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Introduction

The algorithms for Liouvillian integration of linear differential equations of order n over the complex rational functions, both the classical symbolic ones (starting with [START_REF] Kovacic | An algorithm for solving second order linear homogeneous differential equations[END_REF] and particularizing [START_REF] Michael | Liouvillian solutions of n-th order homogeneous linear differential equations[END_REF]) and the numeric-symbolic of my thesis [START_REF] Llorente | Métodos numérico-simbólicos para calcular soluciones liouvillianas de ecuaciones diferenciales lineales[END_REF], rely on a bound I(n) introduced in [START_REF] Michael | Liouvillian solutions of n-th order homogeneous linear differential equations[END_REF] in terms of linear groups of degree n. The bound I(n) is defined in such a way that, if a subgroup G of GL(n, C) has a 1-reducible subgroup of finite index, then G has a 1-reducible subgroup H with [G : H] I(n). Recall that a subset of GL(n, C) is 1-reducible if it admits an invariant line.

The bound I is usually estimated by the bound J introduced in [Jor1877], where it is proved to exist a bound J(n) such that every finite subgroup G of GL(n, C) has an abelian normal subgroup H with [G : H] J(n). In [START_REF] Michael | Liouvillian solutions of n-th order homogeneous linear differential equations[END_REF] we find the first proof that J estimates I. The optimal values of J(n) required the Classification of Finite Simple Groups, and were given in [START_REF] Michael | On Jordan's theorem for complex linear groups[END_REF], with generic value J(n) = (n + 1)!.

Though a sharper value of I was computed in my thesis [START_REF] Llorente | Métodos numérico-simbólicos para calcular soluciones liouvillianas de ecuaciones diferenciales lineales[END_REF] refining Singer's argument for the post-Classification values of J, we generically get I(n) (n + 1)! yet. The optimal values of I(n), previously known up to n = 5, are much smaller than the optimal values of J(n). Also, in my previous work [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], I prove that the former estimate of I can be generically divided by a reduction factor f with 4 3 3 n/3 f (n) 3 √ 3 • 3 n/3 . Both results, for n small and large, pose the question of improving I(n) for the intermediate values of n.

Collins's work is based on his study of primitive linear groups [START_REF]Bounds for finite primitive complex linear groups[END_REF]. I refine his study in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] for including the reduction factor. In forthcoming work, I will refine I(n) for those intermediate values of n, but for this research I need to consider the case of a generalized Fitting subgroup not irreducible, which is easily discarded (as below the optimal bound) in Collins's case. In the terminology of [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], Collins considers as contributors only the components (the subnormal quasisimple subgroups) and quasicomponents (the non-cyclic p-cores) of the primitive group G to study, but for the refinement of I, we need to consider also as contributors the components and quasicomponents of other primitive groups constructed from G, which I call the shadow groups.

In the present article, I propose different ways to complete the primitive linear groups so that the computation of I(n) is equivalent but less complicated, allowing us to deal with each contributor independently. I define the daylight completion of the whole group, the relative completion of a contributor in the whole group, the absolute completion of the contributor independent of the whole group, the l-fold completion of a component for a multiplicity l, and the total completion of the whole group. The total completion is a Kronecker product of other kinds of completions (and roots of unity) that contains a conjugate of the original group. Some definitions and preliminary results are given in §2, which will be used in the following sections. In §3, I justify the need of considering the shadow groups, defining them and the daylight decomposition, in order to restrict the problem to primitive linear groups with an irreducible generalized Fitting subgroup. This restriction is studied in §4, defining the relative, absolute, manifold and total completion. In §5, I study the general case, finding also the absolute completions of the quasicomponents. Finally, the conclusions are given in §6, including a formula for computing a (not necessarily sharp) value of Singer's bound.

