The equilibrium (Ω̃, zΩ,Re3) =
(0,0,−e3) is unstable.

V. SIMULATION RESULTS

The proposed control approach has been tested in simu-
lation using a realistic model where the physical parameters
are given in Tab. I.

The robustness of the proposed controller with respect
to model uncertainties are tested by using the “erroneous”
estimated parameters Ĵ, M̂ given by{

M̂ = mI3 + M̂a = diag(17.868, 23.868, 21.024) [kg]

Ĵ = Ĵ0 + Ĵa = diag(0.3105, 0.8486, 1.0) [kg.m2]

Specification Numerical value
m [kg] 16
Fb [N ] 1.01mg
l [m] 0.025

rC [m] [0.2 0 0.1]

J0 [kg.m2]

 0.0842 0.004 0.005
0.004 0.2643 0.007
0.005 0.007 0.3116


Ja [kg.m2]

 0.1 0.005 0.006
0.005 0.25 0.008
0.006 0.008 0.3


Ma [kg]

 1.39 0.10 0.12
0.10 4.26 0.13
0.12 0.13 4.02


Ξ = mle3×[kg.m] 0.4e3×

DV l [kg.s−1] diag(5.85, 9.21, 11.03)
DV q [kg.m−1] diag(36.57, 57.58, 68.97)

DΩl [kg.m2.s−1] diag(0.01126, 0.01855, 0.01701)
DΩq [N.m] diag(0.0053, 0.0130, 0.0118)

TABLE I
SPECIFICATIONS OF THE SIMULATED AUV

The homography H is directly computed using (6) with
d? = 1(m) and n? = [0.8259, 0.5364, −0.1736]> corre-
sponding to (α?, β?) = (10◦, 33◦). The initial conditions
are chosen as follows: ξC(0) = [−1,−0.5,−0.5]>(m),
R(0) = R{roll=10◦, pitch=−10◦, yaw=45◦}, V(0) = Ω(0) = 0.
The initial yaw and camera’s position are chosen rather large

Controller Gains and other parameters

Proposition 1 k13 = 3s1, k23 = 8
3

s2
1

n1
, k33 = 3

s2
1

n1
, s1 = 1

Proposition 2 k1 = 3s2, k2 = 8
3

s2
2

n1
, k3 = 3

s2
2

n1
, s2 = 1.1

Proposition 3 kg = 1, kΘ1 = 0.0625, kΘ2 = 0.5, ∆Θ = 1

Proposition 4 KΩ = 3Ĵ, KiΩ = 0
a0 = 0.5, k0 = 20, η3 = 8

TABLE II
CONTROL GAINS AND PARAMETERS

to verify the large stability domain of the proposed controller.
Control parameters and gains2 are summarized in Table II.

The performance of proposed controller is illustrated by
Figs. 5–8. One observes from Fig. 5 a smooth convergence
to zero of the position and orientation errors. Fig. 6 shows
the fast convergence to zero of the visual error (σ, %)
and their augmented variables (σ̂, %̂). The time evolutions
of the control force and torque are shown in Fig. 7. All
components of the control force and torque converge to zero
except the third component of the control force that allows
for compensating for Fgb. The convergence of the angular
velocity Ω to the reference value Ωr as depicted in Fig. 8
shows the effectiveness of the inner-loop controller.

VI. CONCLUSION

In this paper a homography-based dynamic control ap-
proach of fully-actuated underwater vehicles equipped with
a forward-looking camera observing a (near) vertical visual
target is proposed. Since linear velocity measurements and
homography decomposition are not required, the approach is
appealing for low-cost applications. Improving the robustness
of the outer-loop control to the external perturbations (e.g.
current) is a topic our future work. Then a testing campaign
with a real AUV will follow to validate the proposed ap-
proach in challenging sea environment.
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APPENDIX I
PROOF OF LEMMA 1

One verifies that A is Hurwitz if k3 > k2>0 by apply-
ing Routh-Hurwitz criterion on its characteristic polynomial
PA(λ) =

(
λ3 + k1λ

2 + n1k3λ+ n1(k3 − k2)k1

)2
.

Consider the following positive diagonal matrix

Q =

qI2 0 0
0 qI2 0
0 0 M̄−2

 , q > 0

According to the Lyapunov theorem [7], there exists a unique
D = D> > 0 such that DA+A>D = −Q. Straightforward
computations result in

D =
1

2

d11I2 d12I2 d13M̄
−1

d12I2 d22I2 d23M̄
−1

d13M̄
−1 d23M̄

−1 d33M̄
−2

 (33)



with

d11 , 1
k1

(
k2

n1
+ k3+k2

k3−k2
q
)

d12 , − 1
k1

(
k3

n1
+ q
)

d13 , 1
n1

+ 2q
k3−k2

d22 ,
k1

n1

(
k3

k2
− 1
)(

1
n1

+ 2q
k3−k2

)
+ k3

k1k2

(
k3

n1
+ q
)

d23 , − 1
n1

d33 ,
n1

k1k2

(
k3

n1
+ q
)

