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A homography-based dynamic control approach of Autonomous Underwater Vehicles observing a (near) vertical target without linear velocity measurements

Lam-Hung Nguyen, Minh-Duc Hua and Tarek Hamel

Abstract-The paper addresses the challenging problem of image-based dynamic control of Autonomous Underwater Vehicles observing a (near) vertical planar target, without measuring the linear velocity. The proposed control approach exploits a minimum sensor suite consisting of a camera looking forward to provide images from which the homography matrix is extracted and an IMU providing angular velocity and gravity direction measurements. The dynamics of the AUV are exploited in a hierarchical control scheme with innerouter control loop architecture. Rigourous stability analysis is established. The performance of the proposed approach is illustrated via simulation results conducted on a realistic AUV model.

I. INTRODUCTION

Cameras have been widely used for surveillance and inspection applications involving an Autonomous Underwater Vehicle (AUV). They also provide reliable visual feedback information to control the vehicle's motion. Nowadays, due to the ability of performing high frame rate image processing, monocular cameras are often adopted to perform underwater navigation tasks. When a robotic vehicle operates in an environment containing (near) planar surfaces, the so-called homography [START_REF] Chaumette | Visual servo control, Part II: Advanced approaches[END_REF] that encodes the rotation and scaled translation between two views of a camera observing the same planar target can be used as visual primitive. Homographybased algorithms have been developed over the last 20 years for pose estimation (up to a scale factor) [13], [15], [16]. Proposed by Malis et al. [11], the so-called 2 1 2 -D visual servo technique that requires homography decomposition into rotation, scaled translation, and target's normal vector was the foundation of some works in AUV docking [START_REF] Brignone | A fully autonomous docking strategy for intervention AUVs[END_REF] and station keeping [10], [17]. A more advanced homographybased visual servoing (HBVS) control scheme is proposed in [START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF]. The innovative feature is the non-requirement of homography decomposition often computationally expensive [12], making it more relevant for embedded systems. The kinematic control approach developed by [START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF] has been exploited in our prior work [START_REF] Krupínski | An inertialaided homography-based visual servoing control approach for (almost) fully actuated autonomous underwater vehicles[END_REF] in order to take the full dynamics of fully-actuated AUVs into account, achieving almost global asymptotic stability. The proposed HBVS approach requires, however, linear velocity measurements typically obtained by a Doppler Velocity Log (DVL) that is often unaffordable for low-cost AUVs. Due to such a practical reason, in [14] The authors are with I3S laboratory (Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis), CNRS, Université Côte d'Azur, UMR7271, Sophia Antipolis, France. T. Hamel is also with Institut Universitaire de France. Emails: lhnguyen(hua,thamel)@i3s.unice.fr.

we have proposed an extension of [START_REF] Krupínski | An inertialaided homography-based visual servoing control approach for (almost) fully actuated autonomous underwater vehicles[END_REF] to the case where linear velocity measurements are not available and the AUV is equipped with a downward-looking camera. The approach has been successfully validated in challenging environments (see https://bit.ly/2QENdkI for video demonstration).

We consider here a more challenging case of a fullyactuated AUV equipped with a forward-looking camera observing a (near) vertical visual target. A similar problem concerning underactuated aerial drones has been addressed in [START_REF] De Plinval | Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing[END_REF] which is in line with our effort in dealing with system's dynamics and in depleting the need of a linear velocity sensor. However, that approach relies on the assumption that the visual velocity is available for control design, for instance, via the use of a high-gain observer, but a complete stability analysis including such high-gain observer is missing.

This paper is part of our continuing efforts in developing low-cost but efficient visual servoing solutions for AUVs by depleting the need of a costly DVL. Potential applications encompass, for instance, docking on a planar docking station, stabilization or positioning in front of a man-made subsea manifold for performing common tasks in offshore industry such as high-resolution imaging, monitoring, inspection, valve-turning, cleaning, repairing, or changing underwater structures, etc. This paper is organized as follows. Notation, system modeling and control model are given in Section II. Problem statement is described in Section III. Cascade inner-outer loop control design is presented and analyzed in Section IV. In Section V simulation results on a realistic AUV model are reported, showing the performance of the proposed approach. A concluding section with perspectives then follows.

II. NOTATION AND MODELING

A. Notation

P4 P3 P2 P1 d n A B C O B C r C - → e a 3 - → e a 2 - → e a 1 G - → e b 3 r G - → e b 1 - → e b 2 (R, ξ C ) (R, ξ)
Fig. 1. An AUV with a forward-looking camera and notation Let us consider an AUV immersed in water and address the case of absence of current. The following notion is used throughout the paper (see Fig. 1).