Preliminary results

In order to properly state Proposition 1 and Theorem 2, I introduce the following definitions. A component of a group G is a subnormal quasisimple subgroup thereof. A quasicomponent of a group G is a non-cyclic p-core thereof. Recall that the generalized Fitting subgroup F * (G) is the central product of the center, components and quasicomponents of G.

If G is a primitive linear group and E a component thereof, there is a subnormal chain

E = H 0 H 1 • • • H l = G.
As G is irreducible, by Clifford Theorem, H l-1 has conjugate constituents. So, we can pick the irreducible restriction to any of them without loss of generality. The degree of this restriction is a well-defined divisor of the degree of G. With this irreducible restriction, we repeat the process as long as necessary, getting an irreducible restriction whose degree is a well-defined divisor of the degree of G. We have seen that this degree does not depend on the choice of constituents in the steps, so we have proved that all the constituents of E have the same degree, which I call the subdegree of E.

In a similar way, I define the subdegree of the quasicomponents, which are normal subgroups. According to Collins, if a quasicomponent P has [P : Z(P )] = p 2n , then the subdegree of P is p n . This way we can characterize the irreducibility of the generalized Fitting subgroup in terms of the subdegrees.

Proposition 1. If G is a primitive linear group of degree n, then F * (G) is irreducible if and only if n is the product of the subdegrees of the components and quasicomponents.

Proof. If F * (G) has n 1 irreducible constituents of degree n 2 , then n 2 is the product of the subdegrees of its Kronecker factors, according to [START_REF] Gorenstein | Finite Groups[END_REF]thm. 3

.7.1, thm. 3.7.2]. So, F * (G) is irreducible if and only if n 2 = n.
With this definition of subdegrees, F * (G) is Kronecker product of irreducible representations of the components and quasicomponents in their subdegree and, on the left, a group of scalar matrices in the degree necessary to complete the degree of G.

Collins stated the following result of structure of primitive linear groups [START_REF]Bounds for finite primitive complex linear groups[END_REF]thm. 5].

Theorem 2. Let G be a non-abelian primitive linear group with quasicomponents P 1 , . . . , P r and components E 1 , . . . , E s . As each P i /Z(P i ) is an elementary abelian group of order an even prime-power, let p 2n i i be this order. Let Aut c denote the subgroup of automorphisms that fix the center, and Out c the corresponding quotient. Assume that the family of components splits into t isomorphism classes of lengths l 1 , . . . , l t . Then, G admits a normal subgroup N such that the following structure holds. 1. N is the intersection of the normalizers of the components of G.

2. N/F * (G) is isomorphic to a subgroup of the direct product r i=1 Sp(2n i , p i ) × s j=1 Out c (E j ). 3. G/N is isomorphic to a subgroup of the direct product of symmetric groups S l 1 × • • • × S lt .
This theorem can be completed with the following two results.

Proposition 3. If G is an abelian primitive subgroup of GL(n, C), then n = 1.

Proof. Any abelian group diagonalizes, and a diagonal group can only be irreducible if its degree is 1.

Proposition 4. If G is a non-abelian primitive linear group, then it has at least a component or quasicomponent.

Proof. Suppose that G has no component or quasicomponent, so F * (H) = Z(H). By [START_REF] Aschbacher | Finite Group Theory[END_REF]31.13], H = C H (Z(H)) is contained in F * (H) = Z(H), so we have that H is abelian.

For this aim, I will use a consequence of Schur lemma taken from [Hup57, Satz 3] and the proof thereof.

Theorem 5. Let G be an irreducible linear group of degree n with a normal subgroup N completely reduced with n 1 equal constituents of degree n 2 and n = n 1 n 2 .

1. Then G decomposes as Kronecker product of two irreducible projective representations ρ 1 ⊗ ρ 2 , where the degree of ρ i is n i .