+ k1

k2

(
1
n1

+ 2q
k3−k2

)
(34)

Consider the Lyapunov function L1 , X>DX, with D
given by (33)–(34). After some straightforward computa-
tions, one deduces

L̇1 = X>(DA + A>D)X + X>(DB + B>D)X

= −
(
x2

31

m2
1

+
x2

32

m2
2

) [
1− n2

2

4q

(
d2

12 + d2
22

)]
−
(√

qx11 + d12n2

2
√
qm2

x32

)2

−
(√

qx12 − d12n2

2
√
qm1

x31

)2

−
(√

qx21 + d22n2

2
√
qm2

x32

)2

−
(√

qx22 − d22n2

2
√
qm1

x31

)2

(35)

Now the task consists in finding sufficient conditions for
(k1, k2, k3, q) so that

1 >
n2

2

4q

(
d2

12 + d2
22

)
(36)

which ensures that L̇ is negative definite and, thus, the origin
of System (27) is GAS. Note that d12 and d22 are functions
of (k1, k2, k3, q) as defined in (34).

From (7) and (28), one verifies that n2
1

n2
2
> 1 +

√
2. Define

δ , n2
1

n2
2
− (1 +

√
2) > 0. One verifies that δ = 1

arctan2 β? −
1

arctan2 β?max
. Rewrite k3 = γk2 (with γ > 1) and k1 = αk2

(with α > 0). Denote

ζ1 , α(γ−1)k2

n2
1

αn1

γ2 , ζ2 , n1γ
α2k2

, ζ̄ , ζ2(1− ζ1ζ2)

After some computations, one verifies that inequality (36) is
equivalent to

α2
[
ζ̄2 + (2 + ζ2)2

]
q2 + 1

α2

[
1

(1−ζ1ζ2)2 + (ζ1+1)2

(1−ζ1ζ2)4

]
+2
[
ζ2 + (ζ1+1)(ζ2+2)

(1−ζ1ζ2)2 − 2− 2
√

2− 2δ
]
q < 0

(37)

Denote
ζ ,

[
ζ1 ζ2

]>
, g1(ζ) , ζ2 + (ζ1+1)(ζ2+2)

(1−ζ1ζ2)2

g2(ζ) ,
[
ζ2
2 + (2+ζ2)2

(1−ζ1ζ2)2

] [
1 + (ζ1+1)2

(1−ζ1ζ2)2

]
The condition for inequality (37) having solution q > 0 is{

∆′ =
(
g1(ζ)− 2− 2

√
2− 2δ

)2 − g2(ζ) > 0

−
(
g1(ζ)− 2− 2

√
2− 2δ

)
> 0

or equivalently

δ > g(ζ) , g1(ζ)−2
2 +

√
g2(ζ)−2

√
2

2
(38)

We will show that we can always choose positive control
gains k1, k2, k3 (i.e. ζ1, ζ2) such that condition (38) holds.
One verifies that g1(ζ) > 2, g2(ζ) > 8, g(ζ) > 0, with
ζ1, ζ2 > 0. One also has

lim
ζ1,ζ2→0+

g1(ζ) = 2, lim
ζ1,ζ2→0+

g2(ζ) = 8

and consequently

lim
ζ1,ζ2→0+

g(ζ) = 0 (39)

From (39), with g(ζ) defined in (38), one deduces that ∀δ >
0 there exists ζ∗ > 0 such that g(ζ) < δ whenever |ζ| < ζ∗.
This implies that there always exist ζ1 = n1k3

k2
1

and ζ2 =(
1− k2

k3

)
1
ζ1

small enough such that
√
ζ2
1 + ζ2

2 < ζ∗ and,
consequently, (36) is satisfied. Therefore, there exist k̄1 > 0
large and ε > 0 small enough such that inequality (36) has
solution q > 0 provided that k1 > k̄1, 1 < k3

k2
< 1 + ε.

APPENDIX II
PROOF OF PROPOSITION 2

In view of the singular perturbation theory [7] it suffices
to prove that the origin of the nominal system

Ẋ = −ω3r(t)S̄X + AX + BX− ω̃3S̄X (40)

is (globally) exponentially stable. As a consequence of
Lemma 1, there exists ν > 0 such that

X>(A>D+DA+B>D+DB)X ≤ −ν|X|2

Since ω̃3 converges to zero, for any 0 < εω < 1 there exists
T > 0 such that ∀τ ≥ T , |ω̃3(τ)| ≤ εων

2‖D‖ and, subsequently,

L̇1(τ ≥ T ) ≤ −(1− εω)ν|X|2 + 2(sup |ω3r|)‖D‖|X|2

If sup |ω3r| < $ , 1−εω
2‖D‖ν, there exists ν1 > 0 such that

L̇1(τ ≥ T ) ≤ −ν1L1(τ ≥ T ), implying the exponential
convergence of X to zero.
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