• Let m and J 0 denote the vehicle's mass and inertia matrix, G and B its center of mass (CoM) and center of buoyancy (CoB). The distance between G and B is denoted as l. The gravity constant is denoted as g. 

• The considered inertial frame is A = {O; - → e a 1 , - → e a 2 ,
= ξ C -Rr C . • Let Ω = [ω 1 ω 2 ω 3 ] ∈ R 3 denote the angular velocity (expressed in B) of B with respect to A. By denoting V = [V 1 V 2 V 3 ] ∈ R 3 and V C = [V C1 V C2 V C3 ] ∈ R 3
respectively the vectors of coordinates (expressed in B) of the linear velocity of B and C, one has

V = V C -Ω × r C . Denote V = [V 1 V 2 ] , VC = [V C1 V C2 ] .
• Let {e 1 , e 2 , e 3 } denote the canonical basis of R 3 and I n denote the identity of R n×n . For all u ∈ R 3 , u × denotes the skew-symmetric matrix associated with the cross product by u, i.e., u × v = u × v, ∀v ∈ R 3 . The Euclidean norm in R n and the Frobenius norm in R n×n are denoted as | • | and • . Let sat δ (•) ∈ R n , with δ > 0, denotes the classical saturation function, i.e., sat δ (x) x min (1, δ/|x|) , ∀x ∈ R n . Let s α and c α denote shortened notations of sin(α) and cos(α), ∀α.

B. System modeling

The kinematic equations of the AUV are given by ξ = RV (1a)

Ṙ = RΩ × (1b)
Define the translational and rotational momentums as

P MV + Ξ Ω Π JΩ + ΞV (2) 
with M mI 3 + M a , J J 0 + J a , Ξ mr G× , and M a , J a denoting the added mass and added inertia matrices respectively. Then, according to the formulation of Leonard [START_REF] Leonard | Stability of a bottom-heavy underwater vehicle[END_REF], the vehicle's dynamics are given by

Ṗ = P × Ω + F c + F gb + F d (3a) Π = Π×Ω + P×V + Γ c + Γ g + Γ d (3b)
where F c ∈ R 3 and Γ c ∈ R 3 are the control force and torque vertors, F gb mg -F b , F gb F gb R e 3 the sum of the gravity and buoyancy forces, Γ g mgr G ×R e 3 the gravity torque, and F d and Γ d the damping force and torque modeled as the sum of linear and quadratic terms as follows

F d (V) = -(D Vl + |V h |D Vq )V Γ(Ω) = -(D Ωl + |Ω|D Ωq )Ω (4) 
with positive damping matrices D Vl , D Vq , D Ωl , D Ωq ∈ R 3×3 . Note that model (4) of F d and Γ d is not used for control design but it is exploited for simulation validations.

C. Model for control design

For simplicity, the added-mass matrix is modeled as a diagonal matrix M a = diag(m a1 , m a2 , m a3 ). Thus, M has the form

M = diag(m 1 , m 2 , m 3 ) with m i m + m ai (i = 1, 2, 3). Denote M diag(m 1 , m 2 ).
The translational and rotational dynamics (3a)-(3b) are tightly coupled due to the coupling matrix Ξ. This coupling is often neglected in the literature using the fact that the distance between the CoB and CoM is relatively small. Since the linear velocity is not measured, the "Munk moment" (MV) × V is here considered as a disturbance. Finally, the damping force and torque are also considered as disturbances. These considerations result in the following simpler dynamic equations that decouple the translational and rotational dynamics:

M V = (MV)×Ω + F c + F gb + ∆ F (5a) J Ω = (JΩ)×Ω + Γ c + Γ g + ∆ Γ (5b)
with the "disturbance" terms

∆ F (Ξ Ω) × Ω -Ξ Ω + F d ∆ Γ (ΞV)×Ω + P×V -Ξ V + Γ d
In absence of current the term ∆ F would eventually converge to zero in fixed-point stabilization problem. Since F d is a dissipative force, it is reasonable to neglect ∆ F in control design (i.e. setting ∆ F ≡ 0). Based on a reference image, taken at some desired pose using a forward-looking monocular camera, and the current images, the control design objective consists in stabilizing the camera's pose to the reference one. Let us choose the inertial frame A attached to the camera's desired pose (see Fig. 1). Assume that a good estimate of the homography matrix H is available for control design. This latter encodes geometric information about the rotation and translation between the current camera frame C and the reference frame