2. The decomposition g = ρ 1 (g) ⊗ ρ 2 (g) of each g ∈ G is unique up to scalars.

Finally, I give a useful result for proving the uniqueness of some constructions that depend on a decomposition in equivalent irreducible constituents. Proposition 6. Let G be a linear group of degree n completely reduced with n 1 equal constituents of degree n 2 . If P is a basis change that normalizes G, then P has the same conjugacy action as a well-chosen A⊗B, with A a permutation matrix and B ∈ SL(n 2 , C).

Proof. Let H be the group generated by G and P . It is clear that G is normal in H. For being reduced in equal constituents, G can be factored in Kronecker product of the identity matrix of degree n 1 and an irreducible linear group G 0 of degree n 2 . The conjugacy action of P permutes the n 1 subspaces of dimension n 2 defined by the block structure. Let A be the permutation matrix defined by this permutation of subspaces in such a way that (A ⊗ I n 2 ) -1 P keeps all these subspaces invariant. The conjugacy action of (A ⊗ I n 2 ) -1 P on G is the same as a block-diagonal matrix diag(B 1 , . . . , B n 1 ). As the conjugacy action of every B i on G 0 is the same, the matrices B i are equal up to scalars, according to Schur Lemma, so we can take them equal to B chosen unimodular without changing the action by conjugation. Therefore, the conjugacy action of P is the same as A ⊗ B.

Reduction to the case of irreducible generalized Fitting subgroup

According to [Col08, ante prop. 4], F * (G) is the central product of the center, the components and the quasicomponents of G. As G is quasiprimitive and F * (G) is normal in it, F * (G) has equivalent constituents. I shall show that the case of F * (G) reducible can actually happen. Let me consider the Hessian group H of order 648, which has a primitive faithful representation of degree 3. This group H can be retrieved in GAP with the command SmallGroup(648,532) [START_REF]GAP -Groups, Algorithms, and Programming[END_REF]. The character table of H shows 3 linear characters, 3 irreducible characters of degree 2, 7 of degree 3, 6 of degree 6, and higher degrees. The 3 irreducible characters of degree 2 are non-faithful and are related by product with linear characters. If we exclude one non-faithful irreducible character of degree 3, the other 6 ones are faithful, primitive, and related by complex conjugation and product with linear characters. Finally, the 6 irreducible characters of degree 6 are faithful, primitive, and related by complex conjugation and product with linear characters.

The kernel of any irreducible character of degree 2 is O 3 (H), a quasicomponent of H. The product of any of these characters of degree 2 and any faithful irreducible character of degree 3 yields an irreducible character of degree 6. Moreover, the 6 irreducible characters of degree 6 can be obtained this way. The quasicomponent O 3 (H) = 3 1+2 + contributes with degree 3, so it saturates any primitive faithful representation of degree 3 and leaves no room for other contributors, and thus

F * (H) = Z(H) • O 3 (H) = O 3 (H).
Any faithful primitive representation of degree 6 decomposes in Kronecker product of a primitive faithful representation of degree 3 and a representation of degree 2 that vanishes on O 3 (H), so its restriction to F * (H) = O 3 (H) is Kronecker product of a faithful representation of degree 3 and the identity in degree 2, which means that it is reducible. This faithful representation of H/O 3 (H) in degree 2 may be seen as a "component in the shadow." As H/O 3 (H) is the tetrahedral group, whose irreducible representation in degree 2 is primitive, with the only contributor of the quasicomponent O 2 (H/O 3 (H)). When looking for 1-reducible subgroups of H, we need to consider both the actual quasicomponent and the quasicomponent in the shadow. I shall develop this idea for a unimodular primitive linear group whose center consists of the roots of unity of its degree.

The unimodular trick consists of substituting a linear group G in < GL(n, C) with G out = (C * G in ) ∩ SL(n, C). The output group G out is a finite subgroup of SL(n, C) and Z(G out ) consists of the n-th roots of unity. This transformation keeps invariant the unimodular groups whose center consists of the n-th roots of unity. Moreover, we have C * G in = C * G out , so the invariant lines by G in and by G out are the same.