III. PROBLEM FORMULATION

A [1] h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 H = R (I 3 - 1 d ξ C n ) (6)
with d the distance between the camera optical center and the target plane and n ∈ S 2 the unit vector normal pointing towards the target plane expressed in A (see Fig. 1). Denote n the projection vector of n on the horizontal plane; β the angle between n and camera optical axis when taking the reference image; and α the angle between n and the horizontal plane (see Fig. 2). One verifies that

n = [n 1 n 2 n 3 ] n d = 1 d c α c β c α s β s α (7) 
Since the visual target is within the camera's field of view (FOV) when taking the reference image, one should have |α |, |β | < π 2 , which in turn imply that n 1 > 0. In addition to the estimation of H, it is assumed that an Inertial Measurement Unit (IMU) is available to provide measurements of the angular velocity Ω together with an approximate of the gravity direction R e 3 .

The control objective consists in stabilizing H about I 3 (or equivalently stabilizing (R, ξ C ) about (I 3 , 0)) using only (H, Ω, R e 3 ) as available information. In addition to the lack of the linear velocity measurement, the main issues of control design are retated to the unknown terms d and n involved in the expression (6) of H. More importantly, we here exploit directly H without extracting the usual components (R, ξ C d , n ) via a complex and computationally expensive decomposition [12].

IV. CONTROL DESIGN

Homography estimation

Outer-loop

Reference yaw velocity Surge & sway control

Heave control A cascade inner-outer loop control architecture as depicted in Fig. 3 is proposed.

Inner-loop IMU AUV Fc F c3 Γ c ω 3r ω3r H Ω, R e 3 Ω, F gb
• The inner-loop controller (developed in Subsection IV-B) governs the rotation dynamics (1b) and (5b) by defining the torque control vector Γ c to ensure the almost global asymptotic stability (almost-GAS) of the equilibrium (Ω, R e 3 ) = (Ω r , e 3 ), where the reference angular velocity Ω r is defined by

Ω r k g e 3 × R e 3 + ω 3r e 3 (8) 
with k g > 0 positive gain and ω 3r ∈ R the reference yaw angular velocity to be specified by the outer-loop controller. Assume that ω 3r is bounded by design. Note that ω3r must be computable so that the feedforward term Ωr is also computable by the torque controller. • The outer-loop controller (developed in Subsection IV-A) defines the force control vector F c and the reference yaw angular velocity ω 3r (used by the inner-loop controller) to fulfill the main objective of stabilizing (R, ξ C ) about (I 3 , 0). In the sequel we first present the outer-loop control design, which constitutes the main contribution of this paper. The design for the inner-loop is less involved and is postponed after the outer-loop control design.

A. Outer-loop control design

Let ψ denote the AUV's yaw angle and R ψ the rotation matrix around AUV's axis -→ e b 3 . Denote

∆ R = ∆ 11 ∆ 12 ∆ 13 ∆ 21 ∆ 22 ∆ 23 ∆ 31 ∆ 32 ∆ 33 R -R ψ
Since R e 3 converge to e 3 as a result of the inner-loop controller, one verifies that ∆ R converges to zero. The convergence of R e 3 about e 3 implies that ω 1 and ω 2 converge to zero. One then deduces that ∆R remains bounded and converges to zero. Define the following visual errors

σ -h 11 + h 22 -h 12 -h 21 , -h 31
Using (6) one deduces

σ = N 0 0 n 1 R ξ C +   -∆ 11 + ∆ 22 -∆ 12 -∆ 21 -∆ 31   (9) 
with N n 1 I 2 +n 2 S, S 0 -1 1 0 . This in turn yields

R ξ C = N -1 0 0 1 n1 σ - N -1 0 0 1 n1   -∆ 11 + ∆ 22 -∆ 12 -∆ 21 -∆ 31   (10) 
Using ( 9) and (10) one verifies that 

σ = -ω 3 Sσ + N VC - n 1 Nω 12 - ∆ 31 n 1 Nω 12 + ω 3 S -∆ 11 + ∆ 22 -∆ 12 -∆ 21 + -∆11 + ∆22 -∆12 -∆21 (11) 
˙ = n 1 V 3 + n 1 ω 12 N -1 σ -n 1 ω 12 N -1 -∆ 11 + ∆ 22 -∆ 12 -∆ 21 -∆31 ( 
Denoting P M V and using ( 14), ( 15), ( 16), Subsystem (11)+ (13a) and Subsystem (12)+(13b) can be rewritten as