If H 0 is a 1- reducible subgroup of G in with index r, then (H 0 ) out is a 1-reducible subgroup of G out . If H 0 contains Z(G in ), we have [G out : (H 0 ) out ] = r, but in general [G out : (H 0 ) out ] r. If H 1 is a 1-reducible subgroup of G out with index r, then H 0 = (C * H 1 ) ∩ G in is a 1-reducible subgroup of G in . If H 1 contains Z(G out ), then (H 0 ) out = H 1 , and thus [G in : H 0 ] = r, but in general [G in : H 0 ]
r. Therefore, the minimum index r min of a 1-reducible subgroup satisfies r min (G in ) r min (G out ). As the systems of imprimitivity are the same for G in and G out , we have equivalence of primitivity between them. Thus, we can bound

max{r min (G) : G prim GL(n, C), G = G out } max{r min (G) : G prim GL(n, C)} max{r min (G out ) : G prim GL(n, C)}
where the first member is equal to the last one, whence we can establish the equality of the three maxima. So, if we want to compute the middle member, we can restrict the maximum to those G that are unimodular and whose center consists of the n-th roots of unity.

From now on, assume that G is a primitive unimodular linear group of degree n with Z(G) the n-th roots of unity. Assume also that F * (G) decomposes in n 0 equal irreducible components of degree m. According to Theorem 5, G decomposes in Kronecker product of two irreducible projective representations ρ F ⊗ ρ F such that ρ F has degree m, ρ F has degree n 0 , and each decomposition M = ρ F (M ) ⊗ ρ F (M ) is unique up to scalars. I define the first shadow group

G sha = (C * ρ F (G)) ∩ SL(n 0 , C) of G.
The group G sha is finite and primitive, since any system of imprimitivity of G sha can be exported to G preserving its length. Indeed, if G sha has a system of imprimitivity {V 1 , . . . , V l }, we can construct {V 1 ⊗ C m , . . . , V l ⊗ C m } as a candidate system of imprimitivity of G, which has length m. The decomposition M = ρ F (M ) ⊗ ρ F (M ) of any M ∈ G grants that this family is an actual system of imprimitivity of G.

In order to establish that the first shadow group is well defined, I need to prove that two different ways to decompose F * (G) in equal irreducible components yield the conjugate groups G sha1 and G sha2 . According to Proposition 6, the basis change between the two bases that give the nice form of F * (G) can be chosen in the form P ⊗ P with P a permutation matrix and P ∈ SL(m, C). Applying P ⊗ P to any decomposition M = ρ F 1 (M ) ⊗ ρ F 1 (M ), we obtain another decomposition in Kronecker product ρ F 2 (M ) ⊗ ρ F 2 (M ), so the projectivizations of ρ F 1 and ρ F 2 are conjugate and thus G sha1 and G sha2 .

We have that either G sha is abelian or it satisfies Theorem 2. This way, we can define a sequence of iterated shadow groups G, G sha , . . . , G sha(r) , . . . until we reach an abelian group. Notice that the degree of each group divides the degree of its predecessor. If a primitive linear group H had a first shadow group H sha of the same degree, it would mean that H has no component or quasicomponent and, by Proposition 4, H is abelian. Hence the degree of each group in the sequence of shadow groups divides strictly the degree of its predecessor, and therefore this sequence is finite. Moreover, by Proposition 3, the last shadow group has degree 1 and is trivial for being unimodular.

In a similar way to the first shadow group, I can construct another associated group to a decomposition of F * (G) in equal irreducible components. I define the daylight group

G day = (C * ρ F (G)) ∩ SL(m, C) of G.
The group G day is finite and primitive, for the same reason as G sha . The well definition of G day can be established by a similar argument as with G sha . Moreover, if F * (G) is reduced as direct sum of equal constituents, then G is contained in the group generated by the Kronecker product G sha ⊗ G day and the n-th roots of the unity. Iterating this construction, in the suitable coordinates, G is contained in the group generated by the Kronecker product of the daylight groups of all the groups in the shadow sequence and the n-th roots of the unity.

Notice that the components of G are in G day , where they are also components, though the latter could have more components, in principle. The quasicomponents of G are in G day , though they are subgroups of the respective quasicomponents of G day , in principle. With these observations, the product of the subdegrees in G is the same in less or equal that of G day , so F * (G day ) is irreducible, according to Proposition 1. Moreover, the equality of the product of subdegrees holds and thus the components and quasicomponents of G day are exactly those of G.

Study of the case of irreducible generalized Fitting subgroup

Let us restrict to the case of F * (G) irreducible. Up to a change of coordinates, we can assume that F * (G) is the Kronecker product of irreducible representations of the components and quasicomponents, adding some roots of unity for the center.

As N normalizes all the components and quasicomponents of G, focusing without loss of generality on the first Kronecker factor A, we can apply Theorem 5 to N and A, obtaining a decomposition of N in Kronecker product of two irreducible projective representations ρ A ⊗ρ A such that ρ A has the degree of the factor A and, for each M ∈ N , the decomposition

M = ρ A (M ) ⊗ ρ A (M ) is unique up to scalars. If A has degree n A , I will call the linear group G A = (C * ρ A (G)) ∩ SL(n A , C) the relative completion of A in G.
A change of coordinates in the A yields the same relative completion in the new coordinates, so the relative completion is well defined.

Applying this decomposition for all the components and quasicomponents A, we can construct the Kronecker product of the ρ A , obtaining an irreducible projective representation ρ of N . As the conjugacy action of each ρ(M ) on each A is the same as that of M , then these actions on F * (G) are the same and thus, by Schur lemma, ρ is the identity up to scalars. Then N is embedded in the linear group constructed by adding the n-th roots of unity to the Kronecker product of the relative completions of all the components and quasicomponents of G.

For each component or quasicomponent, we can extend the relative completion in the following way. From the Kronecker factor A of degree n A , we take its normalizer in SL(n A , C), getting a finite extension of the relative completion, which I call the absolute completion of A. Notice that, while the relative completion depends on the total group G, the absolute completion depends only on the factor representation, hence the adjectives "relative" and "absolute," and that the absolute completion is well defined. Moreover, as the absolute completion contains any relative completion, the Kronecker product of the absolute completions contains the Kronecker product of the relative completions and thus, adding the n-th roots of the unity, it contains N .

According to the proof of [Col08, thm. 5], G/N controls the permutation of the components that are isomorphic. Notice that there cannot be two distinct quasicomponents of the same prime in the same group. I shall restrict the classes of components permuted by G. A component can only be transformed in another component if they are conjugate groups. In terms of the factor representations, I speak of the conjugacy of the image of the representation, not of the conjugacy of the representation themselves. Notice that two inequivalent irreducible representations of a group can yield images either conjugate (as an almost extraspecial 2-group, cf. [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF]) or non-conjugate (as in the Mathieu group M 11 ). is another diagonal matrix the same diagonal entries but in a different order. Let me consider the permutation matrix P that conjugates the former into the latter, and g P = P ⊗ I n for suitable n so that g P ∈ GL(n, C).

If a component E

Each component E i in the cycle has a natural representation ρ i of degree m such that I m(i-1) ⊗ ρ i ⊗ I m(s -i)n is the identity. The conjugator g -1 P h maps each

E i into I m(i-1) ⊗GL(m, C)⊗I m(s -i)n , yielding a second representation ρ i of E i such that I m(i-1) ⊗ ρ i ⊗ I m(s -i)n
is the conjugacy action of g -1 P h. Focusing on E 1 without loss of generality, we can apply Theorem 5 to E 1 inside its closure by adding g -1 P h, obtaining a factorization g -1

P h = M 1 ⊗ Λ 1 where M 1 ∈ GL(m, C
) is unique up to scalar. This way, M 1 is a conjugator that makes ρ 1 and ρ 1 equivalent. In a similar way, each representation ρ i is equivalent to ρ i .