   σ = -ω 3 Sσ + N M-1 P - n 1 Nω 12 + ε 1 Ṗ = -ω 3 S P + Fc -P 3 ω 12 + ε 2 (17) ˙ = n1 m3 P 3 + n 1 ω 12 N -1 σ + ε 3 Ṗ3 = F c3 + F gb + ω 12 P + ε 4 ( 18 
)
with bounded vanishing terms

                           ε 1 (ω 3 -ω 3r )NSr C + r C3 Nω 12 - ∆ 31 n 1 Nω 12 + ω 3 S -∆ 11 + ∆ 22 -∆ 12 -∆ 21 + -∆11 + ∆22 -∆12 -∆21 ε 2 F gb ∆ 13 ∆ 23 ε 3 -∆31 -n 1 ω 12 N -1 -∆ 11 + ∆ 22 -∆ 12 -∆ 21 ε 4 -ω 3r ω 12 MSr C + F gb ∆ 33
One observes that systems (17) and (18) are interconnected (see Fig. 4). In the sequel we first neglect all coupling terms in the outer-loop control design. This is intuitively guided by the fact that these terms are multiplicative terms by vanishing variables ω 1 and ω 2 . Then, a more complete stability analysis for this interconnected system will be carried out thereafter. Surge-and-sway dynamics ( σ, Ṗ) , P 3 σ, P

Heave dynamics ( ˙ , Ṗ3 ) Fig. 4. Interconnected translational dynamics 1) Heave control design: Similarly to the approach proposed in [14], the altitude (heave) control can be designed independently from surge-and-sway and yaw control design.

Proposition 1 Consider System (18) where the coupling terms involving σ and P are neglected. Introduce the augmented system ˙ = -k 13 (ˆ -), ˆ (0) = (0)

with k 13 > 0. Apply the control force

F c3 = m 3 k 23 ˆ -m 3 k 33 -(mg -F b )
1 V is used for handling the case with an arbitrary position of the camera w.r.t the COB. The convergence of ω 3r to zero then results in V → V .

with k 33 > k 23 > 0. Then, the equilibrium (ˆ , , P 3 ) = (0, 0, 0) of the controlled system is globally asymptotically stable (GAS) with exponential convergence rate after some time instant T > 0.

Proof: The considered system can be rewritten as

ẋ = Āx + ε 34 (19) with x ˆ P 3 , Ā   -k 13 k 13 0 0 0 n1 m3 m 3 k 23 -m 3 k 33 0   , ε 34   0 ε 3 ε 4   (20)
From there, the proof is straightforward since the nominal system ẋ = Āx is Hurwitz (using k 33 > k 23 > 0) while the perturbation terms ε 3 and ε 4 converge to zero.

2) Surge-and-sway control design: Consider System (17) and neglect all coupling terms involving and P 3 . Introduce the following augmented system σ = -ω 3 S σ -

k 1 σ + k 1 σ, σ(0) = σ(0) (21) 
with k 1 > 0. Apply the control force

Fc = k 2 M σ -k 3 Mσ (22)
with k 2 , k 3 > 0. Then, the controlled surge-and-sway subsystem is given by

     σ = -ω 3 S σ -k 1 σ + k 1 σ σ = -ω 3 Sσ + N M-1 P + ε 1 Ṗ = -ω 3 S P + k 2 M σ -k 3 Mσ + ε 2 (23) 
Denote

X 1 = x 11 x 12 σ, X 2 = x 21 x 22 σ, X 3 = x 31 x 32 P X   X 1 X 2 X 3   , ε 12   0 ε 1 ε 2   , S   S 0 0 0 S 0 0 0 S   (24) A   -k 1 I 2 k 1 I 2 0 0 0 n 1 M-1 k 2 M -k 3 M 0   , B   0 0 0 0 0 n 2 S M-1 0 0 0   (25) 
System (23) can be rewritten as

Ẋ = -ω 3r SX + AX + BX -ω3 SX + ε 12 (26) 
with ω3 ω 3 -ω 3r . In the sequel we will specify a sufficient condition ensuring that the origin of System (26) is GAS.