Recall that the components E 1 , . . . , E s of the cycle are isomorphic. If we have an abstract group E 0 with representations σ i :

E 0 → E i , each representation ρ i • σ i is equivalent to ρ i • σ i , but the conjugacy action of h sends ρ 1 • σ 1 to the image of ρ 2 • σ 2 ,
yielding an automorphism of E 0 if we come back to this abstract group. Hence the comment about the equivalence of the images of ρ i • σ i rather than of the representations themselves, since two representations of an abstract group H are equivalent up to automorphisms of H if and only if their images are conjugate.

Assume now that we have performed a change of basis so that the images of the ρ i are the same. This way, g -1 P h keeps all the components and quasicomponents invariant and, by a similar argument as I did for the matrices of N , g -1 P h decomposes as Kronecker product of conjugators of each factor representation. As the components outside the considered cycle and the quasicomponents are not only invariant but fixed elementwise, their corresponding conjugators can be chosen as identity matrices. The other conjugators can be taken from the corresponding absolute completions. Therefore, h is equivalent to the constructed permutation matrix modulo the Kronecker product of the absolute completions.

If two representations of the same quasisimple group have the same image group, though the representations may be not equivalent, then their absolute completions are equal as linear groups. We can take the Kronecker product of l copies of an absolute completion and add to this linear group the image of the symmetric group S l consisting of permutation matrices constructed in the same way as P , as well as the ml-th roots of unity, forming what I call its l-fold completion. If we construct the l-fold completion of two equivalent representations of the same quasisimple group, the resulting linear groups are conjugate, as I shall prove.

We first have that the absolute completions are conjugate by the same conjugator M as the original representations. Let σ be a permutation in S l , g σ the matrix whose conjugation performs the permutation σ among the l factors, constructed in the style of g P , and g σ = (M ⊗m ) -1 g σ (M ⊗m ). For each matrix h in the absolute completion, the conjugation of (g σ ) -1 g σ sends the copy of h in the i-th factor to itself, as I shall detail. First, the conjugation of g σ sends it to the copy in the σ(i)-th factor. Then, the conjugation of M ⊗m sends the latter to the copy of M -1 hM in the σ(i)-th factor. Later, the conjugation of (g σ ) -1 sends the latter to the copy of M -1 hM in the i-th factor. Finally, the conjugation of (M ⊗m ) -1 sends the latter to the copy of h in the i-th factor. As the absolute completion is irreducible for containing the irreducible A, and so its Kronecker power, by Schur lemma (g σ ) -1 g σ is scalar. As both g σ and g σ are unimodular, this scalar is an ml-th root of unity.

Let me collect the components of G in equivalence classes according to the conjugacy class of the image of their factor representations. Now we can form the total completion of G as the Kronecker product of the following factors: the l-fold completion of each class of components of length l, the absolute completion of each quasicomponent, and the n-th roots of the unity. In the suitable coordinates, G is contained in its total completion, and two suitable coordinates yield the same total completion.

Study of the general case

We have decomposed a primitive linear group G into Kronecker product of certain roots of unity and certain primitive linear groups whose generalized Fitting subgroup is irreducible. We have also constructed the total completion of each primitive group of this kind. Therefore, G is contained in a Kronecker product of total completions and roots of unity. This group, which can be called the total completion of G, is Kronecker product of absolute or manifold completions of components and absolute completions of quasicomponents, apart from the roots of unity, where the components and quasicomponents might be repeated because of their source.