Lemma 1 Consider system Ẋ = AX + BX (27)
with A and B defined in (25). Assume that the reference image is captured with a reference heading angle satisfying

|β | < β max arctan 1 √ 1+ √ 2 ≈ 32.8 • (28) 
Then, there exist k1 > 0 large and > 0 small enough, with k1 and depending on (β max , |β |), such that system (27) is globally exponentially stable (GES) provided that k 1 > k1 ,

1 < k 3 /k 2 < 1 + .
The proof is given in Appendix I.

Proposition 2 Consider System (26). Assume that all assumptions of Lemma 1 hold. Assume that the inner-loop controller ensures the uniform boundedness and convergence to zero of ε 12 and ω3 . Then, there exists a positive number such that if sup |ω 3r | < then the equilibrium X = 0 is GAS with exponential convergence rate after some time instant T > 0.

The proof is given in Appendix II. So far the outer-loop control design and associated stability analysis have been carried out for systems (17) and ( 18) by neglecting all coupling terms. Next, stability analysis for the full interconnected system will be developed. The interconnected system (17)-( 18) can be rewritten as

Ẋ = -ω 3 (t) SX + AX + BX + E 1 x + ε 12 ẋ = Āx + E 2 X + ε 34 (29) 
with vanishing matrices

E 1   0 0 0 0 -N n1 ω 12 0 0 0 -ω 12   , E 2   0 0 0 0 n 1 ω 12 N -1 0 0 0 ω 12   (30)
Theorem 1 Consider the interconnected system (29). Assume that all assumptions in Propositions 1 and 2 hold. Assume that all outer-loop control gains and ω 3r are chosen as in Propositions 1 and 2. Assume that the inner-loop controller ensures the uniform boundedness and convergence to zero of ε 12 , ε 34 and ω3 . Then, the equilibrium (X, x) = (0, 0) is GAS with exponential convergence rate after some time instant.

Proof: As a result of Propositions 1 and 2, there exists a time instant T 1 > 0 and some positive numbers α 1 , α 2 , β 1 , β 2 such that ∀t ≥ T 1 one has 

d dt (X DX) ≤ -α 1 |X| 2 + β 1 E 1 |X| |x| d dt (x Dx) ≤ -α 2 |x| 2 + β 2 E 2 |X|
L(t ≥ T 1 ) ≤ -α 1 |X| 2 -α 2 |x| 2 +(β 1 E 1 +β 2 E 2 )|X| |x|
Since E 1 and E 2 converge uniformly to zero, there exists another time instant T 2 > T 1 such that ∀t ≥ T 2 the cross term is dominated by the quadratic terms. Thus, there exists a positive number ν such that L(t ≥ T 2 ) ≤ -νL(t ≥ T 2 ), implying the exponential convergence of (X, x) to zero.

3) Control design of the reference yaw angular velocity ω 3r : The previous parts of outer-loop control design ensure the convergence of ξ C to zero. In view of the definition (6) of the homography, H converges to R , which in turn converges to R ψ as a consequence of the inner-loop controller. Therefore, the component h 12 of H converges to sin ψ. It, thus, can be exploited for the design of ω 3r for ensuring the convergence of R to I. Note that the whole control design process in the previous subsections is based on the assumption about the boundedness of ω 3r (see Proposition 2). The design of ω 3r and associated stability analysis (omitted due to space limitation) proceeds identically to our prior work [START_REF] Hua | Homographybased visual servoing for autonomous underwater vehicles[END_REF].

Proposition 3 Assume that the inner-loop torque control Γ c ensures the almost-GAS of the equilibrium (Ω, R e 3 ) = (Ω r , e 3 ), with Ω r defined by (8) combined with ω 3r (involved in (8)) solution to the following system

ω3r = -k Θ2 ω 3r -k Θ1 sat ∆Θ (h 12 ), ω 3r (0) ∈ R (31) with positive numbers k Θ1 , k Θ2 , ∆ Θ satisfying k θ 1 k θ 2 ∆ Θ <
where is defined from Proposition 2. Apply the outerloop force control

F c = F c F c3
where Fc is given by (16)+( 22) with control gains k 2 , k 3 specified in Lemma 1 and F c3 is defined in Proposition 1. Then, the equilibrium (R, ξ C ) = (I 3 , 0) is almost-GAS.

B. Inner-loop control design

The more involved part concerning the outer-loop control design has been presented. The design of an effective inner-loop torque controller that ensures the stability of the equilibrium (Ω, R e 3 ) = (Ω r , e 3 ), with Ω r defined by [START_REF] Krupínski | An inertialaided homography-based visual servoing control approach for (almost) fully actuated autonomous underwater vehicles[END_REF] combined with (31) proceeds identically to our prior work [14] and is, thus, recalled for the sake of completeness.