We can look for 1-reducible subgroups of a total completion as Kronecker product of 1-reducible subgroups of its factors. If we can compute large 1-reducible subgroups of the absolute completions, we need only to consider manifold completions. If we have the coordinates of the base absolute completion in such a way that the first Cartesian axis is invariant, then the first Cartesian axis of the Kronecker product is invariant. The permutation matrices constructed for the manifold completion leave also the first Cartesian axis invariant. As these matrices glue as semidirect product with the Kronecker power of any subgroup of the base absolute completion, we have a large 1-reducible subgroup of the manifold completion. If the small index of the 1-reducible subgroup of the base absolute completion is r, then the index of the corresponding 1-reducible subgroup in the l-fold completion is r l . Finally, having a 1-reducible subgroup of index r in the total completion of G grants that its restriction to G is a 1-reducible subgroup of index r at most.

In the case of quasicomponents, the absolute completion is the output of the unimodular trick applied to one of the extensions whose uniqueness is discussed in [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF]. Consider first the case of a quasicomponent E = Z(E)P with Z(E) scalar, P = p 1+2k + and p an odd prime, so the degree of the base representation is p k and the relative completion is of the form E.S with S < Sp(2k, p). I shall prove that the absolute completion

E abs = N GL(p k ,C) (E) ∩ SL(p k , C) of E is K out = (C * K) ∩ SL(p k , C
) for K = P. Sp(2k, p) an extension of P as a linear group discussed in [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF]. This is equivalent to prove that Consider now the case of a quasicomponent E = Z(E)T 0 with Z(E) scalar of order 4 at least and T 0 = 2 1+2k ± , so the degree of the base representation is 2 k and the relative completion is of the form E.S with S < Sp(2k, 2). As Z(E) contains the cyclic group of order 4, we can decompose E = Z(E)T with T an almost extraspecial group of order 2 2k+2 . I shall prove that the absolute completion

C * K = N GL(p k ,C) (E). If M ∈ K,
E abs = N GL(2 k ,C) (E) ∩ SL(2 k , C) of E is H out = (C * H) ∩ SL(2 k , C
) for H = T. Sp(2k, 2) an extension of T as a linear group discussed in [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF]. This is equivalent to prove that Finally, consider the case of a quasicomponent E = Z(E)T 0 with Z(E) scalar of order 2 at most and T 0 = 2 1+2k ± , so the degree of the base representation is 2 k and the relative completion is of the form E.S with S < Sp(2k, 2). As Z(E) is contained in Z(T 0 ), we have E = T 0 , so E is extraspecial of order 2 1+2k and sign ε. I shall prove that the absolute completion

C * H = N GL(2 k ,C) (E). If M ∈ H,
E abs = N GL(2 k ,C) (E) ∩ SL(2 k , C) of E is H out = (C * H) ∩ SL(2 k , C) for H = E. GO ε (2k, 2) an extension of E as a linear group discussed in [Llo18]. This is equivalent to prove that C * H = N GL(2 k ,C) (E). If M ∈ H, then M normalizes H and thus E, which proves one contention. If M ∈ GL(2 k , C) normalizes E, according to [Llo18, §7],
there exist λ ∈ C * and M ∈ H such that M = λM , which proves the other contention. Hence, I have established E abs = H out , regardless of the extension H taken, which is not unique according to [START_REF] Stephen | On the faithful representations, of degree 2 n , of certain extensions of 2-groups by orthogonal and symplectic groups[END_REF].

Therefore, in order to bound the minimal index of a 1-reducible subgroup of E abs , it suffices to compute it for K or H, which are conjugate to any other linear group of those considered in [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], so it suffices to compute it for the Weil representation in the cases of K unique up to conjugacy, or for the Glasby construction in the cases of H unique up to conjugacy. The only exception to this uniqueness of K is, according to [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], when p = 3 and k = 1, when we have 3 non-isomorphic versions of K, but they yield the same linear group when we add the 9th roots of unity, so all of them have the same minimal index of a 1-reducible subgroup. The only exceptions for H in the symplectic case are when k = 1 or k = 2, but any of them is valid since they are made equal when added then 8th roots of unity.