In view of the rotation dynamics (i.e. ( 1b) and (5b)), it is not too difficult to carry out the above-mentioned objective since the sub-system under consideration is fullyactuated and the measurements of both Ω and R e 3 are at our disposal. Remark that the disturbance term ∆ Γ , which containing the Munk moment P×V, involved in (5b) should be carefully addressed. In fixed-point stabilization problem, ∆ Γ converges to zero. However, ∆ Γ should be estimated then used as an feedforward term for enhancing the control performance. Since the angular velocity can be measured at high frequency and with good precision, we propose to estimate ∆ Γ using a high-gain observer similarly to the idea proposed in [START_REF] Hua | Contributions to the automatic control of aerial vehicles[END_REF]Proposition 8].

Lemma 2 Consider the following observer of ∆ Γ :

J Ω = (JΩ)× Ω + Γ c +Γ g + ∆Γ + k 0 J(Ω -Ω) ∆Γ = a 2 0 k 2 0 J(Ω -Ω)
with Ω and ∆Γ the estimates of Ω and ∆ Γ , respectively; Ω(0) ∈ R 3 , ∆Γ (0) ∈ R 3 ; a 0 , k 0 some positive gains. Assume that ∆Γ is uniformly ultimately bounded (u.u.b.). Then for any

a 0 ∈ (1 - √ 2/2, 1 + √ 2/2), 1)
The errors Ω-Ω and ∆Γ -∆ Γ are u.u.b. by a positive constant ε(k 0 ) that tends to zero when k 0 tends to +∞. Moreover, these terms converge exponentially to zero for any

k 0 > 0 if ∆ Γ is constant. 2) ∆Γ is u.u.b. by a constant independent of k 0 .
The proof proceeds identically to the proof of [START_REF] Hua | Contributions to the automatic control of aerial vehicles[END_REF]Proposition 8].

Define the angular velocity error variable Ω Ω -Ω r . From (5b), one obtains the following error equation

J Ω = (JΩ) × Ω + Γ c + Γ g + Γ + ∆Γ + ∆Γ (32) 
with Γ (JΩ) × Ω r -J Ωr and ∆Γ ∆ Γ -∆Γ .

Proposition 4 (See [14] for the proof) Consider error equation given by (32). Introduce the following integrator żΩ = Ω, z Ω (0) ∈ R 3 Apply the control torque

Γ c = -sat η3 (K Ω Ω) -K iΩ z Ω -Γ -∆Γ with K iΩ , K Ω ∈ R 3×3
positive diagonal gain matrices, η 3 a positive number, Ω r defined by (8) combined with (31), and with ∆Γ given by Lemma 2. Assume that ∆ Γ is constant. Then, the following properties hold.

1) The error state ( Ω, z Ω , Re 3 ) converges either to (0, 0, e 3 ) or (0, 0, -e 3 ) for all initial conditions. 2) The equilibrium ( Ω, z Ω , Re 3 ) = (0, 0, e 3 ) is almost-GAS and LES. The equilibrium ( Ω, z Ω , Re 3 ) = (0, 0, -e 3 ) is unstable.

V. SIMULATION RESULTS

The proposed control approach has been tested in simulation using a realistic model where the physical parameters are given in Tab. I.

The robustness of the proposed controller with respect to model uncertainties are tested by using the "erroneous" estimated parameters Ĵ, M given by M = mI 3 + Ma = diag(17.868, 23.868, 21.024) [kg] Ĵ = Ĵ0 + Ĵa = diag(0.3105, 0.8486, 1.0 The homography H is directly computed using [START_REF] Hua | Homographybased visual servoing for autonomous underwater vehicles[END_REF] , k 33 = 3 to verify the large stability domain of the proposed controller. Control parameters and gains2 are summarized in Table II.

) [kg.m 2 ] Specification Numerical value m [kg] 16 F b [N ] 1.01mg l [m] 0.025 r C [m] [0.2 0 0.1] J 0 [kg.m 2 ]   0.
s 2 1 n 1 , s 1 = 1 Proposition 2 k 1 = 3s 2 , k 2 = 8 3 s 2 2 n 1 , k 3 = 3 s 2 2 n 1 , s 2 = 1.1 Proposition 3 kg = 1, k Θ1 = 0.0625, k Θ2 = 0.5, ∆ Θ = 1 Proposition 4 K Ω = 3 Ĵ, K iΩ = 0 a 0 = 0.5, k 0 = 20, η 3 = 8
The performance of proposed controller is illustrated by Figs. 5678. One observes from Fig. 5 a smooth convergence to zero of the position and orientation errors. Fig. 6 shows the fast convergence to zero of the visual error (σ, ) and their augmented variables ( σ, ˆ ). The time evolutions of the control force and torque are shown in Fig. 7. All components of the control force and torque converge to zero except the third component of the control force that allows for compensating for F gb . The convergence of the angular velocity Ω to the reference value Ω r as depicted in Fig. 8 shows the effectiveness of the inner-loop controller.

VI. CONCLUSION

In this paper a homography-based dynamic control approach of fully-actuated underwater vehicles equipped with a forward-looking camera observing a (near) vertical visual target is proposed. Since linear velocity measurements and homography decomposition are not required, the approach is appealing for low-cost applications. Improving the robustness of the outer-loop control to the external perturbations (e.g. current) is a topic our future work. Then a testing campaign with a real AUV will follow to validate the proposed approach in challenging sea environment. 

APPENDIX I PROOF OF LEMMA 1

One verifies that A is Hurwitz if k 3 > k 2 > 0 by applying Routh-Hurwitz criterion on its characteristic polynomial

P A (λ) = λ 3 + k 1 λ 2 + n 1 k 3 λ + n 1 (k 3 -k 2 )k 1 2 .
Consider the following positive diagonal matrix

Q =   qI 2 0 0 0 qI 2 0 0 0 M-2   , q > 0
According to the Lyapunov theorem [START_REF] Khalil | Nonlinear systems (3rd Edition)[END_REF], there exists a unique (36) which ensures that L is negative definite and, thus, the origin of System (27) is GAS. Note that d 12 and d 22 are functions of (k 1 , k 2 , k 3 , q) as defined in (34). From ( 7) and (28), one verifies that After some computations, one verifies that inequality (36) is equivalent to

D = D > 0 such that DA+A D = -Q. Straightforward computations result in D = 1 2   d 11 I 2 d 12 I 2 d 13 M-1 d 12 I 2 d 22 I 2 d 23 M-1 d 13 M-1 d 23 M-1 d 33 M-2   (33) 
α 2 ζ2 + (2 + ζ 2 ) 2 q 2 + 1 α 2 1 (1-ζ1ζ2) 2 + (ζ1+1) 2 (1-ζ1ζ2) 4 +2 ζ 2 + (ζ1+1)(ζ2+2) (1-ζ1ζ2) 2 -2 -2 √ 2 -2δ q < 0 (37) Denote ζ ζ 1 ζ 2 , g 1 (ζ) ζ 2 + (ζ1+1)(ζ2+2) (1-ζ1ζ2) 2 g 2 (ζ) ζ 2 2 + (2+ζ2) 2 (1-ζ1ζ2) 2 1 + (ζ1+1) 2 (1-ζ1ζ2) 2
The condition for inequality (37) having solution q > 0 is 36) is satisfied. Therefore, there exist k1 > 0 large and > 0 small enough such that inequality (36) has solution q > 0 provided that k 1 > k1 , 1 < k3 k2 < 1 + . APPENDIX II PROOF OF PROPOSITION 2 In view of the singular perturbation theory [START_REF] Khalil | Nonlinear systems (3rd Edition)[END_REF] it suffices to prove that the origin of the nominal system Ẋ = -ω 3r (t) SX + AX + BX -ω3 SX 

∆ = g 1 (ζ) -2 -2 √ 2 -2δ 2 -g 2 (ζ) > 0 -g 1 (ζ) -2 -2 √ 2 -

- → e a 3

 3 }. The body-fixed frame with the origin at the CoB is denoted as B = {B; -→ e b 1 , -→ e b 2 , -→ e b 3 }. The camera frame with base vectors parallel to those of B is denoted as C = {C; -→ e c 1 , -→ e c 2 , -→ e c 3 }. The vectors of coordinates expressed in B of --→ BC and --→ BG are respectively denoted as r C = [r C1 r C2 r C3 ] ∈ R 3 and r G = le 3 ∈ R 3 , with e 3 = [0 0 1] . Denote rC = [r C1 r C2 ] . • The orientation (i.e. attitude) of the frame B relative to the frame A is represented by R ∈ SO(3). Let ξ and ξ C be the vectors of coordinates (expressed in A) of B and C respectively. One has ξ

Fig. 2 .