For the orthogonal cases of H, we have that C * E contains the corresponding almost extraspecial group 4 • E, so the normalizer in SL(2 k , C) of E is contained in that of 4 • E, i.e., the absolute completion of E is contained in that of 4 • E, and thus the minimal index of a 1-reducible subgroup of the absolute completion of the almost extraspecial group is an upper bound of this minimal index of the absolute completion of E. So, when maximizing these bounds among the primitive G, we can exclude the extraspecial 2-groups as quasicomponents of any of the primitive groups of the iterated daylight decomposition.

Conclusions

First of all, I restricted my consideration of primitive linear groups of degree n to the unimodular case containing the full group of the n-th roots of unity. The unimodular trick allows us to grant this condition for a group that only differs by scalars.

Summarizing, I have defined the daylight decomposition of a primitive linear group G, which allows uncovering components and quasicomponents in the shadow. Each daylight group is a primitive linear group of a degree dividing the degree of G, and its generalized Fitting subgroup is irreducible. I have defined the daylight completion as the Kronecker product of these daylight groups, after adjusting the scalars, which is another primitive linear group of the same degree as G and it contains a conjugate of G.

For a primitive linear group G with an irreducible generalized Fitting subgroup, I have defined the relative completion of each component or quasicomponent A in G, which is a linear group of the subdegree of A. Forgetting the embedding of A in G, I have also defined the absolute completion of A as another linear group of the subdegree that contains any possible relative completion of A. For a component of multiplicity l, I have defined the l-fold completion, which allows for the permutation of l factors of the absolute completion in Kronecker product. Finally, I have defined the total completion of G as the Kronecker product of all these absolute or manifold completions, after adjusting the scalars, which contains a conjugate of G.

For a primitive linear group G with a reducible generalized Fitting subgroup, the total completion is the Kronecker product of the total completions of the groups in the daylight decomposition, and it also contains a conjugate of G.

All this setting allows us to find large 1-reducible subgroups by looking for them in the possible components and quasicomponents, actual or in the shadow, and finding their index in the total completion by plainly multiplying those in the corresponding absolute completion. I have proved that an l-fold completion behaves like l separate factors. I have also proved that we can discard the option of an extraspecial 2-group as a quasicomponent when computing I abs (2 m ).

  1 is transformed in another component E 2 by the conjugacy action of h ∈ G, defining a cycle of components (E 1 , . . . , E s ), take an s × m matrix of distinct primes (p ij ) ij , with m the degree of the considered components. The Kronecker product diag(p 11 , . . . , p 1m ) ⊗ • • • ⊗ diag(p s 1 , . . . , p s m ) is a diagonal matrix with all its m s entries different. The Kronecker product diag(p s 1 , . . . , p s m ) ⊗ diag(p 11 , . . . , p 1m ) ⊗ • • • ⊗ diag(p s -1,1 , . . . , p s -1,m )

  then M normalizes P and thus E, which proves one contention. If M ∈ GL(p k , C) normalizes E, according to [Llo18, §8], there exist λ ∈ C * and M ∈ K such that M = λM , which proves the other contention. Hence, I have established E abs = K out , regardless K is unique or not.

  Let me consider the following restrictions of the Singer bound I: I prim to primitive groups and I abs to the absolute completions of one component or quasicomponent. Then, we can boundI prim (n) max{I abs (n 1 ) • • • I abs (n k ) : n 1 • • • n k = n},which is complemented with the formulaI(n) = max{rI prim (s) : rs n} of [Llo19], yielding I(n) max{n 0 I abs (n 1 ) • • • I abs (n k ) : n 0 • • • n k n}.

  then M normalizes H and thus E, which proves one contention. If M ∈ GL(2 k , C) normalizes E, according to [Llo18, §6], there exist λ ∈ C * and M ∈ H such that M = λM , which proves the other contention. Hence, I have established E abs = H out , regardless H is unique or not.