 2 Fig. 2. Illustration of angles α and β . The projection vector n and e 1 lie on the horizontal plane and n is perpendicular to the intersection line of the two planes.

Fig. 3 .

 3 Fig. 3. Control architecture of the proposed HBVS

  |x| with D given in the proof of Lemma 1 and D the symmetric positive matrix solution to the Lyapunov equation D Ā+ Ā D = -I 3 . Subsequently, the time-derivative of the aggregate Lyapunov function L X DX + x Dx satisfies

  with d = 1(m) and n = [0.8259, 0.5364, -0.1736] corresponding to (α , β ) = (10 • , 33 • ). The initial conditions are chosen as follows:ξ C (0) = [-1, -0.5, -0.5] (m), R(0) = R {roll=10 • , pitch=-10 • , yaw=45 • } , V(0) = Ω(0) = 0.The initial yaw and camera's position are chosen rather largeControllerGains and other parameters Proposition 1 k 13 = 3s 1 , k 23 =

Fig. 5 .

 5 Fig. 5. AUV's position and attitude (Euler angles) vs. time

Fig. 7 .Fig. 8 .

 78 Fig. 7. Control force Fc and moment Γc vs. time

  function L 1 X DX, with D given by (33)-(34). After some straightforward computations, one deducesL1 = X (DA + A D)X + X (DB + B D)X = -x 2

√ 2 ) 1 arctan 2 β - 1 arctan 2 1 α 2 n1γα 2

 2112122 > 0. One verifies that δ = β max . Rewrite k 3 = γk 2 (with γ > 1) and k 1 = αk 2 (with α > 0). Denoteζ k2 , ζ ζ 2 (1 -ζ 1 ζ 2 )

2 1and ζ 2 = 1 -k2 k3 1 ζ1 small enough such that ζ 2 1 + ζ 2 2

 221122 will show that we can always choose positive control gains k 1 , k 2 , k 3 (i.e. ζ 1 , ζ 2 ) such that condition (38) holds. One verifies that g 1 (ζ) > 2, g 2 (ζ) > 8, g(ζ) > 0, with ζ 1 , ζ 2 > 0. One also has lim ζ1,ζ2→0 + g 1 (ζ) = 2, lim ζ1,ζ2→0 + g 2 (ζ) = 8 and consequently lim ζ1,ζ2→0 + g(ζ) = 0 (39) From (39), with g(ζ) defined in (38), one deduces that ∀δ > 0 there exists ζ * > 0 such that g(ζ) < δ whenever |ζ| < ζ * . This implies that there always exist ζ 1 = n1k3 k < ζ * and, consequently, (

  ) exponentially stable. As a consequence of Lemma 1, there exists ν > 0 such thatX (A D+DA+B D+DB)X ≤ -ν|X| 2Since ω3 converges to zero, for any 0 < ε ω < 1 there exists T > 0 such that ∀τ ≥ T , |ω 3 (τ )| ≤ εων 2 D and, subsequently,L1 (τ ≥ T ) ≤ -(1 -ε ω )ν|X| 2 + 2(sup |ω 3r |) D |X| 2 If sup |ω 3r | < 1-εω 2 D ν, there exists ν 1 > 0 such that L1 (τ ≥ T ) ≤ -ν 1 L 1 (τ ≥ T ), implying the exponential convergence of X to zero.

  c1 F c2 ] ), the vector of the two first components of P (respectively F c ), and rewriting F gb = F gb ∆ 13 ∆ 23 1 + ∆ 33 , one can write (5a) as two interconnected dynamics (surge-and-sway and heave) as

	with ω 12 (respectively Fc ω 2 -ω 1 . By denoting P [F variable 1 V V + ω 3r Sr C (14) One verifies that VC = V + (ω 3 -ω 3r )Sr C + r C3 ω 12 (15) Define the following new control force Fc Fc + ω3r I 2 + ω 2 3r S MSr C	12) [P 1 P 2 ]

follows Ṗ = -ω 3 S P + Fcω 12 P 3 + F gb ∆ 13 ∆ 23 (13a) Ṗ3 = F c3 + F gb + ω 12 P + F gb ∆ 33 (13b) with P 3 the third component of P. Introduce a new velocity

Tuned by applying the classical pole placement technique when considering n ≡ e 1 .